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Background: Immunotherapies targeting CTLA-4 and PD-1 have elicited promising
responses in a variety of cancers. However, the relatively low response rates warrant the
identification of additional immunosuppressive pathways. V domain immunoglobulin
suppressor of T cell activation (VISTA) plays a critical role in antitumor immunity and is a
valuable target in cancer immunotherapy.

Methods: Here, we used single-cell RNA-seq to analyze the gene expression levels of
14897 cells from a breast cancer sample and its paired 7,320 normal cells. Then, we
validated the protein expression of immune checkpoint molecules (VISTA, PD-1, PD-L1,
TIGIT, TIM3, and LAG3) in 324 human breast cancer samples by immunohistochemistry
and quantitative immunofluorescence (QIF) approaches.

Results: Single cell RNA-seq results show a higher level of immune checkpoint VISTA
expression in breast cancer tissue compared to adjacent normal tissue. We also found
that VISTA expressed highest in breast cancer tissue than other immune-checkpoints.
Immunohistochemical results showed that VISTA was detected with a membranous/
cytoplasmic staining pattern in intratumoral immune cells and breast cancer cells.
Additionally, VISTA was positively correlated with pathological grade, lymph node
status and the levels of PD-1 according to the chi-square test or Fisher’s test.
Furthermore, VISTA expression was higher in CD68+ tumor-associated macrophages
(TAMs) than in CD4+ T cells, CD8+ cytotoxic T cells or CD20+ B cells.

Conclusions: These findings therefore support the immunoregulatory role of VISTA in
breast cancer and indicate that targeting VISTA may benefit breast cancer
immunotherapy.

Keywords: V domain immunoglobulin suppressor of T cell activation, tumor immune microenvironment, single cell
RNA-seq, breast cancer, quantitative immunofluorescence
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BACKGROUND

Globally, breast cancer is one of the most commonly diagnosed
cancer types among women, and it accounts for 17.07% of all
cancer types among the Chinese population (1). Current
mainstream treatments for breast cancer include surgery,
radiation therapy, chemotherapy, hormone therapy and
targeted therapy (2). These therapies are not efficacious in all
types of breast cancer due to a variety of resistance mechanisms
and toxicity. On the other hand, immunotherapy for refractory
breast cancer, especially for late-stage breast cancer and triple-
negative breast cancer (TNBC) has become a promising strategy.

Immune checkpoint receptors transmit co-inhibitory
signaling to inhibit T cell activation, thereby controlling the
duration and intensity of the immune response. Multiple
immune checkpoint proteins, such as PD-1/PD-L1, CTLA-4,
TIM3, VISTA, TIGIT, LAG3, and BTLA, have been discovered
(3–5). Drugs targeting immune checkpoint molecules, including
nivolumab, ipilimumab, and pembrolizumab, have been
approved by the U.S. Food and Drug Administration (FDA)
and have become breakthrough therapies for cancer (6–8).
However, the relatively low response rates (less than 30%) of
current immunotherapeutic drugs remain a critical challenge
that warrants efforts to identify and overcome additional
immunosuppressive pathways (9). V-domain immunoglobulin
(Ig) suppressor of T cell activation (VISTA) is a B7-family
immune checkpoint protein that plays a multifaceted role in
regulating peripheral tolerance, autoimmunity, inflammation,
and antitumor immunity (10). Although the extracellular
domain of VISTA is homologous to that of PD-L1 (11, 12),
our previous study indicates that the VISTA and PD-1/PD-L1
checkpoint pathways are functionally distinct and that they non-
redundantly regulate T cell function and the antitumor immune
response (12). VISTA is highly expressed on tumor-infiltrating
myeloid cells (i.e., CD11b+ cells, macrophages, and myeloid-
derived suppressor cells (MDSCs)) and tumor-infiltrating T cells
(13–16). Our previous study showed high VISTA expression on
tumor-infiltrating neutrophils in human pancreatic cancer (17).
Jorge Blando et al. reported that VISTA was preferentially
expressed at a relatively high level in pancreatic cancer (14).
Other studies have revealed that VISTA expression is detected in
gastric carcinoma, oral squamous carcinoma, non-small cell lung
cancer, ovarian cancer and colorectal cancer (18–22). Among
melanoma and prostate cancer patients treated with ipilimumab,
VISTA expression is significantly upregulated on CD4+ T cells,
CD8+ T cells and CD68+ macrophages, indicating that VISTA
may contribute to mechanisms of resistance to checkpoint
inhibitor therapies in these cancers (23, 24).

