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A B S T R A C T   

Stress-induced dysfunction of reward processing is documented to be a critical factor associated with mental 
illness. Although many studies have attempted to clarify the relationship between stress and reward, few studies 
have investigated the effect of acute stress on the temporal dynamics of reward processing. The present study 
applied event-related potentials (ERP) to examine how acute stress differently influences reward anticipation and 
consumption. In this study, seventy-eight undergraduates completed a two-door reward task following a Trier 
Social Stress Task (TSST) or a placebo task. The TSST group showed higher cortisol levels, perceived stress, 
anxiety, and negative affect than the control group. For the control group, a higher magnitude of reward elicited 
a reduced cue-N2 but increased stimulus-preceding negativity (SPN), suggesting that controls were sensitive to 
reward magnitude. In contrast, these effects were absent in the stress group, suggesting that acute stress reduces 
sensitivity to reward magnitude during the anticipatory phase. However, the reward positivity (RewP) and P3 of 
both groups showed similar patterns, which suggests that acute stress has no impact on reward responsiveness 
during the consummatory phase. These findings suggest that acute stress selectively blunts sensitivity to reward 
magnitude during the anticipatory rather than the consummatory phase.   

1. Introduction 

Stress can be defined as a process that occurs when an individual is 
aroused and experiences anxiety in relation to an uncontrollable and 
unpredictable challenge (Fink, 2016; Humiston and Lansing, 2021). 
Stress responses include physiological, psychological, and behavioral 
processes that allow an individual to cope with stressors (Humiston and 
Lansing, 2021; Shields et al., 2016). Acute stress causes rapid activation 
of the sympathetic adrenomedullary (SAM) system and relatively slow 
activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, 
leading to increased heart rate (HR) and levels of circulating glucocor-
ticoids (Allen et al., 2014; Murison, 2016; Russell and Lightman, 2019). 
Acute stress also induces altered alertness, sensory processing, memory 
encoding, and emotional responses, which recruit large-scale areas of 
the brain, including the default and salience networks (Hermans et al., 
2011; Murison, 2016; van Oort et al., 2017). 

Previous studies have contributed to clarifying how stress increases 
the risk of major depressive disorder (McEwen and Akil, 2020; Tsigos 
et al., 2020), and approximately 80% of people experiencing depression 
in community samples encountered major life stressors (Monroe et al., 

2009). Although extensive research has linked depression to 
stress-induced impairment of cognitive control (Clark and Beck, 2010; 
Kaser et al., 2017; Rutherford et al., 2023), recent studies have 
attempted to highlight both cognitive control and reward system dys-
functions in depression (Grahek et al., 2019; Kaser et al., 2017). Anhe-
donia, typically defined as loss of pleasure, is one of the most promising 
endophenotypes of mental disorders and of depression in particular. It 
has been characterized as a dysfunction in reward processing (Lambert 
et al., 2018; Rizvi et al., 2016; Treadway and Zald, 2013). More spe-
cifically, Pizzagalli (2014) proposed a synthesis and integrated model 
and interpreted anhedonia as a pathological condition derived from 
dysfunctional interactions between stress and the reward system. 

An influential model of the function of the reward system is the 
incentive salience theory. According to this theory, reward processing 
can be divided into an anticipatory phase before reward stimuli and a 
consummatory phase following reward feedback onset; both phases 
have independent functions and mechanisms (Berridge and Robinson, 
2003; Berridge et al., 2009; Kringelbach and Berridge, 2009). Specif-
ically, reward anticipation mainly recruits the mesolimbic dopaminergic 
system and causes a phasic release of dopamine, while reward 
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consumption mainly recruits the nucleus accumbens and increases 
endogenous opioid secretion (Berridge and Kringelbach, 2015; Krin-
gelbach and Berridge, 2009). An increasing number of studies have 
attempted to understand the psychopathological process of anhedonia in 
depression from the perspective of the temporal dynamics of reward 
processing (Kieslich et al., 2021; Rizvi et al., 2016; Romer Thomsen, 
Whybrow and Kringelbach, 2015). While some evidence suggests 
impaired reward consumption but relatively robust reward anticipation 
in anhedonia within depression (Foti et al., 2018; Webb et al., 2017; 
Whitton et al., 2016), further efforts are needed to clarify the relation-
ship between anhedonia and the temporal dynamics of reward 
processing. 

To investigate these dynamics of reward processing, event-related 
potentials (ERPs) at a high temporal resolution has been widely 
applied. Previous studies have usually measured the cue-elicited N2 and 
stimulus-preceding negativity (SPN) during the anticipatory phase of 
reward processing (Glazer et al., 2018). The cue-N2 is a negative 
component elicited by the reward-related cue onset over the 
frontal-central area, and it peaks at around 200 ms–350 ms (Folstein and 
Van Petten, 2008; N. Pornpattananangkul and Nusslock, 2015). Previous 
studies found that the cue-N2 was augmented following loss or even 
neutral cues compared with reward cues (Glazer et al., 2018; Novak and 
Foti, 2015; Potts, 2011). According to the template mismatch theory, 
individuals form a positive bias towards reward cues; therefore loss or 
neutral cues deviate from this preformed expectation and elicit a more 
negative N2 deflection (Folstein and Van Petten, 2008; Glazer et al., 
2018; Lo, 2018; Potts, 2011). The SPN is a negative component over the 
frontal-temporal area that rises gradually and reaches a plateau at 200 
ms prior to the onset of feedback stimulus (Brunia et al., 2011; Kotani 
et al., 2003; Ohgami et al., 2006). It originates within the anterior insula 
and reflects mesolimbic dopaminergic excitation (Foti and Hajcak, 
2012). Previous research has shown that the SPN is enhanced prior to an 
upcoming reward feedback compared with neutral or loss feedback 
(Brunia et al., 2011; Mei et al., 2018), as well as anticipating high reward 
magnitude relative to low reward magnitude (Kotani et al., 2003; Yi 
et al., 2018), suggesting that the SPN reflects reward anticipation based 
on motivation salience (Brunia et al., 2011; Masaki et al., 2010; Ohgami 
et al., 2023). 

