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Cryopreservation of semen and artificial insemination have an important, positive

impact on cattle production, and product quality. Through the use of cryopreserved

semen and artificial insemination, sperm from the best breeding bulls can be used

to inseminate thousands of cows around the world. Although cryopreservation of bull

sperm has advanced beyond that of other species, there are still major gaps in the

knowledge and technology bases. Post-thaw viability of sperm is still low and differs

significantly among the breeding bulls. These weaknesses are important because they

are preventing advances both in fundamental science of mammalian gametes and

reproductive biotechnology. Various extenders have been developed and supplemented

with chemicals to reduce cryodamage or oxidative stress with varying levels of success.

More detailed insights on sperm morphology and function have been uncovered through

application of advanced tools in modern molecular and cell biology. This article provides

a concise review of progress in the cryopreservation of bull sperm, advances in extender

development, and frontiers using diverse techniques of the study of sperm viability. This

scientific resource is important in animal biotechnology because with the advances in

discovery of sperm fertility markers, there is an urgent need to improve post-thaw viability

and fertility of sperm through enhanced cryopreservation for precision agriculture to

produce food animals to ensure food security on the global scale.
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INTRODUCTION

There is an urgent need to improve the efficiency and sustainability of producing animals for food
in the face of the ever-increasing world population. Increasing the fertility of livestock, especially
cattle, around the world is important for overcoming this problem. Improved understanding of
mechanisms and challenges of reproductive technologies are vital for improving the viability of
the livestock industry. Among such reproductive technologies, Artificial Insemination (AI) is a
significant technology that has been utilized to advance livestock farming, allowing for accelerated
genetic progress and selection (1) where successful semen cryopreservation improves the efficiency
and success rate of AI. Sperm cryopreservation procedures are not always efficient because a large
number of sperm suffer physiological damage which leads to the loss of fertility following freezing
and thawing (2).
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The first reference to sperm cryopreservation dates back to
the 1600s (3). Italian scientist Lazzaro Spallanzani successfully
performed artificial insemination on bitches, which resulted in
the live birth of three puppies after using cooled sperm in
1784 (4). Another 100 year later in 1899, Russian scientist
Ilya Ivanovich Ivanoff developed practical methods of artificial
insemination for farm animals. But there was little significant
success or any widespread application until a discovery made by
Phillips and Lardy in 1940 that poultry egg yolks can protect
sperm from cold shock during cooling and maybe added to
act as a cryoprotective agent (5). Salisbury et al. (6) further
improved egg yolk usage as an extender by supplementing it
with Na-citrate as a buffer to further preserve sperm at low
temperature. The next major milestone in the field occurred
when Polge et al. (7) uncovered the cryoprotective role of glycerol
both at low temperatures and during the freezing process.
Other advancements followed in the 1950s with the discovery
of different extenders, packaging methods, and procedures which
further improved the world-wide use of AI starting in the dairy
industry (8).

Sperm cryopreservation is critical for livestock production
because it enables and accelerate the spread of genetic diversity
and it facilitates the distribution of genetically superior animals
around the world. Due to the importance of cryobiology in
reproductive technologies, new protocols are being developed
and cryoprotectant agents tested for enhanced cryo-survival
of sperm. Progress, however, has not yet reached a desired
level because large portions of sperm die during the freezing-
thawing processes (9). During these processes, sperm are faced
with physiological and structural challenges due to changes
in osmotic balance, oxidative stress, and the formation of
intracellular ice crystals, hence, the need for supplements of
antioxidants and cryoprotective agents (CPAs). In this paper,
the challenges and current techniques to evaluate post-thaw
viability of sperm will be discussed as well as the function of
CPAs and antioxidants.

CHALLENGES IN SPERM
CRYOPRESERVATION

Cryopreservation of sperm is a sequential process of reduction
in temperature, dehydration of the cell, freezing, storage
then thawing. Unlike other cells in the body, sperm cells
should be less sensitive to their cryopreserving damage due to
their low water content and high fluidity of the membranes.
Despite this, cryopreservation is detrimental to sperm integrity
due to alterations to the membrane structure-function and
cell metabolism (10). Baust et al. (11) summarized the
stressors influencing the cells during cooling and freezing
stages as following: (1) During cooling, cells are exposed to
many harmful effects including metabolic decoupling, ionic
imbalance, activation of proteases, cellular acidosis, deprivation
of energy, membrane phase transition, destabilization of the
cytoskeleton, and production of free radicals or reactive oxygen
species (ROS), (2) During process of freezing, sperm are
predisposed to detrimental effects of ice crystal formation,

hyper-osmolarity, alterations in the cell volume, and protein
denaturation (Figure 1).

Membrane Changes
The main cause of cellular injury in cryopreservation is
the damage endured by the plasma membrane. Initially,
it was assumed that cold shock was associated with the
lipid composition of the membrane bilayer (12). When the
temperature is lowered during the cooling process, restrictions
of phospholipid lateral movement induce a change from liquid
to gel phase causing the membrane to become more rigid
and fragile. The phase changes involving the lipid membranes
lead to lipid phase separation; thus, proteins are clustered
irreversibly (13).