In breast cancer, significant heterogeneity in the immune cell
composition is observed across tumor subtypes and patients. The
anti-PD-L1 antibody drug TECENTRIQ (atezolizumab) was
approved by the FDA in combination with the chemotherapeutic
drug Abraxane for the treatment of locally advanced or metastatic
TNBC recently. This is the first immunotherapeutic drug approved
for breast cancer treatment (25). In this study, we employ single-cell
RNA-seq (scRNA-seq) analysis to explore immune checkpoint
VISTA, PD-1, PD-L1, TIGIT, TIM3, LAG3 expression in
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immune cell subsets in human breast tumors. Our analyses
revealed significantly increased expression of VISTA in tumor
cells compared to normal breast tissue. We also analyzed the
expression characters of other immune checkpoints such as PD-1,
PD-L1, TIM3, LAG3, and TIGIT in breast cancer tissue.
Furthermore, combined with immunohistochemistry and
quantitative immunofluorescence, we define the protein
expression of VISTA and its relationship with other immune-
checkpoints in the breast cancer environment. Our study assessed
the expression of VISTA and other immune checkpoint molecules
in human breast cancer, and also examined whether the expression
levels of VISTA were prognostic in breast cancer patients.
METHODS

Tissue Sample Source
The human breast cancer obtained from JIANGSU CANCER
HOSPITAL for sc-RNA seq was collected from a woman
undergoing surgery for primary breast cancer. Adjacent
normal tissue was obtained from contralateral prophylactic
mastectomies of the same cancer patient. The human breast
cancer tissue microarrays used in this experiment were obtained
from Shanghai Outdo Biotech Co., Ltd. The tissue samples were
fixed in a formalin solution and embedded in paraffin to prepare
4-mm sections of breast cancer tissue for immunohistochemical
(IHC) analysis. There were 4 samples of normal breast tissue, 2
samples of breast adenosis tissue, 13 samples of paracancerous
tissue and 324 samples of breast cancer tissue. Clinical features,
including age, pathological grade, clinical stage, T-category, M-
category, and lymph node status, were recorded for each patient.
Ethics Statement
The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Medical Ethics
Committee of the Shanghai Outdo Biotech Company and
performed according to institutional guidelines (No. YB M-
05-02).
Single-Cell Sequencing
See Online methods. The cDNA/DNA/Small RNA libraries were
sequenced on the Illumina sequencing platform by Guangzhou
Kidio Biotechnology Co., Ltd. (Guangzhou, China). The raw
reads were deposited into the NCBI Sequence Read Archive
database (Accession Number: SPR234770). Other data and
analytical methods are available from the corresponding
authors upon reasonable request (Additional file 1:
Supplemental materials and methods).
Immunohistochemistry (IHC) Staining
The purchased human breast cancer tissue microarrays were
dewaxed in an oven at 65°C for 1 h and then immersed in
different concentrations of xylene for rehydration. The sections
October 2020 | Volume 11 | Article 563044
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were subjected to high-temperature antigen retrieval in a 10-mM
citrate restorative solution (pH = 6.0). After cooling, the samples
were immersed in 3% hydrogen peroxide for 10 min to quench
endogenous peroxidase activity. The blocking of nonspecific
binding was performed with ready-to-use normal goat serum
(AR0009; BOSTER Biological Technology Co.,Ltd.) for 1 h at