For the consummatory phase of reward processing previous work has 
mainly implicated the Reward positivity (RewP) and P3 (Glazer et al., 
2018). The RewP is a positive component that reaches a peak at about 
200–300 ms over the frontal-central area and originates in the anterior 
cingulate cortex (ACC) and ventral striatum (Glazer et al., 2018; 
Proudfit, 2015). Previous studies have shown that RewP is enhanced 
following reward delivery rather than reward omission and loss 
(Proudfit, 2015; Threadgill and Gable, 2016), and it is also associated 
with a high reward magnitude compared with a low reward magnitude 
(Meadows et al., 2016; Paul et al., 2020; Sambrook and Goslin, 2015; 
Yaple et al., 2018), which suggests that RewP mirrors reward respon-
siveness (Burani et al., 2021; Proudfit, 2015; Threadgill and Gable, 
2016). The P3 is a positive-going component with centro-parietal dis-
tributions usually measured at approximately 300–500 ms following 
reward feedback onset (Glazer et al., 2018). Its amplitude reflects 
attention allocation based on motivational salience of a feedback stim-
ulus (Polich, 2007; San Martín, 2012). 

A growing number of recent studies have investigated how acute 
stress influences the temporal dynamics of reward processing; however, 
the results have been contradictory (Dutcher and Creswell, 2018; Piz-
zagalli, 2014; Xin, 2020). Animal models have revealed that stressed 
mice show blunted motivation to receive a reward (i.e., reward antici-
pation) (Bergamini et al., 2016; Hollon et al., 2015) or a reduction in 
sucrose preference (i.e., reward consumption) (Krishnan et al., 2007; 
Tye et al., 2013), and acute stress not only inhibits dopamine neural 
firing in the reward system but also increases the dopamine level 
(Bouarab et al., 2019; Holly and Miczek, 2016). As in humans, the 
cortisol receptors are widely distributed in the reward system, including 

in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and 
prefrontal cortex (Lopez and Flagel, 2021). During the reward antici-
patory phase, individuals show reduced motivation to obtain rewards 
under a stress condition compared with those under a non-stress con-
dition (Vriens, 2021). However, functional magnetic resonance imaging 
(fMRI) evidence has demonstrated that acute stress can activate 
reward-related areas (Choi et al., 2013; Dagher et al., 2009; Gaillard 
et al., 2019; Gorka et al., 2018; Kruse et al., 2018; Kumar et al., 2014) or 
suppress these areas (Gaillard et al., 2020; Ossewaarde et al., 2011). In 
addition, some fMRI studies have found that acute stress blunts activa-
tion of the reward system during the reward consummatory phase (Born 
et al., 2010; Kumar et al., 2014; Oei, Both, van Heemst and van der 
Grond, 2014) while other studies have found that these areas exhibit 
enhancement under stress (Gaillard et al., 2019; Porcelli et al., 2012). 
Furthermore, two ERP studies examined how acute stress modulates 
reward consumption, as indexed by the RewP, and the results showed 
that acute stress either blunts reward positivity (Burani et al., 2021) or 
does not affect it (Ethridge et al., 2020). 

These contradictory results need to be further examined. One critical 
aspect is that most studies have only examined stress effects during 
either the anticipatory or consummatory phase, and the acute stressors 
and reward tasks have varied. Moreover, Porcelli et al. (2012) have 
found that acute stress decreased dorsal striatum and orbitofrontal 
cortex sensitivity to the magnitude of monetary outcome. The effects of 
acute stress on the dynamics of reward processing may stem from its 
impact on sensitivity to reward magnitude. Therefore, in this study, we 
aimed to use ERP technology to investigate the effects of acute stress on 
the temporal dynamics of reward processing under different reward 
magnitudes. Participants were instructed to complete a two-door reward 
task with EEG signal recording following a Trier Social Stress Test 
(TSST) or a placebo task. The TSST is a standard acute stress induction 
protocol and has been proven to be an ecologically valid stressor pro-
ducing a consistent hypothalamic-pituitary-adrenal (HPA) axis response 
in humans (Allen et al., 2014; Kirschbaum et al., 1993; Narvaez Linares, 
Charron, Ouimet, Labelle and Plamondon, 2020). The two-door reward 
task is widely applied in reward processing research and is an effective 
tool for distinguishing the dynamics of reward processing (Proudfit, 
2015). 