Reactive Oxygen Species
During cryopreservation, any changes in mitochondrial
membrane fluidity may result in the release of ROS and changes
in the membrane potential (14). Hydrogen peroxide (H2O2),
nitric oxide (NO), and superoxide anion (O2–) have positive
effects on intracellular signaling, sperm capacitation, and
acrosome reactions (15). Although at the appropriate levels
of these molecules play a significant role in sperm physiology,
namely capacitation and acrosome reaction, they are detrimental
to sperm function at high concentrations due to toxicity. The
exact mechanism of ROS generation and function have not been
fully characterized in sperm (1). However, it is known that these
molecules are products of incomplete reduction of molecular
oxygen, and the toxicity is associated with protein inactivation
due to ionization, lipid peroxidation, and DNA damage.

Molecular Challenges
Identification of key molecular determinants of sperm
freezability will aid in the development of better extenders
and will provide insights to better predict fertility and sperm
survival through cryopreservation. Such key determinants of
freezability are generally evaluated by changes in parameters
such as cell viability, motility and morphology, but current
techniques have improved the aspects of novel assessments. Of
these indicators of sperm quality, DNA integrity, and chromatin
structure have been identified as the crucial factors regarding
the ability of sperm to endure the cryopreservation process,
and support embryo development (16). Freezing-thawing
adversely affects DNA integrity making the DNA vulnerable and
susceptible to molecular and epigenetic modifications, which
affect the embryo development (17). This adverse process has
been shown to induce chromatin destabilization which results
in DNA fragmentation for boar and avian sperm (18, 19). DNA
damage is likely related to several mechanisms which occur
during cryopreservation; double strand breaks due to high levels
of ROS production (20), impairment of DNA repair enzymes
(21), and mechanical stress of genomic regions of the DNA
molecule in which chromatin compaction is increased because
of cell shrinkage (22). Apoptosis has been correlated with
cryoinjury of sperm DNA and that excessive generation of ROS
causes DNA damage (23). This can be different between fertile
and sub-fertile bulls (24).

Frontiers in Veterinary Science | www.frontiersin.org 2 August 2019 | Volume 6 | Article 268

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Ugur et al. Cryopreservation of Bull Sperm

FIGURE 1 | Detrimental effects of freezing-thawing on a sperm cell. Morphological and physiological effects of freezing and thawing processes on bull sperm are

summarized.

Factors including protamine, DNA methylation, and histone
modifications take place in an epigenetic state and play
critical roles in spermatogenesis (25, 26). Additionally, the
epigenetic factors influence gene expression that is dynamically
regulated during cryopreservation (27). Both mRNA and small
non-coding RNA molecules are an important element of
intercellular structure and research has shown that they play
a role in transcriptional and post-transcriptional regulation
of spermatogenesis (28, 29), while also being involved in
reproductive physiology during the freezing-thawing protocols
(30, 31). Sperm RNA quantity can be easily affected during
freezing-thawing cycles and some degree of these RNAs remain
stable in response to insult (25). Cryodamage can also cause
degradation to mRNAs (32), and thus disrupt protein function
and expression levels of fertility related proteins (33, 34).

Conventional methods, such as real-time reverse transcription
polymerase chain reaction (qRT-PCR) and complementary DNA
(cDNA) microarray techniques have been widely used to profile
gene products in cryopreserved sperm (35). However, next-
generation sequencing technology has paved the way to the era
of transcriptome and the introduction of powerful and rapid
new tools for classifying global transcripts of several species. A
small number of studies have focused on the global transcriptome

of cryopreserved sperm for a few animal species. In the bull,
sperm transcripts are present (30) and it was demonstrated that
freeze–thaw cycles can lead to changes in transcriptomic profiles
between fresh and frozen thawed sperm (35). Also, cryopreserved
sperm show an altered presence of non-coding RNAs including
microRNA and piwi-interacting RNA (piRNA) (36). Most
recently, it has been shown that non-coding RNAs have been
involved in sperm cryoinjuries during cryopreservation (37–
39) and are linked to apoptosis and metabolic activity pathway
alterations. Although sperm are transcriptionally silent, the
presence of RNA in sperm can provide effects of cryodamage
both on sperm and embryo physiology. Recently, cryopreserved
sperm has been demonstrated to influence transcriptomic
profiles of embryos (40).

DNA methylation is part of the epigenetic mechanism and
refers to the covalent addition of a methyl group to the DNA
strand. This mechanism modulates gene expression in a variety
of cells. Accurate DNAmethylation in sperm is indispensable for
early development and embryogenesis. The global level of DNA
methylation is correlated with sperm parameters such as motility
and concentration while chromatin fragmentation can adversely
affect DNA methylation (41). However, aberrant DNA sperm
methylation is linked to infertility in human and bovine (42).
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DNA methylation in sperm changes during freezing-thawing
cycle that global methylation is increased after cryopreservation
(43). This can also be supported with the regulation of
epigenetic related genes which DNAmethyl transferase (Dnmt3a
and Dnmt3b) genes show de novo differential expression
levels in cryopreservation (27). More specifically, a study in
zebrafish corroborates that cryopreservation stimulates sperm
hypermethylation in the promoters of important genes (44).

The functional chromatin integrity and packing of sperm
genome are critical for the delivery of paternal DNA and
epigenetic information to the oocyte (45). Several mechanical,
physiological, and chemical factors can deteriorate chromatin
integrity. There is increasing evidence suggesting that the sperm
nucleus with altered chromatin structure provides additional
information on cryodamage from freezing-thawing which cause
alterations including denaturation (46). These changes influence
the fertilizing capability of sperm without affecting functionality
parameters (47). In most species and instances, low quality sperm
have partly condensed chromatin which is susceptible to insult
by polymerase and nucleases, resulting in DNA damage (48) and
is associated with infertility in bull (49). Methods of freezing
and the stage of cryopreservation can influence chromatin
structure that it is mostly impaired at the thawing stage of
cryopreservation (50, 51). Also, nuclear sperm alterations are
attributed to cycles of freezing and thawing which subsequently
link to DNA damage (46, 50).