room temperature. The sections were then incubated with an
anti-human VISTA antibody (1:200 dilution) (#64953; Cell
Signaling Technology), anti-CD8 antibody (1:100 dilution)
(Abcam, ab4055), anti-PD-1 antibody [NAT 105] (1:50
dilution) (Abcam, ab52587), or anti-PD-L1 antibody [28-8]
(1:200 dilution) (Abcam, ab205921) overnight at 4°C.
Subsequently, a biotinylated immunoglobulin G secondary
antibody solution and avidin-biotin peroxidase reagent
(Elivision™ Super HRP (Mouse/Rabbit) IHC Kit, KIT-9921,
Maixin-Bio) were added to the slides. The chromogenic reaction
was visualized by incubation with 3,30-diaminobenzidine (Signal
Stain® DAB Substrate Kit #8059; Cell Signaling Technology) for
0-3 min. Hematoxylin was then used as the nuclear counterstain.
After dehydration, the sections were mounted in neutral resin
and covered with coverslips. In this experiment, human tonsil
tissue was used as a positive control experiment for antibody
immunohistochemistry (results not shown).
Multiplex Staining and Multispectral
Imaging to Identify the Cell Subsets
Expressing VISTA in the Breast Cancer
TME
To identify the cell subsets expressing VISTA in the TME,
multiplex immunofluorescence staining was obtained using
TSA Plus Fluorescence Kits (Panovue, Beijing, China)
combined with immunohistochemistry (TSA-IHC). Different
primary antibodies were sequentially applied, followed by
horseradish peroxidase-conjugated secondary antibody
incubation and tyramine signal amplification. The slides were
microwave heat treated after each TSA operation. Nuclei were
stained with 4′-6′-diamidino-2-phenylindole (DAPI; Sigma-
Aldrich) after all the human antigens had been labeled.
Multiplexed Quantitative
Immunofluorescence to Identify the
Expression Differences Between VISTA
and Other Immune Checkpoint Molecules
(TIGIT, TIM3, and LAG3) in Breast Cancer
To identify the expression differences between VISTA and other
immune checkpoint molecules (TIGIT, TIM3, and LAG3),
multiplex immunofluorescence staining was performed using
TSA Plus Fluorescence Kits (Panovue, Beijing, China)
combined with immunohistochemistry (TSA-IHC). Different
primary antibodies (an anti-human VISTA antibody (#64953;
Cell Signaling Technology); an anti-TIGIT antibody [BLR0475]
(Abcam, ab243903); an anti-TIM3 antibody (#45203; Cell
Signaling Technology); and a rabbit monoclonal antibody
[EPR20261] against LAG3 (Abcam, ab209236)) were
sequentially applied, followed by horseradish peroxidase-
Frontiers in Immunology | www.frontiersin.org 3
conjugated secondary antibody incubation and tyramide signal
amplification. The slides were microwave heat treated after each
TSA operation. Nuclei were stained with DAPI (Sigma-Aldrich)
after all the human antigens had been labeled.
Evaluation of Immunostaining
The tissue microarrays from the immunohistochemistry
experiments were converted into high-resolution digital
sections by a digital pathological section scanner (Nanozoomer
XR; Hamamatsu Photonics, Japan). Five high-powered fields
(400×) were randomly selected from each tissue sample.
According to the Fromowitz semiquantitative grading method
for positive cells, the staining results were evaluated based on
positive staining and the number of positive cells to create a score
(26). The percentage, intensity and intracellular distribution of
the staining in tumor cells (TCs) and immune cells (ICs) were
evaluated separately by two pathologists. The intensity of the
immunostaining of the tumor samples was graded as negative,
weak, moderate or strong.

