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Background
Advances in gene sequencing technology have made genome research more and more 
popular in the past decades [1]. Although methods based on bulk RNA-seq can obtain 
the genome-wide RNA sequence expression information, the resulting gene expression 
profiles are only the average values of the different cell types, which cause the studies of 
gene expression limited to the analysis of pooled populations of cells. The heterogene-
ity in cells is neglected and mutations present only in a few cells are substantially hidden 
(such as early cancer cells) [2]. The analysis of cell clusters does not show cell heterogene-
ity, which is also an important feature of organ development [3]. In the process of organ 
development, the progenitor cells undergo diverse differentiation decisions to become 
specific cell types. Therefore, technology that define the gene expression of individual 
cells is necessary for a better understand of the differentiation and heterogeneity of cells.

Single-cell RNA sequencing (scRNA-seq), which enables rapid determination of 
the precise gene expression patterns of tens of thousands of individual cells has been 
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propposed. [1]. scRNA-seq is vital for exploring the dynamic development process of 
life and studying the regulation mechanism of genes, which also can be used to discover 
new cell types. However, there are still some limitations for scRNA-seq technology, the 
key limitation is the noise of the scRNA-seq data, which is mainly caused by the poor 
sensitivity of scRNA-seq technology [4]. Current scRNA-seq technology can detect 
only about 10 percent of the mRNA molecules that are actually present. Therefore, low-
expression genes are difficult to detect in scRNA-seq data [3]. In addition, the expression 
of genes is not in a steady-state manner in different periods. Batch effect can also cause 
noise. It is estimated that there are eighty percent noise is caused by technical limitations 
and the remaining twenty percent is estimated to be of biological origin. The primary 
challenge in the scRNA-seq data analysis is how to remove the noise of data.

As shown in Fig. 1, the scRNA-seq data tend to be bimodal expression distribution 
[5]. Although many zero counts in scRNA-seq data are true absence of expression, 
a big part is caused by technical factors. There are many approaches for solving the 
noise of scRNA-seq data. scImpute estimates the true expression of genes through 
clustering similar cells and SAVER recovers the true expression levels of genes by a 
method that takes advantage of gene-to-gene relationships [6, 7]. Because of the poor 
sensitivity of scRNA-seq technology, the scRNA-seq data is incomplete. The detec-
tion rate of mRNA is only 5-15 percent, so genes with low expression levels are dif-
ficult to detect [1]. Although it is hard to get the complete data for low expression 
genes, if we detect mRNA in multiple cells with the same type, low expression genes 
are likely to be detected in a small fraction of cells. Once the cells with the same cell 
types are clustered, we can combine all gene expression data from the same type cells 
to impute complete gene expression data [7]. Therefore, the main idea of our method 

Fig. 1  The bimodal expression distribution. The typical bimodal expression distribution of scRNA-seq data 
(The eleventh gene in mECS, which is a dataset about mammary epithelial cells). The detection rate of mRNA 
is 5–15%. The genes with low expression levels are difficult to detect. Therefore, the expression of scRNA-seq 
data is either strongly zero or high expression. We call this distribution a bimodal distribution
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is to obtain more complete gene expression data by integrating gene expression data 
of similar cells, which is similar to scImpute. However, scImpute may remove the 
cell-to-cell heterogeneity because scImpute impute scRNA-seq data by clustering all 
cells with the same types while cell-to-cell heterogeneity is also of great significance 
for exploring cell heterogeneity. In addition, clustering cells into true types is very 
difficult.

In fact, in scRNA-seq, even in the same cell type, cells with different volumes 
still have very different mRNA transcript number [5]. Therefore, even if scImpute 
can clustering cells into true types, the heterogeneity in the same cell type will be 
neglected while intra cluster heterogeneity also plays an important role in subsequent 
analysis. In a word, scImpute is a method of clustering similar cells first and then 
imputing gene expression data, which obtain complete data by clustering, lead to over 
smoothing of the gene expression data and neglection of intra cluster heterogeneity. 
Therefore, an accurate expression recovery method that can preserve heterogeneity 
is essential. In addition, the volume is an important factor that should be considered 
because it affects gene expression in scRNA-seq. Different cell volumes lead to dif-
ferent mRNA transcript numbers, which leads to different mRNA capture numbers. 
Methods like scImpute and SAVER ignore this factor. In this paper, we propose a new 
method named scRNA-seq complementation (SCC), which can modify the data of 
scRNA-seq and reduce the intra-class distance of cells. In SCC, we replace cluster-
ing similar cells with finding the nearest neighbor cells of each cell. In this way SCC 
can not only obtain the complete gene expression data but also preserve cell-to-cell 
heterogeneity.