MOLECULAR MARKERS OF SPERM
FREEZABILITY

Seminal plasma and sperm proteins play important roles
in sperm survival, fertilization, and energy metabolism (52).
Recent studies showed that protein compositions and their
expression levels in seminal plasma and sperm are associated
with freezability differences among bulls. Some of the bovine
seminal plasma proteins bind phospholipids of the sperm
plasma membrane and hinder the movement of phospholipids.
Expression levels of heat-shock protein (HSP90) were higher
in semen with greater cryotolerance (34), and the levels
of the HSP90 in bull sperm were significantly decreased
in bull spermatozoa with lower cryotolerance (53). Holt
et al. (54) claim that lower concentrations of heat shock
protein A8 (HSPA8) in freezing media cause reduced post-
thaw sperm viability, whereas higher concentrations improve
plasma membrane integrity.

The cryopreservation process initiates carbonylation of bull
sperm proteins. Mostek et al. (55) identified 11 proteins in
bull semen (NADH dehydrogenase, ropporin-1, actin-related
protein T2, outer dense fiber protein 2, glutathione S-transferase,
triosephosphate isomerase, capping protein beta 3 isoform,
actin-related protein M1, isocitrate dehydrogenase, cilia- and
flagella-associated protein 161, phosphatidylethanolamine-
binding protein 4) that they showed significant carbonylation
levels during cryopreservation. Jobim et al. (56) found that
presence of lipocalin-type prostaglandin D synthase (L-PGDS) is
associated with poor freezability of bull sperm. The expression

level of an acidic seminal fluid protein (aSFP) is higher in semen
from high freezability sperm than that from low freezability.
It assumed that aSFP plays a key role in protecting sperm
from the damaging effects of oxidative stress by reducing lipid
peroxidation (57).

EXTENDER DEVELOPMENT

Current State of the Art in Extenders for
Bull Sperm
The cold shock endured during freezing and thawing reduces
the quality of sperm. The extent of injuries from cold
shock vary according to contents of extenders, cryoprotectants
used, and species (58). A number of extenders have been
developed to lessen cryodamage and improve post-thaw viability.
Extenders based on 20% egg yolk are commonly used to
cryopreserve livestock sperm of cattle, buffalo, and pigs (59).
Although egg yolk is known to prevent cell damage during
cryopreservation, the presence of substances in yolk granules
including high-density lipoproteins (HDL) and minerals inhibit
respiration of sperm cells and reduce their motility (60).
However, the low density lipoproteins (LDL) of egg yolk
protect sperm from damage by covering the sperm membrane
during freezing and thawing (61). Although most extenders
include egg yolk alone, some are supplemented with glycerol,
and there are some concerns over biosecurity and the
possibility that egg contents might alter sperm structure and
physiology (62).

There have been efforts to develop commercial extenders
with defined contents and those that are free of animal
products. Recent studies performed by Murphy et al. (63) and
Yodmingkwan et al. (64) revealed that plant-based extenders
can be efficiently used as alternatives to animal-based extenders
in frozen semen to avoid spread of diseases. However, there
are conflicting results related to the efficacy of lecithin-based
extender for semen freezing. Vidal et al. (65) claimed that
there were no significant difference in post-thaw goat semen
parameters between semen extended in Soy-lecithin based
extender vs. Skim milk-based extender. Aires et al. (66) referred
that the Andromed R© extender containing soy-lecithin was better
when compared to an egg yolk extender in cryopreservation
of sperm from Holstein bulls. Additionally, Chelucci et al.
(67) reported that soy-lecithin based extender preserves frozen
goat semen better than that of an egg yolk based extender.
However, according to Muiño et al. (68) a Biladyl R© extender
containing tris-egg yolk gave better results in terms of survival
of sperm that those from Andromed R© and Biociphos R©. Other
researchers claim that Tris-egg yolk-based extender is better in
preserving frozen semen than plant-based extenders (69, 70).
Moreover, studies on liposome based extenders have showed its
effectiveness over both animal based and plant based extenders
in preserving the frozen semen of buffalos (Bubalus bubalis) (71).
There is a desperate need for more research and more extensive
analyses of sperm as well as follow up studies on pregnancy
rates and live births of offspring using sperm cryopreserved with
different extenders.
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Cryoprotectant Supplementation of
Extenders
Nonpenetrating and penetrating cryoprotectants are used
to protect sperm cells from physical and chemical stressors
caused by ice crystallization. While non-penetrating
cryoprotectants such as polymers help with vitrification,
penetrating cryoprotectants such as sugars help reduce toxicity.
Cryoprotective agents cannot not prevent the changes in
membrane phase but they can decrease the rate of dehydration
during freezing which then lessen the formation of ice crystals in
the cell (72).

