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Abstract: The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play
crucial and partially overlapped functions in solid tumors, in which the different isoforms are
variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed
family member in cancer, in which it is involved in regulating gene expression at both transcriptional
and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which
it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual
effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA,
on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed
miR-29b form emerged as a crucial element in the results obtained by various research groups, as the
most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast
tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p
counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple
negative phenotype. Even if further studies are required to define exactly the role of each miR-29b,
our review highlights its possible implication in phenotype-specific management of breast tumors.

Keywords: breast cancer; miR-29b; DNA methylation status; proliferation; invasion; angiogenesis;
chemoresistance; radioresistance; targeted therapy

1. Introduction

Breast cancer (BC) is one of the most common malignancies; it affects mostly females
and is a primary cause of cancer related mortality worldwide [1]. BC is a heterogeneous
disease with multiple subtypes, based on clinical parameters and molecular profiling.
Although each individual tumor is identified by the overall gene expression, the status of
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) in breast cancers define their treatment approach. In fact, whereas
ER+ and HER2 + tumors can currently benefit from targeted therapies, triple-negative
breast tumors (TNBC), lacking specific molecular targets, have chemotherapy as their only
therapeutic option and constitute breast tumors with the worst prognosis [2].

In the last two decades, an increasing role in the occurrence and progression of BC
has been assigned to non-coding RNAs, including micro-RNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs), by virtue of their oncogenic
and tumor-suppressive properties [3]. miRNAs are endogenous, small non-coding RNAs
(19–23 nucleotides in length) which mainly work as post-transcriptional regulators of gene
expression by binding to the 3′-untranslated region (3′-UTR) of target mRNAs and inducing
their degradation or impairing their translation [4–6]. miRNAs play important roles in
several biological processes, including organ development, cell proliferation, apoptosis, and
differentiation [7–10]. As their targets include oncogenes and/or tumor suppressor genes,
miRNAs can function as tumor promoters or suppressors, and, due to their tissue- and
disease-specific expression, they are often ideal candidates as tumor biomarkers [11]. Fur-
thermore, miRNAs may confer specific features to tumors, including resistance to radiation
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and chemotherapy, cancer stem cell (CSC) maintenance as well as augmented angiogene-
sis [12], therefore constituting prognostic markers and/or therapeutic targets [11,13].

Among the miRNAs de-regulated in multiple cancers, including breast cancer, the
members of the miR-29 family are epigenetic modulators of DNA methylation that exert
critical roles in carcinogenesis and cancer progression [14–16]. The miR-29b member
acts as a crucial regulator in a variety of cancers, influencing epigenetic regulation, cell
proliferation, apoptosis, differentiation, metastasis, and chemosensitivity [16].

This review aimed to ascertain the current known role of miR-29b in breast cancer,
underlining its influence on key tumor characteristics, such as cell proliferation, metastatic
potential, and response to chemo- and/or radiotherapy. Moreover, the controversial role of
this miRNA in breast tumor cells and its potential as a molecular target in aggressive breast
tumors will be discussed.

2. The miR-29 Family

The miR-29 family consists of miR-29a, miR-29b, and miR-29c, generated from the two
primary transcripts, pri-miR-29a/b1 and pri-miR-29b2/c, derived from two gene clusters
located on chromosomes 7q32.3 and 1q32.2, respectively. Mature miR-29a/b/c sequences
show high similarity, but the different miRNAs have distinct subcellular localization [17,18]
and exert individual functions [16,19–21]. Mature miR-29b includes miR-29b1 and miR-
29b2, encoded by different genome regions but showing identical nucleotide sequence and
function [22,23].

In addition to miR-29a-3p, miR-29b-3p, and miR-29c-3p, constituting the major forms
that are most abundantly expressed, mature miR-29 also includes the minor forms miR-
29a-5p, miR-29b1-5p, miR-29b2-5p, and miR-29c-5p [15]. Whereas the 3′ and 5′ arms are
regulated by the same transcriptional mechanism, they differ in processing and maturation
pathways, and often have opposite functions, even if only the most recent studies report
complete details of the miR-29b members investigated [24–26].