As mentioned, the results of previous studies have been contradic-
tory, and some have found that acute stress not only enhances but also 
blunts reward anticipation; however, Pizzagalli (2014) proposed that 
anhedonia in depression might arise from the detrimental effects of 
stressors on mesocorticolimbic DA pathways. Therefore, we speculated 
that acute stress could reduce reward anticipation and even decrease the 
discrepancy of the SPN between high and low reward conditions in 
stressed participants. Given the controversial results of acute stress ef-
fects on reward consumption (Burani et al., 2021; Porcelli et al., 2012), 
we did not construct an explicit hypothesis with respect to how acute 
stress influences reward processing during the reward consummatory 
phase. 

2. Materials and methods 

2.1. Participants 

Of the 78 undergraduates from Shenzhen University who partici-
pated in this study, four were excluded owing to EEG recording errors. 
The remaining participants were randomized into a stress group (N =
40, 24 males and 16 females; age: M = 19.95 ± 1.36 years) and a control 
group (N = 34, 19 males and 15 females; age: 19.65 ± 1.28 years), and 
there were no significant differences in age (t(72) = 0.99, p = 0.326, 
Cohen’s d = 0.23) or gender (χ2(1) = 0.13, p = 0.721) between the 
groups. All participants had normal or corrected-to-normal vision, and 
were right-handed, reported no neurological and psychological condi-
tions, current use of medication, drug abuse, and smoking. Female 
participants had regular menstrual cycles and were tested during their 
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follicular phase (4–12 days after the cessation of the last menstrual 
period) to exclude the impact of the follicular phase (Hamidovic et al., 
2020; Maki et al., 2015). Each participant received compensation and 
provided informed consent based on the protocol approved by the 
Shenzhen University Institutional Review Board. 

2.2. General procedure 

As illustrated in Fig. 1, participants visited our laboratory during 
13:00 to 18:00 for the circadian fluctuation of cortisol levels (Russell and 
Lightman, 2019). After arrival, they were instructed to complete 
pre-TSST tests (e.g., the Perceived Stress Scale (PSS), the Behavioral 
Activation System/Behavioral Inhibition System (BIS/BAS) scales, and 
the self-rating depression scale (SDS)) and then rest for 10-min while 
reading a travel guide (tourist brochure). Subsequently, the physiolog-
ical (i.e., salivary cortisol) and psychological responses (i.e., the visual 
analog scale of stress (VAS-S), the negative affect scale of positive and 
negative affect schedule (PANAS-NA), and the state version of the 
State-Trait Anxiety Inventory (STAI-S)) of acute stress were collected 
(baseline, 36 min before the TSST task). After EEG preparation, partic-
ipants in the stress group were given a TSST task, and those in the 
control group were given a placebo-TSST. Thereafter, they were 
instructed to complete a two-door reward task to win monetary rewards 
while EEG signals were recorded (approximately 30 min). After the task 
and EEG, participants were seated quietly to read the travel guide 
(tourist brochure) for 20 min to recover from their stressed state. Sali-
vary cortisol samples and VAS-S were also collected immediately after 
the TSST task (S2, at +17 min), after every reward task block (S3, at 
+26 min S4, at +34 min S5, at +42 min S6, at +50 min), and every 10 
min during the rest phase (S7, at +60 min and S8, at +70 min). The 
visual analog scale of control (VAS-C) was administered only at S2, and 
the STAI-S and PANAS-NA were administered at S2, S6, and S8. 

2.3. Questionnaires 

To control for the influence of chronic stress and depression on the 
stress responses between the stress and control groups, PSS and SDS 
were applied. The PSS is a 10-item self-reported questionnaire that has 
been proven to be a valid and reliable measure of chronic perceived 
stress (Cohen, 1988). Participants rated how frequently they have 
experienced each stress item over the previous month, ranging from 1 
(never) to 5 (always). A higher score denotes that a higher stress level 
was perceived by the participant during the past month. The SDS is a 
self-reported questionnaire containing 20 items that measure depression 
levels (Zung, 1965). Participants assess the number of times they have 
experienced each statement on the questionnaire in the past week, 
ranging from 1 (never) to 4 (always). To enable comparison and anal-
ysis, the raw sum score is converted to a 100-point scale, which provides 
the self-rating depression index. 

As previous studies have also suggested that reward sensitivity 

influences reward processing and stress responses (Bress and Hajcak, 
2013; Daniel P. Moriarity et al., 2020; Harden et al., 2018), the Chinese 
version of the BIS/BAS scales (Carver and White, 1994; Li et al., 2008) 
were also applied in the current study. The 22-item questionnaire con-
tains a behavioral inhibition system dimension (BIS) and three behav-
ioral activation system dimensions representing reward responsiveness 
(BAS-RR), drive (BAS-D), and fun-seeking subscales (BAS-FS). Partici-
pants rate how strongly they agree with each item, from 1 (strongly 
agree) to 4 (strongly disagree). Lower BIS and BAS scores indicate a 
higher level of reward sensitivity. Other measures were detailed in 
Supplementary Material. 

2.4. Stress induction 

Acute stress was induced by a revised TSST task (Buchanan et al., 
2012), which could produce a robust effect on cortisol levels and has 
been approved for good validation. The TSST or placebo-TSST task 
consisted of a preparation period (5 min), a speech task (5 min), and an 
arithmetic task (5 min). In the stress group, participants were given 5 
min to prepare a speech to defend themselves against a charge of 
shoplifting. They were allowed to make notes in the preparation room; 
however, they could not take the notes in the interview room. They then 
entered the interview room where they stood in front of a microphone 
and a three-member committee. All members of the committee were 
professionally trained; they wore white coats and maintained a neutral 
facial expression throughout the task. Participants were required to give 
a 5-min speech and complete a 5-min mental arithmetic task (per-
forming serial subtraction of 13 from 1022 or 14 from 1023) while being 
videotaped. During the mental arithmetic task period, participants were 
asked to respond as quickly and accurately as possible and restart if they 
made a mistake. 