The main idea of SCC is shown in Fig.  2. In Fig.  2, there are three different cell 
types represented by different colors and shapes. The sizes of quadrilaterals repre-
sent different cell volumes and the holes in quadrilaterals represent the dropouts in 
scRNA-seq data. In order to solve the dropouts of scRNA-seq data, we cluster similar 
cells and obtain the complete cell data by complementation of similar cells. In SCC, 
for every cell, we find the nearest neighbor cells with similar volume and modify the 
dropouts of the cell by the complement of neighbor cells. Compared with scImpute, 

Fig. 2  The complementation of scRNA-seq data. A quadrilateral represents a cell and the different colors 
represent different cell types and different sizes represent different cell volumes. The data of scRNA-seq is 
incomplete and the holes in quadrilaterals represent the missing information. Although the data of each 
cell is incomplete, we can still bring together similar cells. We obtain complete cell data by complementing 
similar cells
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we retain the cell-to-cell Heterogeneity. The result shows that our method can reduce 
the intra-class distance of cells and enhance the clustering of cell subpopulation.

Results
SCC does not need the cell type as prior information and the scRNA-seq matrix is 
the only input. The output of SCC is a modified scRNA-seq matrix. Besides, SCC is 
memory-efficient because it only modifies one cell at a time. We apply SCC to one 
simulation dataset and three real scRNA-seq datasets (Kolod, Pollen and Usoskin). 
The result shows that SCC can significantly reduce the intra-class distance of cells 
and enhance the clustering of cell subpopulation.

The simulate data

We use the scSimulator function to create the simulate data. The simulate data con-
tains 3 cell types, 150 cells and 8180 genes. For the simulate data, we get the modified 
data by SCC and visualize the raw data and modified data by PCA. The visualization 
is shown in Fig. 3. The left part is the raw simulate data and right part is the modi-
fied data. As shown in Fig. 3, the modified data is more intensive. The Adjusted Rand 
Index (ARI) can be used to calculate the similarity between the clustering trsult and 
real types [8]. The range of ARI values is between − 1 and 1. The negative value means 
that the clustering result is bad, indicating that the labels are independently distrib-
uted. The values of good clustering results are positive (1 is the best result), indicat-
ing that the distribution of the two labels is identical. We use K-means to cluster the 
cell and calculate the ARI values of raw data and modified data. The ARI values are 
0.4394281 and 0.5233112 respectively. The modified data result is better than the raw 
data. So we can conclude that SCC is an effective method to recover gene expression.

Fig. 3  The visualization of simulate data. We run SCC in the simulate dataset. The left chart is the raw 
simulate data and the right data is the simulate data after modification
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The real data

We alse run SCC in the real datasets (Kolod, Pollen and Usoskin). Kolod (704 cells, 
13,473 genes) is a dataset about pluripotent cells under different environmental con-
ditions and Pollen (249 cells, 6982 genes) is a dataset contains eleven cell populations 
including neural cells and blood cells. Usoskin (622 cells, 17,772 genes) is a neuronal cell 
dataset with sensory subtypes.

SCC can resolve the dropouts in scRNA‑seq

We counted the number of zero values in the GSE76381 (Adult), which is downloaded 
from NCBI website. The num of genes is 18,219 and the num of cells is 243. In 4,427,217 
gene expression values, 3,429,466 gene expression values are zeros. Zero values account 
for 77.46% of the total gene expression values. After the modification of gene expres-
sion, the ratio of zero values dropped to 68%. 418,815 dropouts are resolved and the rest 
3,010,651 zero expression value are identified as true zero expression. Therefore, we can 
draw a conclusion that SCC can assign value to dropouts and retain a part of real zero 
values.

SCC can reduce the the intra‑class distance of cells

We use intra-class distance and inter-class distance to evaluate the performance of SCC 
modification. The intra-class distance is the mean square distance between sample cells 
of the same cell types and the inter-class distance is the mean square distance of the 
sample cells of the different cell types. The smaller the intra-class distance is, the better 
the modification result is. The smaller the inter-class distance is, the worse the modifica-
tion result is [9]. We hope that the intra-class distance of cells is smaller and the inter-
class distance of cells is larger. We assume that the Ki is the Ki class, Ni is the number of 
cell in the Ki class and Xi

k is the kth cell value in the Ki class (Eq. 1):