To obtain multispectral images, the stained slides were scanned
using the Mantra System (PerkinElmer), which captures fluorescent
spectra at 20-nm wavelength intervals from 420 nm to 720 nm with
identical exposure times; the scans were combined to build a single-
stack image. Images of unstained and single-stained sections were
used to extract the spectrum of autofluorescence of the tissue samples
and each fluorophore, respectively. The extracted images were further
used to establish the spectral library required for multispectral
unmixing by using InForm image analysis software (PerkinElmer).
Using this spectral library, we obtained reconstructed images of the
sections with the autofluorescence removed.
Statistical Methods
The p-values and R2 values of the data were analyzed using SPSS
22.0 statistical analysis software (IBM Corporation, New York,
USA). The p-values were analyzed by the chi-square test or
Fisher’s test, and the R2 values were analyzed by the Pearson
correlation coefficient. tumor-specific survival was calculated
using the Kaplan-Meier method. A p-value < 0.05 indicated a
significant difference.
RESULTS

Single-Cell RNA-Seq-Based Identification
of Breast Cancer-Associated Immune Cell
Populations
To generate a transcriptional map of human breast cancer, we
constructed an atlas comprising of 14897 cells including 7534
CD45+ cells collected from one primary breast carcinomas
patient. To assess the effect of the tumor microenvironment on
immune cell phenotypes, we also analyzed 7,320 cells frommatched
adjacent normal breast tissue from fresh surgical specimens. The
corresponding cell populations were subjected to single-cell RNA
sequencing (scRNA-seq) using 10 × platforms techniques. We first
October 2020 | Volume 11 | Article 563044
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FIGURE 1 | Single-Cell RNA-Seq Experimental Initial Data Exploration (A) Heatmap of log counts of genes in signature. (B) t-SNE of complete cells isolated from the
breast cancer tissue and matched adjacent normal breast tissue. (C) t-SNE of CD45+ cells isolated from the breast cancer tissue and matched normal breast tissue
(Left). Pie charts of cell-type fractions for the patient’s tumor-infiltrating immune cells, colored by cell type (Right). (D) The violin plot shows the top 10 most variable
genes among different cells in the breast cancer sample.
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verified the major cell types in patient using PhenoGraph
Clustering. We analyzed the gene expression differences between
each single cluster and all other cells to identify the cluster marker
genes. There are fourteen cell clusters in breast cancer tissue, while
eight clusters in adjacent normal tissue (Figure 1A). Subsequently,
we used t-distributed stochastic neighbosr embedding (tSNE)
visualization of the cells to reveal major clusters in breast cancer
tissue and adjacent normal tissue. An overview of cell distribution is
shown in Figure 1B. Leukocytes are distinguished by the expression
of CD45. Cell-specific markers were used to further identify the
distribution of most expected immune cell types, including T cells, B
cells, monocytes, macrophages and dendritic cells. There are more
immune cells in breast cancer tissue than adjacent normal tissue
(Figure 1C). The violin plot shows upregulated molecules, such as
CD74, HLA-DRA, and CCL4 among others. CD74/HLA-DRA is
receptor/ligand expressed in Macrophage/Monocyte functioning as
MHC class II antigen processing. CCL4 and CCL4L2 are secreted
proteins and have chemokinetic and inflammatory functions. The
result of violin plot reveals that very active immune response
existing in the breast cancer microenvironment (Figure 1D).
Immune Checkpoints Expressions
Heterogeneity in Immune Cell Populations
in the Breast Cancer Tissue
The results of sc-RNA sequence analysis showed that the
expression of VISTA in breast cancer tissues (BC, 14.21%) was
significantly higher than that of adjacent normal tissues (NC,
7.64%) and there was significant VISTA expression in the cancer
cell area (Figures 1B, 2A). In the microenvironment of breast
cancer, the expression of each immune checkpoint is quite
different. All the immune checkpoints we tested (PD-1, PD-L1,
CTLA-4, TIM3, TIGIT, LAG3, and VISTA) were expressed on
immune cells, and the number of VISTA+ cells was the highest
(Figure 1B). PD-1, LAG3, TIGIT, and CTLA-4 were
significantly expressed on T lymphocytes, while PD-L1, TIM3,
and VISTA were mainly expressed on myeloid cells (Figure 2B).
By detecting the proportion of cells with positive immune
checkpoints in each immune subpopulation, we found
heterogeneity in the expression of immune checkpoint proteins
in the immune microenvironment of breast cancer. PD-1, LAG3,
TIGIT, and CTLA-4 are significantly expressed on T
lymphocytes, while PD-L1, TIM3, and VISTA are mainly
expressed on myeloid cells (Figures 1C, 2C, D).
VISTA Expression Pattern in Human
Breast Cancer Tissue Microarrays
To further support our findings, a total of 343 patients who
fulfilled all study criteria were tested, and the tested samples
included 4 normal breast tissue samples, 2 breast adenosis tissue
samples, 13 paracancerous tissue samples and 324 breast cancer
tissue samples. The clinicopathological characteristics of our
sample cohort are summarized in Table S1 (Additional file 2:
Table S1).

