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Computational imaging of moving objects obscured
by a random corridor via speckle correlations
Tian Shi 1,2, Liangsheng Li 2✉, He Cai2, Xianli Zhu2, Qingfan Shi1 & Ning Zheng 1✉

Computational imaging makes it possible to reconstruct hidden objects through random

media and around corners, which is of fundamental importance in various fields. Despite

recent advances, computational imaging has not been studied in certain types of random

scenarios, such as tortuous corridors filled with random media. We refer to this category of

complex environment as a ’random corridor’, and propose a reduced spatial- and ensemble-

speckle intensity correlation (RSESIC) method to image a moving object obscured by a

random corridor. Experimental results show that the method can reconstruct the image of a

centimeter-sized hidden object with a sub-millimeter resolution by a low-cost digital camera.

The imaging capability depends on three system parameters and can be characterized by the

correlation fidelity (CF). Furthermore, the RSESIC method is able to recover the image of

objects even for a single pixel containing the contribution of about 102 speckle grains, which

overcomes the theoretical limitation of traditional speckle imaging methods. Last but not

least, when the power attenuation of speckle intensity leads to serious deterioration of CF,

the image of hidden objects can still be reconstructed by the corrected intensity correlation.

https://doi.org/10.1038/s41467-022-31669-7 OPEN

1 School of Physics, Beijing Institute of Technology, Beijing, China. 2 Science and Technology on Electromagnetic Scattering Laboratory, Beijing, China.
✉email: liliangshengbititp@163.com; ningzheng@bit.edu.cn

NATURE COMMUNICATIONS |         (2022) 13:4081 | https://doi.org/10.1038/s41467-022-31669-7 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31669-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31669-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31669-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31669-7&domain=pdf
http://orcid.org/0000-0002-4634-5472
http://orcid.org/0000-0002-4634-5472
http://orcid.org/0000-0002-4634-5472
http://orcid.org/0000-0002-4634-5472
http://orcid.org/0000-0002-4634-5472
http://orcid.org/0000-0003-4351-1815
http://orcid.org/0000-0003-4351-1815
http://orcid.org/0000-0003-4351-1815
http://orcid.org/0000-0003-4351-1815
http://orcid.org/0000-0003-4351-1815
http://orcid.org/0000-0003-2449-7202
http://orcid.org/0000-0003-2449-7202
http://orcid.org/0000-0003-2449-7202
http://orcid.org/0000-0003-2449-7202
http://orcid.org/0000-0003-2449-7202
mailto:liliangshengbititp@163.com
mailto:ningzheng@bit.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Relying on its ability to reconstruct an object hidden beyond
the direct line of sight of a camera, computational imaging
has recently attracted more and more interest1–3. The

potential application of computational imaging ranges from
robotic vision, autonomous driving, disaster relief, to medical
imaging1. In the typical imaging scene widely studied previously,
non-line-of-sight imaging always requires a relay surface located
in the field of view of both the hidden object and the camera3.
Non-line-of-sight methods, such as backprojection4–7, light-cone
transform8, phasor field9,10, computational periscope11, and
spatial coherence analysis12,13, are able to reconstruct the images
of objects obscured by corners, by using the spatiotemporal
information of diffuse light reflected from the relay surface. New
techniques and technology greatly improve the efficiency, econ-
omy, minimum resolution, and maximum working distance of
non-line-of-sight imaging8,9,11,14,15. On the other hand, methods
such as speckle correlations16,17, wavefront-shaping18, and
speckle deconvolution19 are capable of computational imaging
through random media and around corners. In spite of recent
advances, challenging but important computational imaging in
another type of complex environment, ‘random corridor’ has
received little attention. Random corridor represents a kind of
tortuous corridor filled with random media, which often exists in
rescue scenes such as dusty mines, smoke-filled ventilation ducts,
and building corridors20. Imaging rescue targets obscured by a
random corridor can greatly improve rescue efficiency and pro-
tect rescue crews.