After we obtain the matrix of modification, we calculate the intra-class distance 
and inter-class distance by the formulas above. However, the two distances are used 
to measure the performance of the result is not convenient. We use another value 
Dis = Disintra/Disinter to describe the performance of result. For the new distance Dis, 
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Table 1  Table of cell distance

Raw data SCC scImpute SAVER

Kolod 27,272.63 21,138.75 27,193.77 15,774.53

Pollen 157.074 118.77 561.21 167.564

Usoskin 21,467.77 19,498.95 23,502.52 20,341.59
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the smaller the value is, the better the performance of the result is. We run SCC, scIm-
pute and SAVER in three different public scRNA-seq datasets and calculate the Dis (The 
three datasets are Kolod, Pollen and Usoskin). Compared with other methods, SCC can 
significantly reduce the intra-class distance of cells. The result as shown in Table 1.

As shown in the Table 1, SCC reduce the distance of same type cells compared with 
raw data. Compared with other methods, SCC has the best performance in most 
scRNA-seq datasets except for Kolod dataset. The result shows that SCC can sig-
nificantly make the cells with same type closer. We add one to the raw matrix and 
modified matrix and transform them by log. Finally, we perform principal component 
analysis on the new matrix. The first two principal components are used for visualiza-
tion [10]. As shown in Fig. 4, we can clearly observe that SCC can reduce the distance 
of same type cells.

Fig. 4  The PCA visualization of raw data and modified data. We performed SCC in three different datasets. 
The three datasets are Kolod, Pollen and Usoskin. Next, we performed principal component analysis on raw 
and new matrixs and used the first two principal components to draw the scatter plot. The left plots are the 
scatter plot of raw data and right plots are the scatter plot of modified data. As shown in Fig, we can draw a 
conclusion that SCC can make cells with the same types aggregate more closely
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SCC can enhance the clustering of cell subpopulation

After the modification of gene expression, we further cluster the modified data. In 
the existing clustering algorithm, K-means clustering algorithm is a popular iterative 
solution-clustering algorithm [11]. We run SCC, scImpute and SAVER in three data-
sets and perform k-means clustering in the modified results. Finally, we calculate the 
ARI values in different methods. The result is shown in Fig. 5. The detailed values are 
shown in Table 2.

As shown in Table 2, the ARI values of SCC are obviously higher than other methods, 
especially in Kolod dataset, the ARI value of clustering is 1, which indicating that the 
two labels of clustering and real cell types are the same. From this table, we can draw 
a conclusion that SCC can significantly enhance the clustering of cell subpopulation in 
most datasets.

Discussion
The primary limitation in scRNA-seq technology is high dropout noise level caused by 
the poor sensitivity of scRNA-seq technology, which makes low-expression genes hard 
to detect. scImpute and SAVER are existing tools for solving the noise in scRNA-seq 
data. They estimate the correct expression of genes by clustering similar cells and taking 
advantage of gene-to-gene relationships. However, they ignore cell-to-cell heterogene-
ity in the same types, which is important for cell heterogeneity. Compared with existing 

Fig. 5  The barchart of ARI values. We run SCC, scImpute and SAVER in three different datasets (Kolod, Pollen 
and Usoskin) and performed K-means clustering in modified data. Finally, we calculated the ARI value and 
draw the bar chart of different methods

Table 2  Table of ARI value

SCC scImpute SAVER

Kolod 1 0.957535 0.995985

Pollen 0.70043 0.694498 0.654509

Usoskin 0.24264 0.07003 0.131585
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tools, SCC can retain the cell heterogeneity by modifying the expression of each cell by 
the nearest neighbor cells. Comprehensive expereiments show that SCC has a better 
performance compared with other tools in terms of intra-class distance of cells and the 
clustering of cell subpopulation.

Conclusions
In conclusion, we proposed a method SCC (single-cell complementation) to resolve 
the noise (especially dropouts) in scRNA-seq data. SCC focuses on the gene 
expression that is largely affected by poor sensitivity of mRNA, while retaining the 
expression of genes with high expression level. The main idea of SCC is the comple-
mentation of similar cells. For each cell, we find the nearest neighbour cells by scmap 
and estimate the true expression value of dropouts by a mixture model. Compared 
with other methods, we can retain the cell heterogeneity by replacing clustering with 
detecting the nearest neighbor cells. We perform SCC and the other two methods 
in three different scRNA-seq datasets. The result shows that SCC can significantly 
reduce the intra-class distance of cells and enhance the clustering of cell subpopula-
tion. Another advantage of SCC is memory-efficient (SCC only solves a cell at a time, 
we also can deal multiple cells at a time to improve the speed) and it can deal with 
tens of thousands of cells dataset on a laptop.