VISTA expression was observed in tumor and immune cells
but not in normal breast tissue, adenosis tissue or paracancerous
Frontiers in Immunology | www.frontiersin.org 5
tissue (Figure 3A). A total of 138 of the 324 patients (42.59%)
showed VISTA expression in their breast cancer tissue samples
with a membranous/cytoplasmic staining pattern. VISTA
protein was observed not only in intratumoral immune cells
(33.95%) but also in breast cancer cells (14.51%) (Figures 3B, C).
VISTA Expression and the Breast
Cancer Immune Microenvironment
To further investigate the expression pattern of VISTA in breast
cancer, multiplex immunofluorescence staining was used to detect
the expression of VISTA in the immune cell subsets of breast cancer
tissue microarray samples, which included 4 normal breast tissue
samples, 2 breast adenosis tissue samples, 5 paracancerous tissue
samples, and 49 breast cancer tissue samples. The results indicated
that VISTA expression was detected in T cells (CD4+ cells and
CD8+ cells) and macrophage cells (CD68+ cells) but was almost not
detected in B cells (CD20+ cells) (Figure 4). Moreover, VISTA
expression was higher in CD68+ tumor-associated macrophages
(TAMs; 32.58%) than in CD4+ T cells (4.97%), CD8+ cytotoxic T
cells (4.48%), or CD20+ B cells (1.46%) (Figures 4C, D).
VISTA Expression and Patient
Clinicopathological Characteristics
To explore the clinical significance of VISTA in breast cancer, we
analyzed the associations between VISTA expression and patient
clinicopathological characteristics. VISTA expression in breast
cancer tissue was positively correlated with pathological grade (I-
II compared with III; p = 0.001), lymph node status
(comparisons among N0, N1, N2, and N3; p = 0.045) and
genotype (comparisons among luminal, HER 2+ and basal-like
subtypes; p < 0.000) (Table 1).
VISTA Expression in Breast Cancer
Tissue With PD-1, PD-L1, TIGIT, TIM3,
or LAG3 Expression
As shown in previous reports, VISTA and PD-1 non-redundantly
regulate murine T cell responses. In this study, the expression
patterns of immune checkpoints, such as PD-1, CTLA-4, TIGIT,
and LAG3, are quite different from that of VISTA in breast cancer
microenvironment (Figure 2). To determine whether these
combined predictors of cancer prognosis were applicable in
breast cancer, we additionally examined the expression of PD-1,
PD-L1, TIGIT, TIM3, and LAG3 in breast cancer tissue
microarrays. The results showed that the expression of VISTA
was significantly correlated with the expression of PD-1 (PD-1+

compared with PD-1-; p = 0.038) and was not associated with the
expression of PD-L1, TIGIT, TIM3, LAG3 (Table 2 and Figure 5).