The placebo-TSST was equally physically and mentally demanding 
as the stress task, but not stressful through omitting the social and self- 
relevant components (Buchanan et al., 2014; Chu et al., 2023; Gilbertson 
et al., 2019). In the placebo–TSST condition, participants were instruc-
ted to deliver a speech according to a neutral travel article in the 
preparation room without any committee. They first spent 5 min pre-
pared for the speech, followed by delivering the prepared speech in front 
of a video camera for 5 min. Subsequently, they engaged in a 5-min 
session of performing simple mathematical calculations, with no spe-
cific performance requirement and evaluation. 

2.5. Two-door reward task 

Immediately after the TSST task, participants were given a two-door 
reward task adapted from Dunning and Hajcak (2007). During the task, 
every trial began with a 500-ms cue (square or circle, counterbalanced 
between subjects) that indicated the magnitude of the reward. There-
after, subsequent to a fixation that appeared for 500 ms–700 ms, two 
doors were presented on the center of a computer screen. Participants 

Fig. 1. Schematic representation of the experiment. Participants were instructed to complete a two-door reward task following a Trier Social Stress Test (TSST) or a 
placebo task. S1-8 = salivary cortisol samples 1–8, VAS-S = visual analog scale of perceived stress, STAI-S = the state version of the State-Trait Anxiety Inventory, 
PANAS-NA = negative affect subscale of Positive and Negative Affect Schedule, VAS-C = visual analog scale of control. 
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were required to choose a door that may hide a reward, and the doors 
then disappeared. Participants then had to wait 2000 ms for the 
appearance of reward feedback, and a reward feedback stimulus then 
appeared for 1000 ms to inform participants whether the reward 
delivered or not. Participants had the opportunity to win 9 points in the 
low reward condition (+9 or 0) or 99 points in the high reward condition 
(+99 or 0). However, the outcome of each trial was predetermined, and 
there was only a 50% probability of gaining a reward in both conditions. 
The task was divided into four blocks, each containing 60 trials, and a 
brief break of approximately 2–3 min was given after every block. Before 
the formal experiment, each participant underwent a practice procedure 
that included eight trials to familiarize themselves with the task. 

2.6. Saliva sampling and cortisol analysis 

Saliva samples were collected using Salivettes (Sarstedt, Rommels-
dorf, Germany) and stored in a medical refrigerator at − 22 ◦C until 
analysis. All samples were dissolved and centrifuged at 3,000 rpm/min 
for 10 min. Cortisol measurements were conducted using an electro-
chemiluminescence immunoassay (Cobase 601, Roche Diagnostics, 
Numbrecht, Germany). The lower limit of detection of cortisol was 0.5 
nmol/L. The intra-and inter- assay variations were below 10%. The 
intra-and inter- assay variations were below 10%. 

2.7. EEG recording and preprocessing 

Continuous electroencephalogram (EEG) signals were recorded 
through a set of Ag/AgCl electrodes according to the extended 64-chan-
nel 10–20 international system. All signals were referenced to the left 
mastoid. The horizontal electrooculogram was recorded by a pair of 
electrodes placed approximately 1 cm from the outer of bilateral canthi, 
eye blinks were monitored through a pair of electrodes placed under/ 
below ocular of the left eye. Every electrode resistance was maintained 
below 5 kΩ throughout the experiment and signals were amplified in DC 
mode and low-pass filtered at 100 Hz using a Neuroscan Synamp2 
Amplifier (Scan 4.5). 

Offline preprocessing of the EEG signals was conducted using 
MATLAB 19.0 (MathWorks, Natick, Ma, USA) and EEGLAB 2022.0 
(Delorme and Makeig, 2004). The EEG data were re-referenced to the 
average value of bilateral mastoids. For the SPN, EEG data were filtered 
with a band pass of 0.01–30 Hz (roll-off 6 dB/octave) and segmented 
into − 2500 ms–200 ms with a baseline from − 1900 to − 1700 ms in 
relation to the feedback onset (Masaki et al., 2010). For cue-N2, RewP, 
and P3, EEG data were filtered with a band pass of 0.1 Hz–30 Hz (roll-off 
6 dB/octave) and segmented into − 200 ms–1000 ms with a baseline 
correction from − 200 to 0 ms before the cue or feedback onset. There-
after, artifacts were deleted manually, and blinks were detected using an 
independent component analysis (ICA) algorithm. For the cue-N2 and 
SPN, epochs exceeding ±100 μV were excluded. For the RewP, a pro-
cedure was employed to exclude extra epochs if an epoch had a voltage 
difference exceeding 50 μV between two neighbor sample points, a 
voltage difference exceeding 200 μV, or a maximum voltage difference 
smaller than 0.5 μV within 100-ms intervals. Finally, cleaned data were 
averaged across conditions per participant. 