The miR-29 family members are almost ubiquitous and have aberrant expression in
various human cancers. Abnormal levels of miR-29b are common and have been correlated
with clinicopathological characteristics in colorectal cancer [27,28], osteosarcoma [29], and
breast cancer [30], suggesting its role in tumor features and its potential to function as a
biomarker for diagnosis and prognosis, as well as a molecular target, in cancer.

Although most of the studies have been performed on leukemia cells, increasing evi-
dence indicates the existence of both transcriptional and post-transcriptional mechanisms
determining the various levels of the miR-29 family members in different solid tumors [31].

2.1. Transcriptional Regulation of miR-29b

Different binding sites for various transcriptional factors have been identified in the
promoter regions of the miR-29a/b1 and miR-29b2/c clusters that are responsible for the
peculiar ratio of miR-29a, miR-29b, and miR-29c expression in the different normal and
tumor tissues.

Binding sites for the transcription factor c-Myc are present in the promoter region of
both clusters [22,32] and chromatin immunoprecipitation (ChIP) experiments performed
on breast cancer cell lines with different phenotypes clearly demonstrated that the binding
of c-Myc to its promoter regions down-regulates miR-29b expression [33].

Binding sites for several transcriptional factors have been specifically identified
in the promoter of miR-29a/b1 or miR-29b2/c clusters. In particular, the promoter re-
gion of the miR-29a/b1 cluster contains binding sites for Gli, CCAAT/enhancer-binding
protein-α (CEBPα), T-cell factor/lymphoid enhancer factor (TCF/LEF), STAT1, NF-kB,
and GATA3 [16,23]. Concerning NF-kB signaling, often activated in inflammation-related
cancers, it may repress miR-29a/b1 promoter activity directly in several tumors, as in breast
cancer [32,34], or indirectly, by activating the transcription suppressor Yin Yang 1 (YY1), as
in rhabdomyosarcoma [35]. Also, GATA3 can induce miR-29b directly, through its binding
with the miR29a/b1 promoter region, and, indirectly, by inhibiting the TGF-β and NF-kB
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pathways, in turn responsible of the down-regulation of miR-29b expression [32,35,36]. On
the other hand, the reduced expression of miR-29b diminishes GATA3 levels, indicating
the presence of a negative feedback between GATA3 and miR-29b [36].

In breast tumors, GATA3 is known to up-modulate miR-29b in ER+ tumor cells [36]
but, recently, it has been shown that this transcription factor is not expressed in the triple-
negative MDA-MB-231 cells, where miR-29b is transcribed by CEBPα [37], the main regula-
tor of this miRNA in hematopoietic cells [23]. In addition, it has been found that CEBPα is
expressed and regulates miR-29b only in triple-negative breast cancers belonging to specific
molecular subtypes, and that its role is dependent on adequate levels of the multidomain
protein Vav1, which promotes the association between CEBPα and the promoter region of
miR-29a/b1 [37].

In breast cancer, different mechanisms affect the transcriptional regulation of miR-29b1-
5p, the less expressed miR-29b1 form. In cancer cell lines with a basal-like, triple-negative
phenotype, Milevskiy et al. demonstrated that BRCA1, known to bind promoters of
numerous genes in human breast, affects the expression of miR-29b1-5p, consistent with
the six binding sites for BRCA1 found inside the promoter region of miR-29a/b1 [25]. In
addition, nuclear factor erythroid 2-related factor 2 (NRF2) was found to down-regulate
miR-29b1-5p expression in MDA-MB-231 cells [26], according with data on acute myeloid
leukemia cells, in which NRF2 binds antioxidant response elements (AREs) and inhibits
miR-29b1 expression [38].

The promoter region of the miR-29b2/c cluster contains MyoD, transforming growth
factor-β (TGF-β), Smad3, YY1, and PU.1 binding sites [39,40]. Furhermore, DNA damage
can activate P53, which promotes the expression of miR-29 [41]. Remarkably, Smad3
binding to SBE elements interferes with the MyoD binding to the E-box sites that enables
YY1 binding to the EZH2 and HDAC1 complex thus inducing a strong miR-29 repres-
sion [39]. YY1 binding sites associate with the Polycomb Group (PcG) transcriptional
repressor factor EZH2 and with the histone deacetylase protein HDAC1 [35]. The loss
of the binding of the repressive complex YY1/EZH2 during myogenesis determined
the induction of miR-29. Moreover, by acting on the YY1/PcG complex, NF-kB induces
epigenetic repression of miR-29b-2/c transcription in progenitor muscle cells [35]. NF-kB
exerts an inhibitory effect on miR-29b2/c transcription also in breast-cancer-derived
cells MCF7 and MDA-MB-231 by inducing the recruitment of YY1 onto the miR-29b
promoter [34]. Two putative responsive elements of the myeloid master regulator PU.1
(SPI1) were identified in the promoter of the miR-29b2/c cluster and low expression
of miR-29b in APL cells is due to aberrant expression of this transcription factor [42].
Recently, it was demonstrated that the recruitment of PU.1 to both miR-29b promoters in
APL-derived cells is dependent on the levels of Vav1 [43], highlighting the role of this
protein in regulating miR-29b in different cell tumor models.