In addition, in 128 breast cancer patients with a defined
survival period data, the Kaplan-Meier results showed that
immune checkpoints, such as VISTA (VISTA+ compared with
VISTA-; p = 0.078), TIGIT (TIGIT+ compared with TIGIT-; p =
0.137), TIM3(TIM3+ compared with TIM3-; p = 0.176), and
LAG3 (LAG3+ compared with LAG3-; p = 0.121), were not
associated with overall survival.
October 2020 | Volume 11 | Article 563044
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DISCUSSION

Despite major advances in cancer immunotherapy, our ability to
understand mechanisms of action or predict efficacy is
confounded by the heterogeneous composition of immune
cells within tumors, especially the checkpoints expression in
the immune cells. The precise identity of immune-checkpoints is
Frontiers in Immunology | www.frontiersin.org 6
poorly characterized in breast cancer. Here, we have applied
single-cell RNA-seq as an unbiased profiling strategy to
interrogate and classify the immune checkpoints expressions in
immune cells in breast cancer (Figures 1 and 2).

This study evaluated VISTA expression in a large cohort of
human breast cancer patients. Recently, a newly published study
also used immunohistochemistry to study the expression of
A

B

D

C

FIGURE 2 | Immune Checkpoints expressions heterogeneity in immune cell populations in the breast cancer tissue. (A) t-SNE of normalized single-cell RNA-seq
data for VISTA colored by markers. VISTA positive cells (orange), VISTA negative (blue). (B) Histogram of the expression of each immune checkpoint (PD-L1, PD-1,
CTLA-4, TIGIT, LAG3, TIM3 and VISTA) in the microenvironment of breast cancer tissue. (C) Histogram of percentage of each immune checkpoint (PD-L1, PD-1,
CTLA-4, TIGIT, LAG3, TIM3 and VISTA) in the primary immune cell subpopulation in the breast cancer microenvironment. (D) t-SNE of normalized single-cell RNA-
seq data for ICs (immune checkpoints) colored by markers. ICs positive cells (orange), ICs negative (blue).
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VISTA in 919 cases of ductal carcinoma, and found that the
expression of VISTA on immune cells was associated with a
favorable prognosis (27). Consistent with the study, our data
showed that VISTA was expressed in a substantial number of
immune cells. Additionally, breast tumor cells themselves also
expressed VISTA with a distinct membranous/cytoplasmic VISTA
expression pattern, exacerbating the immunosuppressive milieu
within the tumor microenvironment (TME) (Figure 3). In
contrast, in this study, VISTA is significantly related to the poor
prognosis factor of cancer based on the expression of VISTA in the
whole organization. What is the relationship between VISTA
expression and cancer prognosis needs further study.

A high level of an immune checkpoint molecule expressed in
immune cells might induce immune escape. Consistent with
previous findings, our findings showed a high expression level of
the immune checkpoint molecule VISTA in the TME, and the
protein expression of VISTA showed strong individual
differences, as was the case with other immune checkpoint
molecules. Franz Villarroel-Espindola et al. found that in non-
small cell lung cancer, VISTA expression was significantly higher
in T cells than in CD68+ macrophages and that higher levels of
VISTA were found in CD8+ cytotoxic cells than in CD4+ T
lymphocytes (15). In contrast to that study, this study found that
Frontiers in Immunology | www.frontiersin.org 7
VISTA was mainly expressed in CD68+ macrophages (mean =
32.58%) in breast cancer and in CD4+ T cells (mean = 4.97%),
and lower levels of VISTA were found in CD8+ cytotoxic cells
(mean = 4.48%) (Figure 4).