To conduct the ERP analysis, the time window of each component 
was selected based on previous research, visual inspections of the grand 
average waveform, and topographical maps across conditions. Based on 
previous studies and topographical maps, the mean amplitudes of cue- 
N2 between 300 and 350 ms in response to the cue at the central- 
frontal area (Fz, FCz) were selected (Folstein and Van Petten, 2008), 
and the mean SPN amplitude between − 200 and 0 ms at the fronto-
temporal area prior to feedback was obtained (F5/F6 and FC5/FC6) 
(Holtgraves and Kraus, 2018; León-Cabrera et al., 2017). Subsequently, 
the following were obtained: the mean amplitude of RewP between 200 
and 300 ms in relation to feedback stimulus onset over the 
central-frontal area (Fz, FCz) (Aziz et al., 2020; Wang et al., 2020) and 

the mean amplitude of P3 between 300 and 450 ms over the parietal 
area (CPz, Pz) (Hopstaken, van der Linden, Bakker, Kompier and Leung, 
2016; Polich, 2007). 

2.8. Data analysis 

Statistical analyses of behavioural and cortisol data were conducted 
in SPSS (IBM SPSS Statistics for Windows, Version 22.0; IBM Corp., 
Armonk, NY, USA). Physiological (cortisol) and psychological (VAS-S, 
PANAS-NA, and STAI-S) responses indicated effects of stress induction. 
For the cortisol and VAS-S data, group (stress, control) × time (baseline, 
S2, S3, S4, S5, S6, S7, and S8) repeated measure analysis of variance 
(ANOVA) was conducted, and for the PANAS-NA and STAI-S data, group 
(stress, control) × time (baseline, S2, S6, and S8) ANOVAs were 
conducted. 

To verify the effectiveness of reward manipulation and clarify the 
impacts of acute stress on reward processing, we analyzed behavioral 
data, subjective ratings, and ERP components. A group (stress, control) 
× reward magnitude (low reward, high reward) ANOVA was conducted 
on the response time (RT). For the subjective ratings of the reward task 
(i.e., interest, control, and regularity), group (stress, control) × reward 
magnitude (low reward, high reward) ANOVAs were conducted. To 
control for influences of stress and depression, t-tests were conducted 
between the stress and control groups for the VAS-C, PSS. During the 
reward anticipatory phase, we conducted a group (stress, control) ×
magnitude (low reward, high reward) × site (Fz, FCz) ANOVA for the 
cue-N2 and a group (stress, control) × magnitude (low reward, high 
reward) × site (F5/F6 and FC5/FC6) × hemisphere (left, right) ANOVA 
for the SPN to test acute stress enhancement effects on reward antici-
pation. During the reward consummatory phase, group (stress, control) 
× magnitude (low reward, high reward) × valance (gain, non-gain) ×
site ANOVAs were conducted on the RewP (FCz, Cz) and P3 (CPz, Pz). 
Greenhouse–Geisser epsilon correction and Bonferroni correction were 
employed when factors had more than two levels (Jennings and Wood, 
1976). 

3. Results 

3.1. Descriptive, behavioral, and rating data 

Chronic stress levels and depression did not differ between partici-
pants in the control and stress groups, as evidenced by repeated measure 
ANOVAs conducted on PSS (t(72) = 1.79, p = 0.078, Cohen’d = 2.52) 
and SDS scores (t(72) = 0.50, p = 0.620, Cohen’d = 0.71), respectively. 
Similarly, there were no significant main effects of group with respect to 
dimensions of the BAS/BIS, including the BIS (t(72) = 0.20, p = 0.846, 
Cohen’d = 0.05), BAS-R (t(72) = 0.83, p = 0.408, Cohen’d = 0.20), BAS- 
D (t(72) = 0.45, p = 0.656, Cohen’d = 0.15), and BAS-F (t(72) = 1.12, p 
= 0.265, Cohen’d = 0.26). 

When choosing between two doors in the two-door reward task, 
there was no significant difference in the RT between the stressed par-
ticipants and non-stressed controls (592 ms vs. 712 ms), F (1, 72) = 3.12, 
p = 0.082, ηp

2 = 0.42. In addition, the main effect of the reward 
magnitude did not reach significance, F (1, 72) = 0.27, p = 0.605, ηp

2 =

0.04, and participants responded as fast in the high reward condition (M 
= 658 ms, SE = 40) as in the low reward condition (M = 646 ms, SE =
31). Furthermore, the interaction between the group and the reward 
magnitude on reaction times was not significant, F (1, 72) = 2.81, p =
0.098, ηp

2 = 0.04. Rating data results were presented in supplementary 
material. 

3.2. Physiological response to stress 

As shown in Fig. 2, the physical and psychological variations indi-
cated that stress was successfully induced by the TSST administration. 
For cortisol data, a significant interaction was obtained between time 
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and group, F (7, 504) = 22.84, p < 0.001, ηp
2 = 0.24. Post hoc compar-

isons revealed that the cortisol concentrations of the stress and control 
groups were comparable at baseline (6.03 vs. 5.00, p = 0.309). Cortisol 
levels were significantly increased in the stress group relative to those in 
the control group post TSST task (S2, 8.78 vs. 4.09, p < 0.001) and at S3 
to S6 (S3: 14.16 vs. 4.17, S4: 14.06 vs. 4.17, S5: 11.53 vs. 4.30, and S6: 
8.77 vs. 4.70, ps < 0.001); however, this increase disappeared during the 
rest phase (S7: 7.47 vs. 5.62, and S8: 6.25 vs. 5.62, ps > 0.05). Compared 
to the baseline, cortisol levels in the stress group were enhanced post 
TSST task (S2, p = 0.031); they reached a peak at S2 and S3 (ps < 0.001) 
(approximately 26–34 min after TSST onset) and then gradually reduced 
until there was no significant difference after S6 (p = 0.053). 