Recently, FOXO3a has been reported to directly up-regulate miR-29b2 in MDA-MB-231
cells, according with the presence of two FOXO3a-binding sites (FHRE-1, FHRE-2) on the
promoter region of miR-29b2/c [44].

The transcription factors known to interact with the promoter regions of miR-29a/b1
and miR-29b2/c clusters in MCF7 (ER-positive) and MDA-MB-231 (triple-negative) breast
tumor cells are summarized in Figure 1.
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Figure 1. Schematic representation of transcription factors that specifically promote (green arrows)
or inhibit (red blocked lines) miR-29a/b1 or miR-29b2/c expression and known effects of miR-29b-3p
and miR-29b1-5p on the reported cell functions in MCF7 and MDA-MB-231 breast cancer cell lines.

2.2. Post-Transcriptional Regulation of miR-29b

The post-transcriptional regulation of the members of the miR-29 family involves long
non-coding RNAs (lncRNAs), RNAs that exert their roles mainly as competitive endoge-
nous RNAs via sponging miRNAs, thereby reducing their availability to target mRNAs [45].
Several lncRNAs have been reported to contribute to tumorigenesis and cancer progres-
sion, and lncRNA–microRNA–mRNA signaling axes have recently been shown to play a
key role in the development of tumors [45,46]. To date, different lncRNAs are known to
regulate miR-29 expression. LncRNA H19 regulates epithelial-to-mesenchymal transition
(EMT) and metastasis of bladder cancer as competing endogenous RNA of miR-29b-3p [47].
In cervical cancer cells, the lncRNA HOTAIR binds with miR-29b, down-modulating its
level and resulting in enhanced EMT, migration, proliferation, and chemoresistance [48].
LncRNA PVT1 promotes the malignant progression of AML and is correlated with poor
prognosis, via sponging the miR-29b family [49].

No data are available concerning specific lncRNA involved in post-transcriptional
regulation of miR-29b in breast tumors. On the other hand, recently, circular RNAs,
extremely stable forms of non-coding RNAs, have been discovered to function as miRNA
sponges and, consequentially, modulators of gene expression in breast tumor cells [50].
In invasive breast cancer cells with different phenotypes, miR-29a-3p and miR-29b1-3p
are sponged by circACAP2, promoting the expression of COL5A1, one of miR-29a/b-3p
targets [50].

Among the mechanisms responsible for the levels of miR-29b members in the different
cell types, their degradation process also plays an important but not yet fully understood
role. The decay dynamic varies considerably between individual miRNAs and the position
of specific nucleotides seems critical for this process. For instance, uracils at nucleotide
positions 9–11 of miR-29b play a crucial role in its rapid turnover in cycling HeLa cells [51].

3. Roles of miR-29b in Breast Cancer

miR-29b expression has been detected in all groups of malignant and benign breast
carcinoma, and this miRNA is down-regulated in ductal with respect to lobular tumors [30].
In invasive breast tumors, miR-29b levels show a relationship with ER status, being up-
regulated in ER-positive breast tumors compared with their basal-like and HER2-enriched
counterparts [30]. Interestingly, high miR-29b seems to promote and preserve the luminal
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differentiation of tumor cells through down-regulation of a network of pro-metastatic
regulators [52].