Immunotherapy targeting the first generation of immune
checkpoint molecules (CTLA-4 and PD-1) has been proven to
be effective in many cancers. However, not all patients respond to
immune checkpoint inhibitors, which lead to a reduced objective
response rate in the overall patient population and limits the
progress of immunotherapy (9). Therefore, combination therapy
with multiple immune checkpoint inhibitors involving different
pathways, such as the combination of OPDIVO (nivolumab, an
anti-PD-1 antibody) and Yervoy (ipilimumab, an anti-CTLA-4
antibody), has emerged and has been proven to have improved
antitumor efficacy. In this study, immune checkpoint proteins
were highly expressed in breast cancer patients and the single
immune checkpoint (TIM3, LAG3, VISTA and TIGIT) expression
is not significantly associated with breast cancer survival
(Figure 5). This also seems to explain the poor efficacy of anti-
immunization checkpoint drugs used as monotherapies in the
treatment of breast cancer. In addition, VISTA expression is not
associated with the expression of PD-L1, TIGIT, TIM3, and LAG3
in breast cancer, indicating that multiple immune checkpoint
A B

C

FIGURE 3 | VISTA expression pattern in human breast cancer tissue. (A) Representative immunohistochemical staining for the VISTA protein in normal breast tissue
(n=4), breast adenosis tissue (n=2), paracancerous tissue (n=13) and breast cancer tissue (n=324). Original magnification, 400 ×. (B) The expression of VISTA in
breast cancer detected by immunohistochemistry. VISTA negative (n=186, 57.41%) vs. VISTA positive (n=138, 42.59%). (C) Representative positive VISTA staining in
immune cells (110/324, 33.95%), tumor cells (47/324, 14.51%), and both types of cells (19/324, 5.86%). Original magnification, 200 ×.
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proteins cooperate to inhibit anti-tumor immunity and that the
combined targeting of these molecules may be synergistic.

TAMs can help tumor cells proliferate and migrate and aid
tumor progression. In addition, recent studies have shown that
macrophages can disable immune checkpoint therapy by
endocytosing anti-PD-L1 antibodies (28). Our data indicated
that VISTA was specifically expressed on TAMs in breast cancer.
These TAM-dependent effects result in a stimulatory TME. It is
reasonable to suspect that the reprogramming of TAMs
Frontiers in Immunology | www.frontiersin.org 8
following VISTA blockade promotes T cell infiltration and
activation. Further experimental proofs are ongoing.
CONCLUSIONS

In summary, this is the first evaluation of the expression pattern
of VISTA in the tumor microenvironment of breast cancer
patients. We accordingly show that VISTA is highly expressed
A

B

D

C

FIGURE 4 | Multiplex immunofluorescence for VISTA and selected tumor-infiltrating immune cell markers in human breast cancer tissue. Markers of tumor-infiltrating
immune cells: CD68 (macrophages), CD4 (T cells), CD8 (cytotoxic T cells) and CD20 (B cells). (A) Representative images of biomarkers in human breast cancer
tissue. CD4 staining is shown in green; CD8 staining is shown in red; CD20 staining is shown in yellow; CD68 staining is shown in cyan; VISTA staining is shown in
magenta; and DAPI staining is shown in blue. 400×. (B) Co-localization of VISTA with selected tumor-infiltrating immune cell markers in breast cancer detected by
immunofluorescence. CD4, CD8, CD20, and CD68 staining is shown in green; VISTA staining is shown in red; and DAPI staining is shown in blue. Areas of co-
localization are indicated with yellow arrows. 400×. (C). Summary plot of the proportion of each subpopulation of cells among double-positive cells. Each dot
represents data from an individual patient. P-values were obtained by an unpaired T-test. *p < 0.05; ##p < 0.01; ###p < 0.001. (D) Summary plot of the proportion of
double-positive cells in each subpopulation of cells. Each dot represents data from an individual patient. P-values were obtained by an unpaired T-test. #p < 0.05;
***p < 0.001. NS, no significance.
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TABLE 1 | Expression of VISTA in breast cancer subpopulations with different clinicopathological characteristics.