In this paper, we propose a reduced spatial- and ensemble-
speckle intensity correlation (RSESIC) method to image a moving
object obscured by a random corridor. Experimental results show
that this method can reconstruct a sub-millimeter resolution
image of a centimeter-sized hidden object with a low-cost digital
camera, whether the object is obscured by a random corridor with
one or two corners. A correlation fidelity (CF) is defined to
characterize the imaging capability of the system, and the
dependence of the imaging capability on three system parameters:
subspace side length, camera pixel count, and size ratio of pixel to
speckle are investigated. If these parameters are inappropriately
chosen, the CF will be poor and even unacceptable, resulting in
computational imaging failure. The parameter range in which the
RSESIC method can correctly image the hidden object is shown.
The deterioration of CF caused by speckle intensity power
attenuation is also studied. Based on the experimental and the-
oretical analysis, we demonstrate that the image of hidden objects
can still be reconstructed after additional correlation
renormalization.

Results
Imaging in a random corridor with one corner. Figure 1a shows
the schematic for an experimental imaging system. The hidden
object is out of the camera’s line of sight and obscured by a
random corridor. The random corridor is L-shaped white plex-
iglass with one corner, as shown in the insets. The black dotted
line represents an open boundary of the random corridor. The
relay surface is not present for this scenario, and thus the laser
incident on the hidden object can only propagate into the cam-
era’s field of view through the random corridor. The lens between
the laser and the camera is used to defocus the beam to illuminate
the entire object. The hidden object is a metal plate with three
equally spaced slits mounted on an optical mobile platform (see
Fig. 1e) and moves in the XY plane. The position vector of the
hidden object is denoted as ro. The displacement vector of the
hidden object is denoted as Δρ, where jΔρj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p
. Δx

and Δy are the projections of Δρ on the X and Y axes,

respectively. A series of speckle intensity patterns that varies with
Δρ is recorded by a digital camera (Sony A6300).

We denote the raw speckle intensity images as Is(rc; ro+ Δρ),
where rc is the position vector on the sensor of the camera.
Figure 1b shows Is(rc; ro+ Δρ) when a hidden object (see Fig. 1e)
is located at ro+ Δρ. xc and zc are projections of rc on X and Z
axes, respectively. The photographic parameters and image
processing method are detailed in the “Methods” section. The
raw speckle intensity image shown in Fig. 1b demonstrates that
the transmitted light field illuminating the hidden object is
completely randomized when it propagates into the camera’s field
of view, indicating that the hidden object cannot be directly
imaged.

In order to decode the information carried by the speckle
intensity images, a spatial speckle intensity correlation (SSIC)
method was introduced in the past21,22. The method uses spatial
average cross-correlation of Is(rc; ro+ Δρ) that varies with Δρ to
approximate the transmitted field autocorrelation of hidden
objects Cho(Δρ). When the object is hidden behind a thick
random medium, the SSIC method accurately recovers Cho(Δρ).
Therefore, the image of the hidden object can be successfully
reconstructed with Cho(Δρ) and an iterative phase recovery
algorithm23. However, when the object is obscured by a random
corridor, the SSIC method fails to recover Cho(Δρ) and
reconstruct hidden object’s image (experimental proof is provided
in Supplementary Note 4).

Thus, we propose a RSESIC method to deal with the challenge
of computational imaging hidden objects obscured by a random
corridor. The RSESIC is defined as

CrdðΔρÞ ¼
½Irdðrc; roÞ � Ird�½Irdðrc; ro þ ΔρÞ � Ird�

σrdσrd

� �
rc;ro

ð1Þ

where Ird is the subspace reduced speckle intensity, h:::irc
indicates spatial average and h:::iro indicates ensemble average.
Spatial average means the average over rc. Ensemble average
means the average over ro (more information is provided in

the “Methods” section). Ird ¼ hIrdðrcÞirc and σrd ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2rdðrcÞirc � hIrdðrcÞi2rc

q
denote the mean and standard devia-

tion of Ird, respectively.
Ird is obtained through the subspace reduction process shown

in Fig. 1b. First, the subspace standard deviation of each speckle
intensity Is(rc; ro+ Δρ) is calculated using the following defini-
tion:

σsðrc; ro þ ΔρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2s ðrc; ro þ ΔρÞisub � hIsðrc; ro þ ΔρÞi2sub

q
ð2Þ

Here 〈. . . 〉sub represents the average of the Is in a square subspace
area on the camera sensor. The square subspace is centered at a
given position vector rc. The side length of the square subspace is
denoted as lsub. For convenience, we further define a reduced
subspace length l̂sub ¼ lsub=lpixel, where lpixel represents the pixel
side length of a camera. Then, Is at each position is reduced by its
own standard deviation σs to calculate the Ird,

Irdðrc; ro þ ΔρÞ ¼ Isðrc; ro þ ΔρÞ
σsðrc; ro þ ΔρÞ ð3Þ

Before the subspace reduction, the standard deviations of Is at
different positions are not equal. The σs(rc; ro+ Δρ) plotted in
Fig. 1b shows that the standard deviation of Is varies rapidly with
spatial position. Therefore, Is(rc; ro+ Δρ) does not conform to
Rayleigh statistics as a whole. The role of the subspace reduction is
to obtain a reduced speckle intensity distribution Ird(rc; ro+ Δρ)
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in which the standard deviation of light intensity at each point is
almost equal. After the subspace reduction, Ird(rc; ro+ Δρ) agrees
with the Rayleigh distribution as a whole. So the RSESIC method
is insensitive to the spatial position of the observed speckle
intensity pattern or the shape of random medium.

The common point between RSESIC method and previous
SSIC method is that they are both speckle intensity cross-
correlation methods. However, unlike the SSIC method, the
RSESIC method calculates the cross-correlation of Ird and
combines spatial and ensemble average. Subspace reduction
enables RSESIC to image objects obscured by a random corridor.
Ensemble averaging enables RSESIC to see through thicker
random media.

In a random corridor with static random media, Crd(Δρ) is
approximately equivalent to Cho(Δρ), which allows the RSESIC
method to be used to image hidden objects (Supplementary
Note 1). The Crd(Δρ) for the hidden object in Fig. 1e is plotted, as
shown in Fig. 1c, clearly revealing characteristic patterns. The
resolution of the patterns is determined by the product of the
moving speed of the hidden object ∣v∣ and the time interval of two
photographs Δτ. As mentioned before, the image of the hidden
object can be reconstructed with Crd(Δρ) and an iterative phase
recovery algorithm23,24 (more information is provided in the
“Methods” section). The reconstructed image of the hidden object
is plotted in Fig. 1d, which clearly demonstrates that the size and
geometry of the hidden object are accurately restored. Similarly,
Fig. 1f–h exhibit the imaging result of another hidden object, but
with a complex shape. This further confirms the imaging
competence of the RSESIC method for a random corridor with
one corner.

For the RSESIC method, the consistency between Crd(Δρ) and
Cho(Δρ), namely CF, determines the fidelity of the reconstructed
image. The CF of the RSESIC method is dependent on three
system parameters including reduced subspace length l̂sub, camera

pixel count N and size ratio of pixel to speckle R. If these
parameters are inappropriately chosen, the CF will be poor and
even unacceptable, resulting in failure to image hidden objects.
We explore the dependence of CF on l̂sub, R and N for the range
of the parameters in which the RSESIC method can image the
hidden object.