miR-29b was also correlated with tumor stage, and, apart from the work of Wang et.
al., which showed that miR-29b expression is often increased in breast cancer patients with
armpit lymph metastasis [53], low miR-29b levels were positively associated with larger
tumor sizes and more advanced stage [30,54]. Notably, low expression of miR-29b in ductal
carcinoma has been associated with poor prognosis, in terms of overall survival (OS) and
disease-free survival (DFS) in the ER-positive tumors, and OS in ER-negative cases [55]. The
expression levels of miR-29b were also investigated in breast tumours arising with BRCA1
mutation that do not commonly express ER, PR, or HER2 and have decreased chances
of survival and no targeted therapies available. The analysis of breast tumors from the
METABRIC and TCGA cohorts demonstrated that the less expressed miR-29b-1-5p greatly
stratified survival with high expression associated with a better outcome for patients with
basal-like tumours and TNBC [25], suggesting that this miRNA is a powerful biomarker
for predicting patient outcomes in all the subtypes of breast cancer. A more recent study
on patients of “KM plotter database” confirmed a better prognosis for patients affected
by invasive breast carcinoma expressing elevated levels of miR-29b-3p [56], specifically
correlating breast tumor prognosis with the more abundant form of miR-29b.

Although most of the literature indicates a positive correlation between miR-29b levels
and the malignancy of breast cancers, summarized in Table 1, identifying the mechanism/s
by which this miRNA acts in breast cancer cells appears particularly complex. In fact,
the functions of miR-29 family members, especially of miR-29b, are various and seem
to depend on tissue localization and on both transcriptional and post-transcriptional
regulatory processes [16]. In addition, as reported in other solid tumors [57], the role of the
more stable miR-29b-3p and of the less expressed miR-29b1-5p in breast tumor cells seems
to be different, and sometimes opposite [24,26].

Table 1. Positive (pos) or negative (neg) correlation of miR-29b in invasive breast tumor tissues with
tumor malignancy.

Authors Patients n◦ Tumor
Size

Lymph
Methastasis OS DFS

Wang et al., 2011 [53] 20 - pos - -

Shinden et al., 2015 [55] 94 neg - pos pos

Qin et al., 2015 [54] 67 neg none - -

Milevskiy, et al., 2018 [25] METABRIC - - pos -

Milevskiy, et al., 2018 [25] TCGA - - pos -

Papachristopoulou et al., 2018 [30] 121 none - - pos

Pan et al., 2021 [56] 1262 - - pos -

Lastly, miR-29b is elevated in the ER+ (luminal molecular subtypes) compared with
TNBC (basal-like) and HER2-enriched breast tumors [30], indicating that different mecha-
nisms must be activated in breast cancer cells with different phenotypes. Accordingly, the
large majority of the studies on the role of miR-29b in breast cancer have been conducted
on the well-known luminal MCF7 and triple-negative MDA-MB-231 cell lines.

3.1. MiR-29b as a Controller of DNA-Methylation Status

Aberrant DNA methylation and changes in gene expression secondary to methylation-
dependent gene silencing occur frequently and contribute to initiation, development, and
progression of cancers, including breast tumors [58–61]. Several miRNAs have been identi-
fied as both regulators of DNA methyltransferase (DNMT) levels and targets of aberrant
DNA methylation in breast tumors [62]. miR-29b was classified as an epi-miRNA, a term
proposed to indicate miRNAs with the ability to repress enzymes involved in epigenetic
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machinery [63]. miR-29b may directly or indirectly target DNMTs and/or regulate members
of the DNA demethylation pathway, leading to the downregulation of global DNA methy-
lation status [64]. The ten-eleven translocation (TET) family of DNA demethylases [65]
protects against aberrant demethylation [66]. Interestingly, whereas miR-29b directly tar-
gets DNMTs, it may also repress the activity of TET1, which has opposed roles in controlling
the status of DNA methylation [66]. This suggested that miR-29b may primarily function
as a stabilizer of DNA methylation status, thereby suppressing tumorigenesis. Moreover,
to maintain the balance between DNA methylation and demethylation, miR-29 members
may produce demethylation effects, acting as oncogenes [67].