For the VAS-S scores, there was a significant interaction between the 
group and time, F (7, 504) = 13.57, p < 0.001, ηp

2 = 0.16. Participants in 
the stress group reported higher subjective stress levels immediately 
after the TSST than those in the control group (55.05 vs. 29.59, p <
0.001) but comparable subjective stress levels at other time points, 
including baseline (ps > 0.1). Similarly, there were significant group ×
time interactions both on the PANAS-NA, F (3, 216) = 21.49, p < 0.001, 
ηp

2 = 0.23, and the STAI-S scale, F (3, 216) = 17.48, p < 0.001, ηp
2 = 0.20. 

Post hoc analysis revealed that stressed participants experienced an 
increased negative affect from the TSST compared with the controls 
(21.73 vs. 13.35, p < 0.001), and their anxiety levels were higher (49.55 
vs. 37.82); however, the negative affect and anxiety were comparable at 
other time points (ps > 0.1). 

3.3. Electrophysiological data 

3.3.1. The anticipatory phase: cue-N2 and SPN 
Fig. 3 shows that the Cue-N2 is a negative-going component elicited 

by the cue stimulus onset, and it reached its peak at around 300–350 ms 
during the anticipatory phase. As revealed by a repeated measure 
ANOVA, there was a significant main effect of the reward magnitude, F 
(1, 72) = 4.56, p = 0.036, ηp

2 = 0.06, and the amplitude of the N2 was 
more negative in association with a low reward than with a high reward 
(− 0.84 μV vs. − 0.26 μV). However, the main effect of group did not 
reach a significant level, F(1, 72) = 2.21, p = 0.141, ηp

2 = 0.03. In 
addition, the interaction between group and reward magnitude reached 
a significant level, F(1,72) = 4.37, p = 0.040, ηp

2 = 0.06. The post hoc 
analysis revealed that the amplitude of N2 was increased in the low 
reward condition (M = − 0.60 μV, SE = 0.55) compared with that in the 
high reward condition (M = 0.57 μV, SE = 0.61) in the control group (p 
= 0.005); however, the enhancement is not observable in the stress 
group (− 1.10 μV vs. − 0.57 μV, p = 0.973). 

The SPN waveform rose gradually and approached a plateau at 

approximately 200 ms prior to reward delivery, as depicted in Fig. 4. 
The group × reward magnitude ANOVA showed a significant main effect 
of the reward magnitude, F(1, 72) = 5.77, p = 0.019, ηp

2 = 0.07, but not 
the group, F(1, 72) = 0.02, p = 0.880, ηp

2 < 0.01. The SPN was enhanced 
in the high reward condition (M = − 2.69 μV, SE = 0.43) compared with 
that in the low reward condition (M = − 1.93 μV, SE = 0.39). Further-
more, the interaction between the group and reward magnitude was 
significant, F(1, 72) = 4.38, p = 0.039, ηp

2 = 0.06. Post hoc comparisons 
revealed that the SPN was enhanced in the high reward condition (M =
− 3.08 μV, SE = 0.64) compared with that in the low reward condition 
(M = − 1.65 μV, SE = 0.57) only in the control group (p = 0.004), but not 
in the stress group (p = 0.824). Moreover, there was a significant 
interaction between reward magnitude and hemisphere, F(1, 72) = 6.38, 
p = 0.014, ηp

2 = 0.08. Post hoc comparisons indicated that high reward 
(M = − 3.01 μV, SE = 0.45) elicited a higher SPN amplitude relative to 
low reward (M = − 1.86 μV, SE = 0.45) over the right hemisphere (p =
0.002) but not the left hemisphere (p = 0.294). 

3.3.2. The consummatory phase: RewP and P3 
As depicted in Fig. 5 and S1, the RewP was peaked at around 

200–300 ms, and the P3 was peaked at around 300–500 ms following 

Fig. 2. Temporal fluctuations in salivary cortisol levels, VAS-S, PANAS-NA, and STAI-S. Error bars denote standard errors of means.  

Fig. 3. Grand average amplitude and scalp distributions of N2. Gray-shaded 
rectangles represent the time window (300 ms–350 ms) in which the mean 
amplitude of N2 was scored. 
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Fig. 4. Grand average amplitude and scalp distributions of SPN. Gray-shaded areas indicate the 200-ms time window in which the mean amplitude of SPN 
was scored. 