The size ratio of pixel to speckle on a camera is defined as

R ¼ lpixel
dspeckle

ð4Þ

Here dspeckle is the average diameter of the speckle grain on the
camera sensor. R determines the ability of the camera to resolve a
single speckle grain. When R≪ 1, the morphology of the speckle
grains can be clearly photographed by the camera. However,
when R ≥ 1, the contribution of multiple speckle grains will
overlap in one pixel, so the morphology information of speckle
grains will be lost completely. In our experiment, lpixel ≈ 3.90 μm,
dspeckle is the product of the average diameter of the speckle grain
on the surface of the white plexiglass and the overall magnifica-
tion of the camera zoom lens. Theory and simulation show that
the average diameter of the speckle grain on the surface of the
random media is equal to a half wavelength25,26. The overall
magnification of the camera zoom lens in the experiment is
approximately equal to 4.31. Therefore, dspeckle ≈ 1.36 μm and the
minimum value of R is 2.87.

We apply Eq. (1) to calculate Crd(Δx) for different parameters
l̂sub, R and N. The hidden object is a hollow metal plate shown in
Fig. 1e and moves along the X direction. Since the camera
position and the focal length of the zoom lens (50 mm) are fixed,
R is increased by merging the pixels of the speckle intensity
image. For example, R increases from 2.87 to 8.61 when nine
pixels are merged into one.
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Fig. 1 Imaging in a random corridor with one corner. a Schematic of an experimental setup. b The subspace reduction process. c Cross-correlation of the
Ird(rc; ro+Δρ) in (b), clearly revealing distinctive patterns. d Object image reconstructed from the cross-correlation in (c) by a phase-retrieval algorithm.
e A metal plate with three equally spaced slits. f–h As in (c–e) for a different object with a more complex shape. System parameters for imaging: l̂sub ¼ 50,
R= 2.87 and N= 104. Scale bar: 1 mm.
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We first show the influence of l̂sub, R and N on the CF by
directly comparing Crd(Δx) and Cho(Δx) in Fig. 2a, where Cho(Δx)
is numerically calculated from the transmitted field of the hidden
object (Supplementary Note 2). It can be found from Fig. 2a that
the CF is proportional to N, and inversely proportional to l̂sub and
R. The decrease of N gives rise to random fluctuations in Crd(Δx),
and the increase of l̂sub or R causes positive background
correlation in Crd(Δx). This suggests that the influence of l̂sub
and R on Crd(Δx) are similar, but the effect from N is different.

The Euclidean distance27 is introduced to quantify the
deviation between Crd(Δρ) and Cho(Δρ). Therefore, the CF of

the RSESIC method d(Cho, Crd) can be quantitatively calculated
by the following definitions:

dðCho;CrdÞ ¼ 1� k ChoðΔρÞ � CrdðΔρÞk2
k ChoðΔρÞk2þ k CrdðΔρÞk2

ð5Þ

where ∥. . . ∥2 represents the Euclidean norm. When Crd(Δρ)=
Cho(Δρ), d(Cho,Crd)= 1. Otherwise, 0 < d(Cho,Crd) < 1. The values
of d(Cho,Crd) calculated by Eq. (5) are shown in the legend in
Fig. 2a, which directly reflect the dependence of CF on l̂sub, R and N.
Since the curves of Crd(Δx) and Cho(Δx) almost overlap for
d(Cho,Crd) ≥ 0.91, it is reasonable to choose d(Cho,Crd)= 0.91 as a
lower threshold of the validity of the RSESIC method.

The color maps in Fig. 2b shows d(Cho,Crd) for various R and N
when l̂sub is equal to 100 and 10, respectively, which further
demonstrates the dependence of the CF on l̂sub, R and N. The
region surrounded by a contour line d(Cho,Crd)= 0.91 and two
coordinate axes indicates the parameter range in which the RSESIC
method can accurately recover Cho(Δx) and reconstruct the image
of hidden objects. By comparing the two color maps, it can be
found that reduction in l̂sub significantly enlarges the optimal
imaging region of R and N. We also notice that the RSESIC method
even holds for R= 15 when l̂sub ¼ 10 and N= 104. This result
breaks through the limit (R < 1) of previous speckle correlation
methods16,21,22, and provides insight into speckle-based imaging
methods. In addition, when l̂sub ¼ 10 and R < 15, Cho(Δx) can be
accurately recovered with only N= 103 pixels, indicating that the
imaging method is valid with a low-pixel camera.