Although glycerol, ethylene glycol, dimethyl sulfoxide, and
1,2-propanediol are all CPA, glycerol is the most commonly
used in bovine sperm because it causes dehydration of cells
by creating osmotic stimulation (73). Concentrations of CPAs
differ among extenders; skim milk based extenders contain
8%, Tris eggyolk extenders contain 6–7% CPA. Therefore, the
volume of intracellular water decreases and the chance of the
ice formation reduces. However, glycerol may cause osmotic
stress and toxicity (74, 75). In addition, sugars and polyols
are used as cryoprotectants in semen processing. They create
hydrogen bonds with membrane lipids; thus, lipids of sperm
membrane are stabilized at low temperatures (2). Milk diluents
are commonly used as CPA in bull semen. However, they have
the disadvantage of decreasing the visibility of sperm cells under
the microscope during sperm evaluation due to fat globules
(76). Cryopreservation procedures cause significant losses of
total lipids and phospholipids of sperm cells (77). Due to the
importance of fatty acid composition on membrane fluidity,
supplementations of fatty acids to the extender affect freezability.
When the egg yolk-based extender was supplemented with
docosahexaenoic acid, a major fatty acid in fish oil, sperm post-
thaw viability has increased (78).

More recently, addition of 8% coconut oil as a source of
lauric acid to egg yolk based-extender (79), 5 ng/ml α-linoleic
acid to the BioXcell R© (80), and 20 ng/ml arachidonic acid to
tris-citric acid extender (81) enhanced quality of sperm following
cryopreservation. Additionally, Iodixanol is commonly used as
a medium for density gradient centrifugation. Supplementation

of sperm cells with Iodixanol (OptiPrep
TM

) increases motility of
buffalo sperm post-thaw (62). Mechanisms of Iodixanol actions
are not clearly understood but it has been assumed that it protects
sperm membrane through reducing ice crystal formation (82).

Antioxidant Supplementation of Extenders
Antioxidants are molecules that inhibit the formation of
ROS and lipid peroxidation. Superoxide dismutase, glutathione
peroxidase, and catalase are the well-known antioxidants that
are significant for sperm function because they protect sperm
cells from oxidative stress (83). Glutathione (GSH) is a powerful
antioxidant that protects bull sperm against free oxygen radicals
and supplementation of buffalo semen with GSH increased
motility, integrity of plasma membrane and cell viability (84).
Another critical antioxidant for sperm integrity is Resveratrol
which extinguishes superoxide, hydroxyl, and metal-induced
radicals. Therefore, it protects sperm chromatin and membranes

fromROS damage (85). Vitamin E also plays an important role on
sperm membrane protection as an antioxidant. Supplementation
of semen with vitamin E affects sperm motility, membrane
integrity, and membrane potential positively (86). Endogenous
antioxidants present in bovine semen are not sufficient to ensure
sperm integrity against oxidative stress in cryopreservation.
The supplementation of antioxidants is needed to improve the
viability of post-thawed sperm cells. Bovine Serum Albumin
(BSA) protects the sperm plasma membrane and acrosome, and
physiology such as motility. Sariözkan et al. (87) found that the
addition of BSA helped to maintain the cell morphology and
acrosome integrity, and increased its catalase (CAT) activity.
In addition, methionine is a precursor for glutathione which
protects sperm from oxidative damage and is involved in
detoxification of the cell. Moreover, the addition of methionine
to semen helped to maintain normal sperm morphology.
Furthermore, addition of carnitine and inositol to extenders has
shown to have a protective influence on acrosome integrity as
well as improved sperm motility and reduced DNA damage (88).

Plant-derived extracts are sources of natural antioxidants with
lower cytotoxicity as compared to artificial antioxidants. Khan
et al. (89) found that adding green tea extract at an inclusion level
of 0.75% protected the plasma membrane and increased motility
rates of cryopreserved spermatozoon. The addition of Spirulina
maxima Extract (SME), a microalga, to extender has exhibited
positive effects on post-thaw semen parameters including
sperm motility and morphology, and marked reduction in
ROS synthesis (90). Other natural compounds have been
found to act as an antioxidant. Trehalose is a sugar that
functions as an antioxidant and was shown to protect the
structure of the sperm cell from oxidative and cold shock
damage. The addition of 100mM of trehalose into semen
extender improved sperm post-thaw motility, integrity of the
membrane, and the activities of CAT andGSH (91). Furthermore,
supplementing semen extender with 2µg/ml of selenium, a
potent antioxidant, improved morphology, and integrity of
cryopreserved sperm (92).

Vitamins and Other Supplementations of
Extenders
Vitamins, known for their antioxidant properties, along with
other compounds may be utilized to combat cryo-damage and
improve overall post-thaw quality of sperm. Vitamin C has
been tested as an additive to extenders for the purpose of
improving sperm quality after the harsh challenges that are
brought upon the cells by cryopreservation. Vitamin C acts as
an electron donator, to neutralize free radicals that are generated
from normal metabolic activity in addition to environmental
challenges. This ability to donate electrons allows for the
reduction of oxidative stress from ascorbate free radicals (AFR).
In a study performed by Mittal et al. (93) supplementation of
5mM vitamin C to pooled bull ejaculates significantly improved
seminal characteristics and significantly decreased the number
of observed abnormal sperm as compared to the control group
measurements. Vitamin C supplementation to sperm extenders
has also been studied in buffalo bulls and has shown greater
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post-thaw motility and percent of intact plasma (94). Feeding
animals with ascorbic acid has also shown significant increases
in physical semen characteristics of ejaculate volume and sperm
concentration, contributed to difference in scrotal circumference,
reaction time, and testicular volume, while also improving sperm
output characteristics such sperm motility, and total counts for
Egyptian buffalo bulls (95).