Clinicopathological
characteristic

Group Number VISTA P-value

Pos (n, %) Neg (n, %)

≥55 163 (50.77%) 76 (46.63%) 87 (53.37%)
Age (n = 321) 0.146

<55 158 (49.22%) 61 (38.61%) 97 (61.39%)
Pathological Grade (n = 299) I-II 171 (57.19%) 59 (34.50%) 112 (65.97%)

0.001*
III 128 (42.81%) 69 (53.91%) 59 (46.097%)
T1 95 (31.46%) 38 (40.00%) 57 (60.00%)

T-category
(n = 302)

T2 188 (62.25%) 80 (42.55%) 108 (57.45%) 0.354

T3-T4 19 (6.29%) 11 (57.89%) 8 (42.11%)
N0 189 (81.81%) 89 (47.09%) 100 (52.91%)

Lymph Node Status (n = 231) N1 51 (22.08%) 15 (29.41%) 36 (70.59%)
0.045*

N2 48 (20.78%) 18 (37.50%) 30(62.508%)
N3 7 (3.03%) 5 (71.43%) 2(28.57%)

Luminal 94 (48.45%) 30 (31.91%) 64(68.09%)
Genotype (n = 194) HER 2+ 7 (3.61%) 3 (42.86%) 4(57.14%) <0.001*

Basal-like 93 (47.94%) 64 (68.82%) 29(31.18%)
VISTA, V-domain Ig suppressor of T cell activation; Pos, positive; Neg, negative.
In bold: *p < 0.05, Indicates a statistically significant difference.
TABLE 2 | Correlation analysis between expression of VISTA protein and expression of other immune checkpoints in breast cancer patients.

Clinicopathological
characteristic

Group Number VISTA P-value

Pos (n, %) Neg (n, %)

Pos 38 (30.89%) 17
(44.74%)

21
(55.26%)

PD-1 (n = 123) 0.038*
Neg 85 (69.11%) 22

(25.88%)
63

(74.12%)
Pos 31 (23.31%) 4 (12.90%) 27

(87.10%)
PD-L1 (n = 133) 0.204

Neg 102
(76.69%)

24
(23.53%)

78
(76.47%)

Pos 119
(93.70%)

39
(32.77%)

80
(67.23%)

TIGIT (n = 127) N/A
Neg 8 (6.30%) 0 (0.00%) 8

(100.00%)
Pos 75 (59.06%) 32

(42.67%)
43

(57.33%)
TIM3 (n = 127) 0.052

Neg 52 (40.94%) 7 (13.46%) 45
(86.54%)

Pos 7 (5.51%) 2 (28.57%) 5 (71.43%)
LAG3 (n = 127) 0.900

Neg 120
(94.49%)

37
(30.83%)

83
(69.17%)
VISTA, V-domain Ig suppressor of T cell activation; Pos, positive; Neg, negative.
In bold: *p < 0.05, indicates a statistically significant difference.
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on tumor-associated macrophages. The uncorrelations between
the expression levels of VISTA and other immune checkpoint
molecules (PD-L1, TIGIT, TIM3, and LAG3) show the
possibility of a multi-immune escape mechanism.
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FIGURE 5 | (A) Representative immunohistochemical staining for immune checkpoint molecules (PD-L1, PD-1, TIGIT, TIM3 and LAG3) in breast cancer samples.
(B) Representative multiplex immunofluorescence staining for immune checkpoint molecules (VISTA, TIGIT, TIM3 and LAG3) in breast cancer samples. VISTA
staining is shown in green; TIGIT staining is shown in yellow; TIM3 staining is shown in red; LAG3 staining is shown in magenta; PANCK staining is shown in cyan;
and DAPI staining is shown in blue. (C) Co-localization of PANCK with VISTA, TIGIT, TIM3 and LAG3 in breast cancer detected by immunofluorescence. VISTA,
TIGIT, TIM3, LAG3 staining is shown in red; PANCK staining is shown in green; and DAPI staining is shown in blue. (D) Kaplan-Meier curves showing overall survival
(OS) of breast cancer patients based on immune-checkpoints (VISTA, TIGIT, TIM3 and LAG3) status. **p < 0.01, ***p < 0.001. NS, no significance.
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