Imaging in a random corridor with two corners. When an
object is hidden behind several corners in a random corridor, the
scattering of the corners and random media makes the light
propagate from the hidden object through a very complex path to
the observation point. In this case, it is extremely difficult to
simulate the propagation of light. Besides, the power attenuation
of the scattered light significantly enhances the influence of noise.
Therefore, imaging objects hidden in such random corridors is
very challenging. However, the RSESIC method does not need to
solve the model for light propagation, and can eliminate the
influence of ambient noise on the speckle intensity cross-
correlation through extrapolation, thus resolving the barriers to
imaging (Supplementary Note 3).

The schematic diagram to image objects hidden in a random
corridor with two corners is shown in Fig. 3a. The hidden object is
the metal plate with three slits, which moves in the XY plane. The
illustration shows the side and front view of the random corridor,

Fig. 2 Influence of imaging system parameters on RSESIC method.
a Effects of l̂sub, N and R on Crd(Δx) are shown, and the black solid line
denotes Cho(Δx). b Color maps of d(Cho, Crd) as a function of R and N for
l̂sub ¼ 100 and= 10, and the white dashed line is a contour line with
d(Cho, Crd)= 0.91.

Fig. 3 Imaging in a random corridor with two corners. a Schematic of an experimental setup. b Crd, normalized eCrd and Cho vs. Δx. Cho denotes the
transmitted field autocorrelation of the hidden object. c Normalized eCrdðΔx;ΔyÞ. d Object image reconstructed from eCrdðΔx;ΔyÞ by a phase-retrieval
algorithm. System parameters for imaging: l̂sub ¼ 50, R= 2.87 and N= 104. Scale bar: 1 mm.
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which is a Z-shaped metal tube filled with white plexiglass. The first
function of the metal tube is to increase the transmittance of
incident light in the random corridor, so that the speckle intensity
pattern behind the two corners can be detected by the camera. The
second function of the metal tube is to enhance the scattering of
incident light by the random corridor wall, so as to test the imaging
performance of the RSESIC method under the coupling interference
of the corridor wall and random medium.

We make a comparison between Crd(Δx) and Cho(Δx) in
Fig. 3b. Crd(Δx) is calculated from the measured images of speckle
intensity through the RSESIC method. Due to the influence of fast
time-dependent noise, Crd(Δx) sharply drops at small displace-
ment and significantly deviates from Cho(Δx), causing CF to
decrease to d(Cho, Crd)= 0.55. Therefore, Crd cannot be directly
used to reconstruct the image of the hidden object. However, the
positions of peaks and valleys in Crd(Δx) and Cho(Δx) are
identical, which implies that Crd still contains the information
about Cho. Fortunately, it is found that the adverse effect of
ambient noise on the Crd can be eliminated by extrapolation and
normalization, and then obtain a correlation eCrd approximately
equivalent to Cho. Here Crd(Δx, Δy) is normalized by Crd(0, 0)
which is corrected by using extrapolation. The consistency
between eCrdðΔxÞ and Cho(Δx) demonstrates that the RSESIC
method can correctly restore the transmitted field autocorrelation
of the hidden object behind two corners (see Fig. 3b). Then with
the normalized eCrdðΔx;ΔyÞ in Fig. 3c, the image of the hidden
object was reconstructed by phase-retrieval, as shown in Fig. 3d.
By comparing Fig.1e with Fig. 3d, it is clearly seen that the size
and geometric characteristics of the hidden object are accurately
restored, which confirms the ability of the RSESIC method to
image in a random corridor with two corners.