Herbal extracts and supplements are another up and coming
area of untapped potential for the animal reproduction industry.
Silymarin is one such extract with potent antioxidant properties
that comes from the milk thistle plant Silybum marianum (96).
Little research has been conducted utilizing silymarin in cattle
but recently in a study performed by El-Sheshtawy and El-Nattat
(97) the supplementation of silymarin improved preservability of
sperm in both chilled and frozen bull semen samples. Rosemary,
Rosmarinus officinalis, a common household herb, has also been
investigated as a potential cryoprotectant. In a study performed
by Daghigh-Kia et al. (98), researchers supplemented bull sperm
samples with rosemary extract, GSH, and a combination of
the two to determine how the semen would be affected after
being subjected to cryopreservation procedures. Results showed
that the inclusion of the rosemary extract treatment and the
combination treatment improved post-thaw characteristics of
bull semen. Semen supplements discussed in that section have
been summarized in Table 1.

TECHNIQUES TO EVALUATE SPERM
QUALITY

Comprehensive analyses of sperm by using integrated diverse
methods are necessary to assess the cell morphology at
the molecular and cellular levels that are linked to cell
function. For examples, most relevant, advanced, standardized
techniques should be applied correctly to capture sperm
cell, genetic, functional, and epigenetic content. To
improve cryopreservation, accurate predictor of sperm
motility, viability, membrane functionality, mitochondrial
activity, and apoptosis parameters should be assessed by
contemporary techniques.

Microscopy
Light Microscopy has been a commonly used tool to
evaluate basic quality parameters of semen including
sperm motility, morphology, membrane integrity, and
concentration. Fluorescent microscopy has been an essential
tool in biology and reproductive sciences, because of wide
array of fluorochromes. The use of fluorescence labeling
enables identification of sub-microscopic cellular components.
Fluorescent microscopy has been extensively used to analyze
sperm viability (103), the sperm membrane, acrosome, and
chromatin. In this microscopy method, cellular components
of sperm function are stained with fluorescent probes to
examine the DNA, membranes, or lectins (104). Sperm viability
assay can be analyzed by fluorescence microscopy using
LIVE/DEAD commercial kits, which are DNA-binding
fluorescent stains (SYBR-14) and membrane-permeant

stain (PI), respectively. Acrosome integrity can be analyzed
using the sperm acrosome molecular marker Pisum sativum
agglutinin linked to fluorescein isothiocyanate (FITC-PSA).
Terminal transferase dUTP nick-end-labeling (TUNEL) can
also be used to evaluate apoptosis by flow cytometry and
fluorescence microscopy.

Laser Confocal fluorescence microscopy is a technique
that obtains three-dimensional (3D) optical resolution with
depth of focus and provides protein distributions in cellular
compartments. The advantages of confocal microscopy are that it
recognizes fluorescence in individual cells, provides multispectral
flexibility, and avoids out-of-focus suppression. In a confocal
fluorescent microscope, excitation of the specimen beam by a
laser is concentrated through the first pinhole aperture and
then the emitted light is obtained and focused by the second
pinhole and subsequently measured by a detector. Depending
on the instrument type, confocal setup is required before
each experiment; excitation laser is set considering maximal
excitation and emission of each fluorochrome. To focus on
sperm, the objective is set depending on sperm size, and
parameters such as pinhole and gain voltage are adjusted
for fluorochrome tested. For the acquisition of images of
sperm, instrument acquisition parameters such as bit dept,
thickness, and image format are adjusted for detection. Confocal
microscopy is used to evaluate sperm characteristics such as
the acrosome, chromatin, and membrane. More specifically,
cytoskeletal proteins, such as, spectrin, tubulin and actin in the
head of sperm can be examined by laser confocal fluorescence
microscopy (105–107), likewise, expression of surface proteins
in sperm cells can be evaluated (108). This microscopy allows
observation of sperm movement (109), but lack of qualification
and quantification of various characteristics, and provides
accurate visualization of mitochondria; can be used to analyze
mitochondria functionality at the single-cell level (110), while
also can be adjusted for tracking of motion of sperms with
active mitochondria (111). In addition, it can be applied to
ascertain localization of lipid peroxidation (112) and ROS in
sperm (113).

Electron Microscopy (EM) uses the electron as a tool to
utilizes a beam of accelerated electrons to develop a specimen
image (114). This technique provides higher magnification
and resolution than light microscopy. In light microscopy,
visible light is used to magnify the image of a specimen
by using optical lenses that are the range of 10–1,000
times magnification. EM is performed in a vacuum and
directly focuses an electron beam on the subject and images
are magnified by the means of electromagnetic lenses. This
microscopy technique has the advantage of using shorter
wavelength of electrons at accelerating voltage. EM considerably
expands our understanding of ultrastructure and morphological
characteristics of sperm (115). The two most common electron
microscopes are Transmission electron (TEM) and scanning
electron (SEM). In these advanced microscopes, electromagnetic
lenses are used to focus the electron beam on the image.
Essentially, TEM sends off electrons via ultrathin sample to
detector and generates two-dimensional image, while SEM scans
the secondary electrons reflected from the specimen’s surface and
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TABLE 1 | Extender development for sperm cryopreservation.