Fig. 5. Grand average amplitude and scalp distributions of RewP. Shaded areas represent the time window (200–300 ms) in which the mean RewP amplitude 
was scored. 
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the onset of the reward feedback stimulus. The group × magnitude ×
valance × site ANOVA on the RewP revealed the main effects of the 
valance, F(1, 72) = 138.47, p < 0.001, ηp2 = 0.66, and reward magni-
tude, F(1, 72) = 85.62, p < 0.001, ηp2 = 0.54. A higher amplitude of 
RewP was elicited in the gain condition (M = 10.38 μV, SE = 0.64) than 
in the non-gain condition (M = 5.69 μV, SE = 0.43), as well as in the high 
reward condition (M = 9.48 μV, SE = 0.60) relative to the low reward 
condition (M = 6.58 μV, SE = 0.46). As expected, a significant interac-
tion was observed between the reward valance and reward magnitude, F 
(1, 72) = 50.61, p < 0.001, ηp2 = 0.41. Post hoc comparisons revealed 
that the difference between reward delivery and reward omission was 
significantly higher in the high reward condition (12.80 μV vs. 6.17 μV, 
p < 0.001) than in the low reward condition (7.96 μV vs. 5.20 μV, p <
0.001). 

For the P3, there were main effects of the valance, F(1, 72) = 109.94, 
p < 0.001, ηp

2 = 0.60, and reward magnitude, F(1, 72) = 129.58, p <
0.001, ηp

2 = 0.64. The P3 was significantly larger in the gain condition 
(M = 11.66 μV, SE = 0.64) compared with the non-gain condition (M =
8.16 μV, SE = 0.56), as well as in the high reward condition (M = 11.68 
μV, SE = 0.67) relative to the low reward condition (M = 8.14 μV, SE =
0.53). The interaction between reward valance and reward magnitude 
was significant, F(1, 72) = 15.47, p < 0.001, ηp

2 = 0.18. A post hoc 
analysis indicated that the difference between reward delivery and 
reward omission was significantly higher in the high reward condition 
(13.95 μV vs. 9.40 μV, p < 0.001) than in the low reward condition (9.37 
μV vs. 6.91 μV, p < 0.001). 

No main or interaction effect with respect to the group was obtained 
(ps > 0.05) for the RewP and P3. 

4. Discussion 

In this study, we conducted pioneering research simultaneously 
investigating the effects of acute stress on both reward anticipation and 
consumption, utilizing a standard laboratory stressor and high temporal- 
resolution event-related potentials (ERPs). In accordance with previous 
studies (Denk et al., 2021; Narvaez Linares et al., 2020), the physio-
logical (i.e., cortisol) and psychological responses (i.e., perceived stress, 
anxiety, and negative affect) to acute stress were enhanced immediately 
following the TSST administration and returned to baseline levels during 
the recovery phase, indicating that the TSST successfully induced an 
acute stress state and activated HPA axis responses. For the 
reward-related effects, a high reward magnitude elicited enhanced 
amplitudes of the cue-N2, SPN, and RewP, and reward delivery elicited 
high amplitudes of the RewP and P3 compared with reward omission; 
these results are consistent with those of previous studies (Glazer et al., 
2018). More importantly, the cue-N2 was blunted, and the SPN was 
enhanced in the high reward condition compared with that in the low 
reward condition; however, this only occurred in the control group (not 
the stress group) during the reward anticipatory phase. During the 
reward consummatory phase, the RewP and P3 showed similar patterns 
in both groups. These results suggest that acute stress selectively un-
dermines reward anticipation but not reward consumption. 

During the anticipatory phase, N2 was enhanced in the low reward 
condition compared to the high reward condition, which is in line with 
enhanced N2 following loss or neutral cues compared to reward (Novak 
and Foti, 2015; N. Pornpattananangkul and Nusslock, 2015; Potts, 
2011). The template mismatch theory has been used to interpret these 
results and proposes that the amplitude of N2 covaries with the devia-
tion of real reward cues from pre-formed expectations (Folstein and Van 
Petten, 2008; Glazer et al., 2018). The results of the present study sug-
gest that participants in the control group formed a positive bias towards 
upcoming reward cues, whereas low reward cues deviated from this 
preformed expectation and thus elicited a significantly higher N2 
amplitude. However, acute stress might blunt reward sensitivity and 
dampen the positive bias toward reward cues, resulting in the disap-
pearance of the reward magnitude effect during the anticipatory phase. 

Furthermore, SPN was elevated during the reward anticipatory 
phase in the high reward condition compared with that in the low 
reward condition in the control group; however, this effect was not 
observed in stressed participants. Converging evidence has shown that 
SPN is enhanced when anticipating reward delivery compared with non- 
reward (Narun Pornpattananangkul, Nadig, Heidinger, Walden, & 
Nusslock, 2017) and loss (Angus et al., 2017; Brunia et al., 2011; 
Ohgami et al., 2006), which indicates that SPN reflects reward antici-
pation or motivation salience (Brunia et al., 2011; Ohgami et al., 2023). 
Therefore, our results suggest that the control participants were sensi-
tive to reward magnitude and assigned more motivation salience to the 
higher magnitude of the upcoming reward. However, acute stress 
blunted sensitivity to the reward magnitude; therefore, the effects of 
reward magnitude disappeared during this anticipatory phase. 

Pharmacological evidence assists in explaining our results of the cue- 
N2 and SPN. The VTA dopamine release plays a critical role in reward 
anticipation, especially in coding reward value (Chiew et al., 2016; 
Schultz, 2010; Tobler et al., 2005). Previous studies have suggested that 
acute stress exposure can suppress VTA dopamine activity toward sub-
sequent stimulation (Douma and de Kloet, 2020; Holly and Miczek, 
2016; Stanwood, 2019). In the current study, acute stress exposure may 
have blunted the activation of VTA dopamine in association with the 
reward value. Stressed participants, therefore, showed insensitivity to-
wards the reward magnitude during the anticipatory phase. 