In addition, the RSESIC method is further examined by
imaging an object ‘S’ (see Fig. 4d) obscured by a random corridor
with two corners. The area of ‘S’ is approximately equal to
30.79 mm2, which is much smaller than that of the three equally
spaced slits shown in Fig. 1e, 60 mm2. Due to stronger
attenuation of speckle intensity power, imaging of ‘S’ should be

more difficult. The imaging results demonstrate that the hidden
object can still be imaged robustly, as shown in Fig. 4.

Discussion
When an object is obscured by a random corridor, the difficulty
of imaging the object is that the ballistic light is blocked and the
relay surface is absent. We propose the RSESIC method to cope
with this computational imaging challenge. Experimental results
demonstrate that the method can reconstruct the image of the
object obscured by a random corridor, using only speckle
intensity images recorded by a digital camera. Applicable con-
ditions for the method are summarized as follows: the random
medium is static, the hidden object radiates or scatters coherent
light, and motion information of the object must be known. The
method is not limited to the transmitted speckle imaging system
shown in this paper, but also applied to reflective laser speckle
imaging systems and two-pass scattering systems (experimental
proof is provided in Supplementary Notes 6 and 7).

Being different from most existing non-line-of-sight imaging
methods, the RSESIC method can image hidden objects behind
multiple corners without the spatiotemporal information of diffuse
light reflected from a relay surface3,8,9, and the reconstructed image
is independent of the measurement position of multiple scattering
light. Therefore, the method is complementary to the existing non-
line-of-sight imaging methods and will promote further research
on computational imaging in more complex scenes. In addition,
the RSESIC method restores the image from the intensity cross-
correlation of multiple scattering light rather than from solving a
light propagation model, so the computation and complexity of the
method are independent of the thickness of the randommedia and
the number of corners. The ability of the RSESIC method to image
objects behind multiple corners makes it promising to be applied to
many fields such as disaster relief and automatic driving. If the
moving distance of the hidden object and the measurement time of
the camera are large enough, the RSESIC method can image a
hidden object of any size. The actual imaging resolution of the
method is determined by the product of the moving speed ∣v∣ of the
hidden object and the time interval of two photographs Δτ.

We analyze the effects of l̂sub, R and N on the CF of the RSESIC
method and use a color map to point out an applicable parameter
range for the method. The optimal combination of these three
parameters can ensure the CF of the RSESIC method. For instance,
with appropriate l̂sub and N, the RSESIC method can accurately
recover Cho and the image of the hidden object even for R= 15. This
finding breaks through the limit (R < 1) of previous speckle corre-
lation methods and proves that the speckle correlation method can
image hidden objects when the speckle grains are not well resolved
by a camera. Similarly, if l̂sub and R are appropriate, an average of
N= 103 camera pixels is enough to make Crd and Cho match well.
This result indicates that RSESIC method is suitable for low pixel
cameras and has low requirements for storage and computing.

When the transmitted light of the hidden object is strongly
attenuated during the propagation, ambient noise causes the Crd

calculated by the RSESIC method to deviate significantly from
Cho. Therefore, the CF sharply deteriorates, resulting in imaging
failure of hidden objects. Based on the experimental and theo-
retical analysis, we find that the mixture of correlation char-
acteristic of fast time-varying ambient noise and the correlation of
transmitted field of hidden objects leads to an abrupt decline in
Crd. We show that using an extrapolation method, the influence
of noise in Crd can be reduced, and then the image of hidden
objects can be reconstructed. This confirms the adaptability of the
RSESIC method in a noisy environment. We further confirm that
the adaptability of the RSESIC method in a noisy environment
makes it possible to see through a random medium thicker than

Fig. 4 Imaging of a hidden object ’S’ in a random corridor with two
corners. a Cross-correlation of the Ird(rc; ro+Δρ) before renormalization.
b Cross-correlation of the Ird(rc; ro+Δρ) after renormalization. c Object
image reconstructed from the cross-correlation in (b) by a phase-retrieval
algorithm. d Photo of the hidden object. System parameters for imaging:
l̂sub ¼ 50, R= 2.87 and N= 104. Scale bar: 1 mm.
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that in the existing method (experimental proof is provided in
Supplementary Note 5).