Supplement Functions/Effects References

CRYOPROTECTANTS

Egg yolk Low density lipoproteins (LDL) in egg yolk bind cell membrane and form an interfacial film

during the freezing process

(99)

Milk Protein fraction of skim milk protects sperm cells from cryo-injury (1)

Glycerol

Ethylene glycol

Dimethyl sulfoxide

Propylene Glycol

Responsible for membrane lipid and protein rearrangement

Reduce intracellular ice formation by increasing dehydration at lower temperature

(73)

(100)

Trehalose Replace the bound water surrounding macromolecules and protectively hydrate those

macromolecules by substituting for water

(101)

Polyols Create hydrogen bonds with membrane lipids; thus, lipids of sperm membrane are stabilized at

low temperatures

(2)

Fatty acids

• Docosahexaenoic acid (Fish oil)

• Lauric acid (Coconut oil)

• α-linoleic acid

• Palmitic acid

• Oleic Acid

Increase post thaw viability, motility, and acrosome integrity by improving plasma membrane

fluidity and integrity

(79–81)

Iodixanol It assumed that protects sperm membrane through reducing ice crystal formation; thus,

increases post-thaw sperm motility

(62)

(82)

Butylated hydroxytoluene Enhances motility, acrosomal integrity, and membrane integrity by increasing membrane fluidity

and reducing activity of the lipid peroxyl radicals

(15, 102)

ANTIOXIDANTS

Glutathione Glutathione supplementation increase motility, plasma membrane integrity, and viability (84)

Resveratrol Extinguishes superoxide, hydroxyl, and metal-induced radicals. Therefore, it protects sperm

chromatin and membranes from ROS damage

(85)

Vitamin E Affects sperm motility, membrane integrity, and membrane potential positively (86)

Bovine Serum Albumin Helps to maintain the cell morphology and acrosome integrity, and to increase its catalase

(CAT) activity

(87)

Methionine Maintain normal sperm morphology (88)

Carnitine

Inositol

Improve acrosome integrity, sperm motility, and reduce DNA damage (88)

Spirulina Maxima Extract Increase the motility and viability of sperm cells, and reduce ROS synthesis and protect DNA

structure

(90)

Selenium Improve morphology and integrity of cryopreserved sperm (92)

VITAMINS

Vitamin C Vitamin C supplementation increase post-thaw motility and percent of intact plasma (94)

composition to create a three-dimensional image. SEM is used to
examine the surface of sperm cell at low resolution with extensive
magnification (116). SEM is advantageous when investigating
adverse effects of cryopreservation on sperm morphological
changes (117). TEM can be applicable to reproductive medicine
and the investigation of structure and function of sperm (118).
EM has beneficial uses in the diagnosis of sperm morphological
defects (118).

Holographic microscopy and Raman spectroscopy have a
holographic microscopy format where samples are visualized
by laser light, and the obtained images are used to define
the position, orientation, and the 3D structures of a
microscopic sample. This technique provides label-free, no
contact visualization, and high-resolution recording with
numerical focusing which allows for 3D quantitative imaging

of specimen and enables live cell applications on sperm
morphology and motility (119–121). Holographic microscopy
can be employed to evaluate morphology and integrity of
bull sperm (122). Recently, computational, lens-free, and
on-chip microscopy tools have been developed to track sperm
heads and trajectories in second ranges for each frame (123).
Human sperm structure can also be assessed by holographic
microscopy (119). Recently, this high-throughput technique
with developed image reconstruction was used to track sperm
heads and tail in 3D locomotion (124). Raman spectroscopy
is a useful technique that facilitates the study of biochemical
changes of cellular components. The Raman spectroscopy
technique is sensitive and non-destructive and relies on direct
inelastic light scattering from a laser source in which frequency
of photons is directed on a sample and scattered photon is
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detected as Raman effect. This frequency provides detailed
information about identificated molecules from vibrational
transitions with molecular interaction and composition, such
as proteins and DNA in normal and abnormal human sperm
(125, 126). Raman microspectroscopy has the capability of
evaluation of chemical changes and molecular features of human
and bovine sperm cells (127–129). Additionally, it offers an
analysis of live sperm with physiological status (130). Raman
spectroscopy can be combined with holographic microscopy
to assess sperm quality with relation to morphological and
biochemical properties (131, 132).

Computer-Assisted Sperm Analysis (CASA)
The CASA system, first established in 1980, has evolved into an
accurate computer-based technique and software which provides
quantitative measurements to assess the sperm motility and
kinematics objectively and precisely. This technique uses the
principle of capturing continuous images of motile sperm from
a microscopic field and converts images into video images with
different acquisition rates (frames s-1, Hz). Captured images
are scanned to be visualized through dark field or negative-
high-phase contrast in order to track motion of each individual
sperm considering intensity of frame in pixels and the head
(133, 134). CASA provides motility parameters [progressive
motility (%), total motility (%)] and kinematic characteristics
for evaluation of sperm such as velocity, linearity, and lateral
displacement which defines trajectory. This widely used measure
of sperm movement includes velocities such as straight-line
(VSL), curvilinear (VCL), average pathway (VAP), linearity
of forward progression (LIN, ratio of VSL to VCL), and
Amplitude of lateral head displacement (ALH). With high
quality hardware and open-source software, current CASA
systems are also more useful for the measurement of sperm
morphometry (dimension) while also allowing for assessment of
sperm viability, concentration, morphology, and degrees of DNA
fragmentation (135, 136).