An example of how the indirect activity of miR-29b on methylation status may promote
tumor features was revealed in MDA-MB-231 and MCF7 cells, in which it has been demon-
strated that miR-29b can directly target the 3′UTR region of TET1, in turn responsible for
direct binding with the promoter region of the EMT-related transcription factor ZEB2 [68].
Due to the demethylation activity of TET1, its knockdown results in the up-regulation of
ZEB2 expression as well as in up-modulation of the methylation level of the ZEB2 promoter,
allowing promotion of malignant progression in tumor cells [68]. In the MDA-MB-231 cell
line, the study of De Blasio and colleagues reported that the over-expression of miR-29b1-5p
caused a decrease in DNMT1, DNMT3A, and DNMT3B levels, and the changes in the
methylation status of their promoters allow the expression of tumor suppressor genes as
HIN1, RASSF1A, and CCND2 [26].

3.2. MiR-29b Regulates Cell Proliferation, Motility, and Metastasis

As reported by Kwon and colleagues, miR-29 family members act as tumor suppres-
sors in more than 95% of publications on various human hematologic malignancies and
solid tumors [69]. In strong contrast to the role as tumor suppressors, miR-29b was also
described to function as an oncogene, via the negative inhibition of tumor suppressor genes
or by interfering in pathways that control cellular responses [69]. For this reason, the overall
role of miR-29b in breast cancer cells is not completely understood and its relationship with
breast carcinogenesis remains controversial.

3.2.1. miR-29b as a Tumor Suppressor miRNA

Accumulating evidence demonstrated that the expression level of miR-29b is dereg-
ulated in almost all primary breast tumor tissues and cell lines and that its re-expression
induces a reduction of malignancy in terms of cell proliferation, migration, and inva-
sion [21,30,55]. In the MCF7 cell model, it was reported that the over-expression of miR-29b
decreases mRNA levels of SPARC [70], also known as osteonectin or BM-40, an albumin-
binding glycoprotein secreted by cells and modulating their interactions with extracellular
matrix (ECM) to down-regulate cell proliferation, migration [71,72], and metastasis [14].
In addition, tumor microarray analysis and luciferase assays allowed identification of
C1QTNF6, SPARC, and COL4A2 as direct targets of miR-29b in MCF7 cells and involved
in their invasion. Furthermore, the up-regulation of miR-29b reduces cell proliferation and
induces the apoptosis of MCF7 cells by regulating the expression of STAT3 [54]. It has been
recently demonstrated that, in certain molecular subtypes of triple-negative breast breast tu-
mor cells, miR-29b-3p down-modulates Akt2, a member of the Akt family mainly involved
in migration and metastasis of breast cancer, and prevents the in vivo lung colonization of
MDA-MB-231 cells [73].

As reported above, circACAP2 may promote in vitro cell proliferation and migratory
and invasive abilities of breast tumor cells with different phenotypes by sponging both
miR-29a-3p and miR-29b-3p, thus preventing the silencing effect of both miRNAs on their
target COL5A1 gene, which encodes the α1 chain of type V collagen [50].

A number of recent studies specifically assigned to miR-29b1-5p the antitumor role
played by miR-29b in breast-tumor-derived cells with a triple-negative phenotype. Drago-
Ferrante and colleagues demonstrated that miR-29b1-5p expression is strongly down-
regulated in TNBC tissues and cell lines and this impacts on proliferation and migration
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of TNBC-derived cells [24]. They found that the over-expression of miR-29b1-5p in MDA-
MB-231 cells decreases in vitro growth rate, Ki-67 levels, and migration [24], and the
decrease of Wnt/βcatenin and Akt-signaling pathways, both involved in tumorigenesis
and progression of breast cancer [74,75]. In addition, it was demonstrated that miR-29b1-5p
down-modulates, at both mRNA and protein levels, spindlin 1 (SPIN1), which enables
methylated histone binding activity and participates in PI3K/Akt-mediated chemoresis-
tance of metastatic breast cancer [24,76]. The study of De Blasio and colleagues reported the
existence of a regulatory loop including miR-29b1-5p and NRF2, able to regulate the fate of
the MDA-MB-231 cell line [26]. In particular, the over-expression of miR-29b1-5p seems to
exert opposite effects with respect to NRF2 by increasing the generation of reactive oxygen
species (ROS) and inducing a decrease in p-Akt levels, in turn responsible for reducing
cell proliferation [26]. Furthermore, miR-29b1-5p over-expression in the same cell model
decreased the mRNA and protein levels of key stemness genes, such as OCT4, SOX2 and
NANOG, implicated in the regulation of self-renewal of CSCs [24]. Interestingly, in tertiary
mammospheres from MDA-MB-231 cells, the expression of miR-29b1-5p dramatically
decreases, suggesting its inverse correlation with stemness [24].