As a final note, the application of the RSESIC method is not
only limited to imaging by laser, but also applicable for other
types of coherent waves, such as acoustic waves, quantum waves
and electromagnetic waves with multiple frequencies. Therefore,
computational imaging with similar difficulties in other fields are
expected to be addressed.

Methods
Experimental setup. The experimental system consists of a 632.991 nm laser source
(Thorlabs, HRS015B), a lens, a hidden object, a random corridor and a digital camera
(Sony A6300). The zoom lens of the digital camera is set to a focal length of 50mm.
The distance between the zoom lens and random media is 1mm. A speckle intensity
pattern in an ~5.45mm× 3.64mm region of the white plexiglass surface is imaged on
the 14-bit CMOS sensor of the camera. For imaging objects hidden behind one (two)
corner(s), the shooting parameters of the camera are set to exposure time= 1/30 (1/10)
s, aperture factor= 5.6, and ISO= 500 (6400), respectively.

Image processing. The photographs in RAW format were exported from the
camera and further processed. Each photographic file is a 14-bit, 6024 × 4024-
pixels raw image of which the color channels interleave according to the RGBG
mode of a Bayer filter. Since the light emitted by the He–Ne laser is red, the data in
the red channel of RAW files are extracted and used as the actual images of the
speckle intensity. The size of speckle intensity image is 3012 × 2012-pixels.

Spatial- and ensemble-speckle intensity correlation. In Eq. (1), h:::irc is the
average over the pixels of recorded speckle intensity images. Each speckle intensity
image contains 3012 × 2012 intensity values, so the maximum spatial average times is
6,060,144 which is much larger than that required by the RSESIC method. From the
definition of Eq. (1), it can be explicitly seen that the cross-correlation of speckle
intensity reflects the similarity between a series of evolutionary speckle intensity
images Is(rc; ro+Δρ) for a moving hidden object and the reference speckle intensity
image Is(rc; ro). When Δρ is given, m reference images of speckle intensity can be
obtained by changing ro, and thenm correlation values can be calculated. h:::iro is the
average of them correlation values. The intensity cross-correlations shown in Figs. 1,
3 and 4 are all calculated by 104 spatial averages and 9 ensemble average. That is to
say, the image of the hidden object is reconstructed from the data of speckle intensity
measured on an area of 100 × 100-pixels of the CMOS sensor.

Image reconstruction of hidden objects. Autocorrelation of the transmitted field
of a hidden object is defined as (Supplementary Note 1),

ChoðΔρÞ ¼
R R

Ehoðx; y; roÞE�
hoðx; y; ro þ ΔρÞdxdyR R jEhoðx; y; roÞj2dxdy

����
����
2

¼
Z Z

Êhoðx; y; roÞÊ
�
hoðx; y; ro þ ΔρÞdxdy

����
����
2

¼ F�1fjFfÊhoðx; yÞgj2g
�� ��2

Here Eho denotes the transmitted field of a hidden object, Êho denotes the reduced
dimensionless transmitted field, which is defined as,

Êhoðx; y; ro þ ΔρÞ ¼ Ehoðx; y; ro þ ΔρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR R jEhoðx; y; roÞj2dxdy
q

By the approximate relation Crd(Δρ) ≈ Cho(Δρ), we have

jÊhoðkx; kyÞj ¼ jFfÊhoðx; yÞgj � j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CrdðΔρÞ

p
g

q
j

The Fourier amplitude jÊhoðkx ; kyÞj of the reduced dimensionless transmitted field

of a hidden object can be directly achieved. With substituting jÊhoðkx ; kyÞj and
appropriate real-space support domain into the iterative phase recovery algorithm,
Êhoðx; yÞ is reconstructed. Finally, jÊhoðx; yÞj is the image of hidden object.

Data availability
The data that support the findings of this study are available from the authors upon
request.

Code availability
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