Flow Cytometry
Flow cytometry (FC) is an outstanding system which has made
it possible to analyze thousands of single cells in a short time.
Flow cytometry permits analyses of large numbers of sperm
cells as well as individual cells with physical characteristics of a
single spermatozoon measured by a fluorescent compound. It is
composed of fluidics, optics, and electronics systems, which uses
the measurement of physical optics and chemical fluorescence
characteristics of particles in a fluid when it is passes through a
laser source (137).

In brief, this technique requires a small amount of sperm
cell suspension and particle samples labeled with fluorescent
markers in suspension which can be injected into a flow cell
in the instrument. Subsequently, the fluorescence is absorbed
and wavelengths of fluorescence from particle emission are
detected by two optic lenses, generating measurement of
fluorescent bands. During data collection, non-sperm scatter
is gated out, considering characteristics of spermatozoon and
fluorescence is subtracted from the total fluorescent intensity.
Two types of flow cytometry systems are available, one of

which having sorting capabilities (fluorescence activated flow
cytometry-FACS) allows physically separation and purification
of cells (138, 139). The other is non-sorting, which measures
fluorescent emission in a highly repeatable, accurate, and
sensitive manner. It generates high-throughput data on
subpopulations while also capturing the measurements of
heterogenous populations such as sperm. The structure of
multiple organelles of sperm can be simultaneously evaluated
using flow cytometry:

Cell viability analysis helps identify viable and non-viable
sperm which are associated with the molecular anatomy and
physiology of the membranes. More specifically, during the
cryopreservation process, changes in temperature and osmotic
stress impair sperm viability because of injury to the plasma
membrane (140). This method uses probes such as ethidium
homodimer (EH) (141), propidium iodide (PI) (142), Yo-Pro-1
(143), and bizbenzimidazole Hoechst 33258 (144) dyes, alone, or
in combination with other dyes, to excite lasers (145). Propidium
iodide (PI) is excited with the 488-nm laser and able to penetrate
the non-viable sperm through broken plasmalemma, then emit
red fluorescence upon binding to nucleic acids (146). SYBR-
14, viability probe, emits green fluorescence from nuclei upon
entering active cells (147), and can be combined with PI. This
staining technique can bemodifiedwith other stain combinations
to assess acrosomal integrity or mitochondrial function (148).
SYBR14-PI staining has been employed to evaluate the effects
of cryopreservation on sperm viability in many species, such as
bee (149), stallion (150), bovine (151, 152), and fish (153, 154).
Yo-Pro-1 is a green cyanine probe which reaches emission at
509 nm and can be applied to study membrane permeability
(155). Yo-Pro-1 is combined with a membrane permeable dye
ethidium homodimer and carboxyseminaphthorhodal fluor-1
(SNARF-1) to assess membrane stability in cryopreserved sperm
(86, 156). Also, a combination of Yo-Pro-1 and PI can be better
practiced than SYBR-14/PI to detect early phase damages in the
membrane (157). Fluorescent probe Hoechst 33258 requires the
ultraviolet laser to excite at 352 nm and emits blue fluorescence
at 461 nm when bound to the nucleic acid. Hoechst 33258 can
be used to determine viable and non-viable sperm (158) and
it also provides an option to be combined with other probes
leaving the green-red detection available. Hoechst 33342 (H-
42) is another cell-permeant nuclear dye that is excited by
an ultraviolet laser at 350 nm and emits blue fluorescence at
461 nm after binding to DNA. Recently, this dye has been used
with ethidium homodimer to differentiate live and dead sperm
cells (159).

Lately, fixable viability dyes relying on reaction of fluorescence
with cytoplasmic amines have become available to detect live and
dead cells and applicable formulticolor experiments. Fixable dyes
cannot pass through an intact live cell membrane, resulting in a
weak staining. However, they can stain amines in the cytoplasm
of damaged cells. Zombie GreenTM, a fixable dye, is excited at
488 nm with a blue laser has a maximum emission at 515 nm.
This dye has been tested for evaluation of sperm viability and
mitochondrial membrane potential (MMP) (150).

Acrosome integrity, an indication of intactness, is essential
for fertilization and the subsequent penetration of sperm into
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the zona pellucida. Acrosome integrity assays have been widely
analyzed by a number of methods such as phase contrast,
fluorescence with probes, and electron microscopy (104).
Instead, flow cytometry requires labeled acrosome with lectin
probes conjugated with fluorochrome fluorescent isothiocyanate
(FITC). For this purpose, due to specificity, Arachis hypogaea
(peanut) agglutinin (PNA) and Pisum sativum (pea) agglutinin
(PSA) are the most commonly used lectins (160). In damaged
acrosomes, while PSA lectin recognizes α-D- glucosyl and α-
D-mannosyl residues in acrosome (161) and stains acrosomal
matrix, PNA binds to the outer acrosomal membrane (162, 163).

PNA label in damaged or reacted spermatozoa emits green
fluorescence, but intact acrosomes cannot yield fluorescence
(148). The integrity of plasmamembrane as well as the acrosomal
integrity are measured at the same time using the combination of
FITC-PSA and PI which has been used in dog and cryopreserved
bovine sperm (86, 148). PNA-FITC staining can be more
precise in the detection of acrosome than PSA-FITC (164).
Also, combination of FITC-PNA/PI staining is useful for semen
quality, allowing for the assessment of viability, and acrosomal
integrity with analysis of live/dead and intact/damaged ratio (165,
166) and evaluation of effects of cryopreservation on acrosomal
status (167).