In the future, we will continue our research based on the previous scRNA-seq work. 
After the modification of gene expression, we will cluster the cells in the modified 
data. Some existing clustering methods (such as SC3) have a good performance in 
the clustering of scRNA-seq data [12]. We hope to find the shortcomings of the exist-
ing clustering methods and decide how to propose a better clustering methods for 
scRNA-seq data.

Methods
In order to solve the noise of scRNA-seq data, we had developed this new method, 
SCC, which can be used to recover the expression of genes with dropouts. The basic 
process is shown in Fig. 6, the core algorithm of SCC consists of three steps. The first 
step is the filtration of outliers as we recover the gene expression by the nearest cells, 

Fig. 6  The flow chart of the core algorithm of SCC. The input of SCC is the matrix of scRNA-seq data and 
there are three main steps in SCC. The first step is the filtration of outliers. In second step, we obtain the 
nearest neighbor cells set of every cell c by SCmap. In third step, we solve the dropouts of the cell c according 
to the nearest neighbor cells
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the outliers have a great impact on the modified result. The second step is the detec-
tion of nearest neighbor cells through another method scmap. The third step is the 
modification of gene expression. We propose a mixture model to describe the distri-
bution of actual gene data and estimate the correct value of genes through EM algo-
rithm. The detailed description of each step is introduced in the following sections.

The filtration of outliers

The input of our method is the matrix Xg×c of scRNA-seq data and the g (row) repre-
sent genes and c (column) represent cells. Outliers are the result of technical limitations, 
which have a great influence on the cells clustering [8]. At first, we use principal com-
ponent analysis (PCA) to reduce the dimension on matrix X and calculate the distance 
matrix on the data after dimension reduction. The matrix of scRNA-seq data is a sparse 
matrix and PCA can resolve the sparse problem and accelerate the speed of calculation 
[13]. We select the first two principal components to calculate the distance matrix Dc×c.

The distance matrix Dc×c can be calculated based on the PCA-transformed data. For 
each cell c, we select the nearest cell and calculate the nearest distance disc . For the set 
of disc , we find the first quartile disq1 and third quartile disq3 . For the cells that satisfy the 
follow formula, disc > disq1 + 1.5(disq3 − disq1) , we regard them as outlier cells [6]. We 
first delete the outlier cells as they have an bad effect on imputation and implement our 
experiment in the rest cells matrix Xg×c1 (c1 represents the rest cells).

The detection of nearest neighbour cells

In this step, we find the top twenty nearest neighbor cells of each cell by calculating the 
Euclidean distance first, but this step spends a lot of time in the calculation of distance. 
In fact, projecting individual cells onto most similar neighbor cells is also an important 
method to reduce the batch effect of scRNA-seq data. We detect nearest neighbor cells 
by another method SCmap rather than the Euclidean distance calculation. SCmap is a 
very convenient method to project a cell to the nearest neighbors, which use the cosine 
similarity, Pearson and Spearman correlations to calculate similarities [14]. An impor-
tant feature of SCmap is very fast and it takes only about 1 min to select features (impor-
tant genes) and calculate nearest neighbour cells for 40,000 cells. We choose SCmap to 
select 20 nearest neighbor cells C = {c1, c2, c3, . . . , c20} for each cell c. And then we filter 
lower similarity cells (lower similarity means that the similarity difference is greater than 
0.1 ). The rest cells set C = {c1, c2, c3, . . . , cn} will be retained for recovering the gene 
expression profiles.

The modification of gene expression

After we obtain the nearest neighbour cells set C = {c1, c2, c3, . . . , cn} of each cell c, we 
need to predict the real gene expression value for each cell [15]. For the genes of each 
cell, we classify genes into three categories: high-expression, low-expression and zero-
expression. The high-expression genes have a large amount of mRNA, so they are likely to 
be detected by scRNA-seq technology. The low-expression genes have less mRNA num-
ber, which leads to most dropouts in scRNA-seq data because of low detection sensitivity. 
Moreover, zero-expression means that the real value of gene expression is zero. For the dif-
ferent genes expression level, we construct a mixture model to determine whether a zero 
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value is a real value or a dropout. Because the low-expression genes are difficult to detect, 
the most genes in scRNA-seq data tend to be bimodal expression distribution. Therefore, 
we describe actual data by a mixture model with three components. The first component 
is a normal distribution used to represent the high-expression genes, and the gene expres-
sion of high-expression genes in same cell types are different because of biological factors. 
The second component is a binomial distribution used to represent the actual low-expres-
sion genes data. For low-expression genes, the mRNA detection rate is set to p. The prob-
ability of each mRNA being detected is p, so low-expression genes scRNA-seq data can be 
described by binomial distribution. The third component is a zero distribution to repre-
sent genes expression value is zero. As shown in Fig. 7, the distribution of mixture model 
has similar bimodality with scRNA-seq data distribution. Therefore, the mixture model can 
describe the distribution of scRNA-seq data well. Most methods log the input matrix with a 
pseudo count 1 to deal with scRNA-seq data. In our method, the matrix Xg×c1 is not trans-
formed by log with a pseudo count, so it is reasonable to describe the actual distribution of 
scRNA-seq data for scRNA-seq data by the binomial distribution. Please note that scRNA-
seq data does not represent the correct gene expression value, we first use a mixture model 
to describe actual scRNA-seq data distribution and then estimate the correct gene expres-
sion value.