During the reward consummatory phase, reward delivery elicited 
higher RewP and P3 amplitudes than reward omission, particularly 
under the high reward magnitude condition, regardless of stress. For the 
RewP, converging evidence demonstrates that it is enhanced in the 
reward condition with respect to a neutral or loss condition, which in-
dicates that the amplitude of RewP amplitude mirrors reward respon-
siveness (Brown et al., 2022; Proudfit, 2015). Our results build on 
previous observations and show that acute stress does not influence 
reward responsiveness during the reward consummatory phase. For the 
P3, previous studies have suggested that it increases in amplitude as a 
function of attention based on motivation salience (Polich, 2007; San 
Martín, 2012). Our results suggested that participants assigned greater 
attention to high reward delivery for higher motivation salience, irre-
spective of where they were experiencing acute stress. Together, our 
results revealed that acute stress exerts no significant effect on reward 
processing during the consummatory phase. 

Previous fMRI evidence has suggested that acute stress not only 
modulates reward anticipation but also influences reward consumption 
(Xin, 2020). As previously mentioned, few studies have examined the 
simultaneous effects of acute stress on reward anticipation and con-
sumption, and these results could be confounded by the variations of 
stressors and reward tasks in different studies (e.g., Collins et al., 2017; 
Kumar et al., 2014; Porcelli et al., 2012). Furthermore, the effect of acute 
stress on reward consumption could be masked by that on reward 
anticipation owing to the relatively rapid reward processing but the low 
temporal resolution of the fMRI. Here, we applied a standard laboratory 
stressor and high temporal-resolution ERP technology to sophistically 
clarify how acute stress simultaneously modulates the dynamics of 
reward processing under different magnitudes of reward. Importantly, 
our results suggest that acute stress modulates reward anticipation and 
blunts sensitivity to the reward magnitude but not reward consumption. 

A synthesis and integrated model proposed that stress induces 
anhedonia because it impairs the reward system, particularly reward 
anticipation (Pizzagalli, 2014). By simulating a stress situation with a 
standard laboratory stressor TSST, our results provide empirical evi-
dence for this perspective and reveal that stress blunts sensitivity to the 
reward magnitude only during the anticipatory phase. Moreover, 
converging evidence reveals that stress often precedes the onset of 
depression and plays a crucial role in the development of depression 
(Beauchaine et al., 2019; Bylsma et al., 2008; Monroe et al., 2009). 
Previous studies have consistently linked depression to deficits of 
cognitive control and attempted to illustrate how stress impairs the 
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cognitive system (Clark and Beck, 2010; Kaser et al., 2017; Rutherford 
et al., 2023). However, Grahek et al. (2019) recently proposed a 
framework that incorporated cognitive control deficits and motivational 
impairments in depression, including reward processing. Considering 
the relationship between stress and depression, our results support this 
perspective and suggest that stress-induced desensitization of reward 
magnitude during the reward anticipatory phase is perhaps one of the 
key factors associated with the development of depression. 

Our study has certain limitations. Firstly, all participants were un-
dergraduates, and the sample is, therefore, not representative of the 
general population. Therefore, caution should be used in extrapolating 
our results (that show acute stress blunts reward anticipation but not 
consumption) to other populations. Secondly, individual differences 
might influence the effect of acute stress on the dynamics of reward 
processing. Previous studies have suggested that the effects of stress on 
reward processing could be buffered by certain personality traits, such 
as sensation seeking (McKay et al., 2018; Roth et al., 2019) and toler-
ance of uncertainty (Heereman and Walla, 2011; Iannello et al., 2017). 
Although we have controlled for individual differences in stress, 
depression, and reward sensitivity, future studies are required to illus-
trate the effect of individual differences on the relationship between 
stress and dynamics of reward processing. Thirdly, although the TSST 
has been proven to be an excellent stressor that causes robust HPA axis 
responses (Kirschbaum et al., 1993; Narvaez Linares et al., 2020), its 
effect is relatively mild compared with that of major life events. How-
ever, it is impossible to apply severe stressors to participants in labo-
ratory situations owing to experiment ethics and mental health 
considerations. Future research is thus required to clarify the relation-
ship between stress and reward in real-life situations. Furthermore, we 
did not include a loss/punishment condition in the current study. Pre-
vious studies suggested that inclusion of a loss/punishment condition 
could introduce break-even effects (i.e., prior losses make rewards 
especially appealing) (Huang and Chan, 2014; Suhonen and Saasta-
moinen, 2018; Suhonen et al., 2018; Thaler and Johnson, 1990), which 
could confound the effects of acute stress. However, the inclusion of a 
loss/punishment condition could provide a more realistic account of 
decision-making and enable to examine how acute stress affects loss/-
punishment anticipation or consumption. Future research is necessary to 
investigate how acute stress affects the dynamics of reward processing 
under both reward and loss/punishment conditions, while carefully 
controlling for the potential confounds of break-even effects. 

In conclusion, our study found that acute stress selectively dampens 
sensitivity to reward magnitude during the anticipatory phase but not 
the consummatory phase. Our findings provide insight into the potential 
mechanisms underlying stress-induced mental illness, and have impli-
cations for developing interventions aimed at mitigating the negative 
impact of stress on reward processing. 
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