3.2.2. MiR-29b as an Onco-miRNA

Wang and colleagues reported that miR-29b expression is elevated in highly metastatic
breast cancer cells and tissues in comparison with lowly metastatic breast cancer. They
also revealed that miR-29b expression is often higher in primary tumors of breast cancer
patients with lymph node metastasis [53]. A functional role of miR-29b in promoting cell
migration and invasion in breast tumor cell lines with different phenotypes was proposed,
and the downregulation of PTEN was identified as the mechanism contributing to tumor
metastasis [53]. Furthermore, greater expression of miR-29b-3p was reported in BC with
low DNA repair capability [76,77].

More recently, Zhang and colleagues reported that miR-29b-3p is highly expressed
in triple-negative MDA-MB-231 cells, compared with the ER-positive MCF7 and the non-
transformed MCF-10A cell lines, and that its inhibition suppresses in vitro cell proliferation,
migration, and invasion, and induces apoptosis [78]. In MDA-MB-231 cells, this was
correlated with the direct target of TRAF3, reported to inhibit the activation of the NF-
κB signaling pathway [78]. In addition, and as mentioned above, miR-29b may have an
oncogenic role due to the loss of its regulatory activity on genes involved in the modification
of DNA methylation status [67], allowing up-regulation of EMT-related genes [68].

3.3. MiR-29b Reduces Tumor Angiogenesis

miRNAs are key players in the epigenetic orchestration of angiogenesis, a process
by which new blood vessels are formed to supply oxygen and nutrients inside tumors.
The angiogenic process is regulated by a balance between pro- and anti-angiogenic stimuli
involved in the degradation of the vascular basement membrane and remodeling of ECM,
in endothelial cell migration and proliferation, and in generation of new matrix compo-
nents [12]. Moreover, the angiogenic switch and the tumor neovascularization may be due
to hypoxic conditions or the consequence of therapies promoting tumor progression [12].
Various studies have demonstrated the key participation of MMPs along with EMT to
promote angiogenesis, infiltration by cancer cells, and metastasis [79]. MMPs participate in
the degradation of ECM components, including the basement membrane and the tumor
surface, resulting in tumor cell migration into the near tissue. Furthermore, MMPs promote
tumor growth and spread through the capillary endothelium and neovascularization [79].

As already demonstrated in other solid tumors, miR-29b could affect the expression
of several members of MMPs family in breast cancer cell lines. In particular, the over-
expression of miR-29b suppresses tumor angiogenesis and metastasis by directly regulating
the expression of MMP2 [80]. Moreover, in MDA-MB-231 cells, miR-29b significantly down-
regulates a set of pro-metastatic genes involved in angiogenesis, collagen remodeling and
matrix degradation, including MMP2, MMP9, PDGF, and VEGF [36]. The latter is a growth
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factor, over-expressed in various cancers, that binds to and activates both VEGFR-1 and
VEGFR-2, promoting vasculogenesis and angiogenesis in breast cancer [81]. In MDA-MB-
231 cells, in vivo miR-29b treatment inhibits VEGF expression without inducing HIF1-α,
a master regulator of VEGF, indicating that the over-expression of miR-29b may interfere
with the canonical regulation of VEGF [81]. In the same cell model, miR-29b can reduce
the expression of VEGF and also inhibits tumor vascularization by targeting Akt3, that
in turn regulates the expression of VEGF and C-Myc [82]. Still, in MDA-MB-231 cells,
miR-29b-2 targets VEGF-A and cooperates with miR-338 to inhibit invasion and metastasis
in both in vitro and in vivo models [44]. Furthermore, the reduction in miR-29b/miR-338
expression induced by inactivation of the transcription factor FOXO3a inhibits the targeting
of VEGF-A/NRP1, contributing to the aggressive behavior of breast cancer [44].

3.4. MiR-29b Regulates Chemo- and Radiosensitivity in Breast Cancer

The resistance of cancer cells to conventional chemotherapeutics and radiotherapy rep-
resents the major obstacle for cancer treatment and the main reason for therapy failure [83].
In breast cancer, especially in triple-negative tumors, chemotherapy is the most effective
and often the only therapeutic strategy, but the presence of drug resistance, which may
lead to tumor recurrence and metastasis, and is associated with poor prognosis, reveals
that molecular mechanisms at the basis of chemosensitivity are mostly unknown [84].