For each cell c, we construct a different mixture models to modify the cell c gene expres-
sion. The different models have different proportions and parameters. For each gene g, its 
expression is modeled in cells set C = {c1, c2, c3, . . . , cn} . The model formula is as follows 
(Eq. 2)

The �1, �2, �3 are the probabilities of three distribution and the sum of � is one, the µ, σ 
are the mean and standard deviation of Normal distribution and the p, N is the detect 
probability and total mRNA number of every gene. We distinguish whether a gene is 0 

(2)
f (x) = �1Normal(x,µ, σ)+ �2Binomial(x, p,N )+ �30

subject to �1 + �2 + �3 = 1, x ∈ {Xg ,c1 ,Xg ,c2 , . . . ,Xg ,cn}

Fig. 7  The distribution of mixture model. We used the mixture model to describe the distribution of 
scRNA-seq. It can be seen that the distribution of mixture has similar bimodality with the distribution of 
scRNA-seq. Therefore, the distribution of scRNA-seq can be described by the mixture model
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expression or low expression or high expression through parameter �1, �2, �3 . If the �1 or 
�2 of a gene is highest and �3 is very low, we think that the zero value in the scRNA-seq 
is likely a dropouts. On the other hand, if the �3 of a gene is highest, the real value of the 
gene is likely zero. Xg ,cn is the value of gene g in cell cn . We calculate every value of � and 
identify which � is highest. If �1 is highest, the gene is likely a high expression gene and 
the value of Xg ,c remains uncharged to retain the cell-to-cell heterogeneity. If the �2 is 
highest, we think the gene is likely a low expression gene which leads to most dropouts. 
And we replace the scRNA-seq data with the modified value N ∗ p (the expectation of 
the second model), the dropouts can be resolved. If the �3 is highest, the real value of 
Xg ,c is likely zero. We put the modified value into the matrix and get the modified gene 
expression data.

The estimation of parameters

The advantage of this model is that it obtain the modified gene expression by neighbor 
cell complementation as it assumes the value of dropouts relates to nearest neighbor 
cells. The parameters in the model are estimated by Expectation–Maximization (EM) 
algorithm [16]. The expectation–maximization algorithm is to find the maximum likeli-
hood estimation or the maximum posterior estimation of parameters in the probabilistic 
model, in which the probabilistic model depends on the hidden variables that cannot be 
observed. We first set an initial value for every parameter and then calculate every val-
ue’s probability in three components. The number of iteration is set to 100 and the itera-
tion will stop when the difference of parameters is small (the threshold is set to 0.01).

The E step: The initial value of µ is the mean of the nearest neighbor cells and the ini-
tial value of σ is the standard deviation. The initial value of p is 0.1 because the detection 
rate of mRNA is about 5–15%. The N is an integer number less than 10. All the � are set 
to one-third. For the gene g in nearest cells set C = {c1, c2, c3, . . . , cn} , we calculate the 
probabilities of every gene expression in three components for modifying the param-
eters in M step.

The M step: We have obtained the probabilities Pron×3 of gene g in near-
est cells set C = {c1, c2, c3, . . . , cn} . Then we calculate the new probabilities 
Pron×3 = Pron×3/rowsum(Pro) that the values belong to three components. We set 
P1 = sum(Pro[, j]) , P2 = sum(Pro[, j] ∗matrix[g , ]) . The mean of every component j will 
be calculated by Meanj = P2/P1 and the value of �j = P1/n (n is the number of nearest 
cells). We set P3 = sum(Pro[, j] ∗ (matrix[g , ] −Meanj)

2) and the standard deviation of 
every component j will be calculated by Devj = sprtP3/P1 . After obtaining the values, 
we can calculate the parameters: µ , σ , N, p, �.
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