As in other solid tumors, several studies reported a regulatory role for different
miRNAs [84,85], and some miRNA expression profiles are associated with resistance to
chemotherapy in breast tumors [86,87]. Zhou et al. revealed that MCF7 breast cancer
cells resistant to Adriamycin have significant over-expression of miR-29b-3p and miR-
29b1-5p [88]. Mimics or inhibitors of miR-29b1-5p could modulate the drug resistance of
MCF7 cells to Adriamycin regulating the IC50 of the drug, and treatment with liposomal
curcumin, down-regulating the expression of miR-29b1-5p, may reverse the resistance of
MCF-7 cells [88]. At variance, Ji and colleagues demonstrate that miR-29b-3p promotes
sensitivity of luminal or HER2-positive breast cancer cells to Palbociclib [33], a selective
inhibitor of CDK4 and CDK6 kinases, which could prevent progression of the cell cycle
from G1 into the S phase in various tumors [89]. In vitro studies demonstrated that MDA-
MB-231 cells transfected with miR-29b-3p mimics are more sensitive to Palbociclib and
that loss of miR-29b-3p in MCF7 and SK-BR-3 cells induced the resistance to Palbociclib
treatment [33]. ChIP analysis revealed that the transcription factor c-Myc may bind the
miR-29b-3p promoter, allowing identification of a c-myc/miR-29b-3p/CDK6 axis that
might be responsible for Palbociclib insensitivity, in which c-Myc activation resulted in
down-regulation of miR-29b-3p, which enhanced CDK6 expression [33]. In the same cell
models, miR-29b-3p could negatively modulate CDK6 expression by directly targeting its
3′-UTR, inducing cell cycle arrest at the G1 phase [87].

Concerning radiosensitivity, it has been well established that cellular exposure to
radiation results in damage of DNA and other cellular structures, inducing a complex
cascade of downstream pathways in both the cytoplasm and nucleus, involved in mod-
ulation of cell cycle, DNA repair, ROS defense, cytokine production, and apoptosis [90].
Individual responses to radiotherapy (RT) vary among disease types and patients [91] and
the resistance to RT is associated with several biological alterations of the tumor cells and
with the tumor microenvironment [92].

In solid tumors, increasing evidence shows that several miRNAs, including miR-29b,
play a crucial role in the cellular response to ionizing radiation and in the regulation of ra-
dioresistance mechanisms [93,94]. Despite the role of miR-29b in regulating radiosensitivity
in different tumors [95–97], very little is known in mammary tumors. A recent work by Pan
and colleagues demonstrated that over-expression of miR-29b-3p significantly enhanced
radiosensitivity in 3D-cultured MCF7 cells and in in vivo models, whilst the knockdown
of miR-29b-3p enhances radioresistance [56]. It was proposed that miR-29b-3p regulates
radiosensitivity by inhibiting the kinetic process of DNA damage repair followed radiation,
by decreasing the expression of DNMT3B, Bcl-2, PI3KR1, Akt2, and RBL1 [56].
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4. Circulating miR-29b

It is well recognized that extracellular vesicles (EVs), including exosomes, may contain
proteins, RNA, and DNA and are secreted from viable cells into the blood circulation [98].
Recently, also miRNAs can be stably detected in the blood, as they are resistant to RNAase
digestion and to many severe environmental conditions [99], and circulating miRNAs are
often differentially expressed in the serum/plasma of patients with different pathologies,
including cancers [100,101]. As the study of miRNAs in blood is a simple, affordable,
minimally invasive, and time-saving detection method for the early diagnostic and prog-
nostic evaluation, exosome-encapsulated miRNAs might represent ideal biomarkers for
early diagnosis, for cancer screening, or for evaluating disease progression and treatment
efficacy [102,103].

Concerning miR-29b, it was detected in human serum and differentially expressed
in the blood of patients with neurodegenerative diseases, including Alzheimer’s disease
(AD), in which it constitutes a potential biomarker for AD treatment [104]. Furthermore,
circulating miR-29b was reported to increase with aging, which often constitutes a comor-
bidity in breast cancer, and seems to be correlated with early atherosclerosis [105], muscle
atrophy [106], changes in cortical metabolism [107], and osteoporosis [108].

Circulating miR-29b is often deregulated in the sera of tumor patients, and its diagnos-
tic and/or prognostic potential shows great variability between different tumors. Serum
levels of miR-29b were down-regulated in patients with neuroendocrine tumors (NET),
in which it constitutes a diagnostic but not prognostic biomarker [109]. Instead, miR-29b-
3p has been found to be significantly overexpressed in EVs from patients with prostate
cancer (PCa) [110], in which it constitutes an early diagnostic marker [111]. Increased
serum levels of miR-29b have been correlated to poor overall prognosis in neck cancers
(HNC) [112]. At variance, high circulating levels of miR-29b-3p were positively correlated
with DFS and OS of metastatic colorectal cancer patients treated with Bevacizumab [113].
Likewise, serum concentrations of miR-29b in cholangiocarcinoma (CCA) were significantly
elevated compared with healthy controls, but do not reflect disease characteristics and
patient prognosis, and a postoperative decrease was associated with a good prognosis. [114].
Finally, the serum levels of miR-29b increase in osteosarcoma and were correlated with
clinicopathological characteristics and patient prognosis [29].

Concerning breast cancer, miR-29b2 was upregulated in the sera of breast cancer
patients, without differences between the type of tumors but with a positive correlation
with cancer progression, suggestive of its use as a diagnostic and prognostic marker [101].
Furthermore, miR-29b is part of a panel of exosomal miRNAs that may constitute valuable
biomarkers for predicting breast cancer recurrence [102]. More recently, Li et collaborators
revealed that miR-23a-3p, but not miR-29b2-5p, is downregulated in the plasma of patients
with BC compared with healthy control individuals and these miRNAs are significantly
associated with sex hormone receptor, clinical stage, and lymph node metastasis [115].

As in tissues [116], circulating levels of miR-29b have been reported to be modified
by diet or by specific microelements, including polyphenols, according with the relation-
ship of miR-29 with NRF2 [26], a redox sensitive transcription factor induced by dietary
phytochemicals and regulating the transcription of a number of proteins with antioxidant
and anti-inflammatory functions [117]. Although nothing is known in breast cancer, the
consumption of green tea polyphenols (GTP)s was recently reported to increase the levels
of miR-29b in blood, which seems to be correlated with a reduced susceptibility for devel-
oping lung cancer [118]. Moreover, it has also been demonstrated that regular consumption
of GTPs reduces ultraviolet B (UVB)-radiation-induced murine non-melanoma skin cancers
(NMSCs), and blocks UVB-induced miR-29b depletion [119], suggesting that diet may have
an important role in cancer prevention.

5. Conclusions

This is the first review that collects data concerning the role of miR-29b in breast cancer,
in which, despite accumulating evidence correlating high levels of this miR-29 member
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with the reduced malignancy of breast tumors, it seems to play a controversial role in
breast tumor cells. We conceive that some discordance may be at least in part attributed
to different sample sizes, to heterogeneity between the same cell line [120] or to the use of
techniques with different discriminant capability. On the other hand, the actual dual role of
miR-29b as a suppressor or promoter of breast tumor cell malignancy can be ascribed to
its >involvement in the epigenetic regulation of DNA methylation status. From imbalance
between down-regulation of DNMTs and of the DNA demethylases TET1, having opposite
roles in controlling DNA methylation, it may result that miR-29b acts as a tumor suppressor
or as an oncogene, depending on cell conditions.

Interestingly, from the analysis of the studies produced in the last few years, the
evaluated form of miR-29b emerged as a crucial element in the results obtained by the
various research groups. In fact, specific evaluation of individual miR-29bs revealed that
miR-29b-3p and miR-29b1-5p play different roles in breast tumors with different phenotypes
(Figure 1). In particular, miR-29b1-5p seems to play an antitumor role in breast tumor cells
with a triple-negative phenotype, in which this miRNA counteracts proliferation, migration,
and the maintenance of stem cell characteristics.

Even if further studies will be required to better characterize the expression and the
role of each miR-29b form in the different breast tumor subtypes, our review highlights
its possible implication also in the therapeutic approach to breast tumor, to specifically
counteract phenotype-related malignant features and/or chemoresistance.
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