Mitochondrial activity is an indicator of sperm physiology
has been analyzed using fluorochromes with flow cytometry to
elucidate mitochondrial function in the sperm (168, 169). The
3,3′- Dihexyloxacarbocyanine iodide-484/501nm [DiOC6(3)],
green fluorescence dye, has been previously employed to analyze
semen (170). However, this dye tends to stain other organelles,
such as Golgi apparatus, when used at higher concentrations and
can be non-specific in determining membrane potential (171).
Rhodamine 123 (R123), a green-fluorescent dye that was used
to evaluate MMP, has been replaced by improved dyes such
as MitoTracker or JC-1 dyes (103). R123 cannot differentiate
high and low MMP because of high mitochondrial respiratory
rates and can lose signals out of sperm cells when the MMP is
weak (171, 172). MMP can be analyzed by using commercial
dyes such as MitoTracker which works by permeating the cell
and accumulating in the mitochondria. When it is bound to
mitochondria, mitochondria steadily emit fluorescence even after
the cell dies, thus allowing multicolor labeling in sperm (47,
173). MitoTracker dyes show a broad range of fluorescence
(red, green, orange) and accumulate in active mitochondria after
spreading across the plasma membrane. Of these, Carbocyanine-
basedMitoTracker R© Probes, such asMitoTracker Green FM and
MitoTracker Red FM, act as a marker for live cells dependent
on MMP but cannot be retained after fixation. However,
Rosamine-based MitoTracker R© Probes (MitoTracker Orange
CM-H2TMRos, MitoTracker Orange CMTMRos, MitoTracker R©

Red CMXRos, MitoTrackerR Red CM-H2XRos) are well-
retained after aldehyde fixation. The Rosamine family of
reduced MitoTracker dyes, MitoTracker Red CM-H2XRos and
MitoTracker Orange CM-H2TMRos, do not emit fluorescence
until oxidative respiration occurred and can be used for
estimation of oxidation status in sperm cells. These probes have
been utilized to assess sperm, specifically MitoTracker Deep
Red and MitoTracker Green, have been used to determine

MMP (150, 159, 174, 175). The 5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolylcarbocyanine iodide (JC-1), another
mitochondrial dye, is more specific to MMP (138, 176), and
enables the differentiation between low and high MMP with
dual fluorescence shifting from green to orange. In inactive
mitochondria, forming monomers emits green fluorescence
(525–530 nm wavelength) after being excited with a blue laser at
488 nm when MMP is low. However, inactive mitochondria with
high MMP, form J-aggregates reach maximum spectra at 590 nm
and emit orange fluorescence once excited with yellow (561 nm)
laser. JC-1 has been used to evaluate semen quality (177), and to
show differences in the spermmitochondrial function (103, 178).

Oxidative Stress Analysis
Oxidative stress has detrimental effects on sperm by deteriorating
fertilizing ability. This is caused by production of ROS including
radicals such as hydroxyl radical (OH), superoxide anion
(O2) and non-radical hydrogen peroxide (H2O2) (179). During
cryopreservation and thawing, sperm cells undergo cold shock
which then leads to excessive ROS and lipid peroxidation (180,
181). ROS and oxidative species can be detected with better
accuracy and reproducibility using flow cytometry as compared
to other approaches. The 2′, 7′-dichlorodihydrofluorescein
diacetate (H2DCFDA) is commonly used as ROS indicator
to measure intercellular H2O2. Nonfluorescent H2DCFDA
penetrates into the cell membrane and becomes stable in
the intercellular once cleaved by intracellular esterases. Upon
oxidation, it emits green fluorescence at ∼517–527 nm by
conversion to fluorescent 2′,7′-dichlorofluorescein (DCF) form
(182, 183). Dihydroethidium (hydroethidine) is a specific ROS
indicator probe that can be employed to detect superoxide
production (184). The reduced form is oxidized by superoxide
and emits red fluorescence at 610 nm after intercalating into
DNA (185). This probe can be combined with viability markers
to better determine ROS generation in live cells (186) and can
be applied to study intracellular ROS in sperm (151, 187, 188).
The 5-(and 6) -chloromethyl-20, 70-dichlorohydrofluorescein
diacetate (CM-H2DCFDA), an oxidative stress probe, shows
better retention than H2DCFDA and measures hydrogen
peroxide in intact cells. Upon moving into the cell, CM-
H2DCFDA diffuses into the plasma membrane, and acetates
are cleaved by cellular esterases and thiol-reactive chloromethyl
group to form 20,70-dichlorodihydrofluorescein (H2DCF).
Then, oxidation of H2DCF into DCF by H2O2 emits fluorescent
at 525 nm once excited at 495 nm (189). This probe is also
convenient for the assessment of oxidative stress in bull
sperm (190). MitoSOX Red is a probe developed to quantify
selectively cellular and mitochondrial superoxide productions
in the mitochondria (191). MitoSOX Red reagent, oxidized by
superoxide, and fluoresce red at 580 nm, can be successfully used
in human and bovine sperm (140, 192, 193).

Sperm chromatin structure reflects the capability of sperm
to fertilize the egg and is measurement of the sperm quality.
The Sperm Chromatin Structure Assay (SCSA) relies on extend
of DNA denaturation which then sperm samples are mixed
with an acridine orange (AO), resulting in metachromatic shift
from green fluorescence to red fluorescence (194). In this assay,
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when AO intercalates with double-stranded DNA (dsDNA)
it yields green, but it yields red when it intercalates with
single-stranded DNA (ssDNA). Determining the ratio from the
mixture of green and red fluorescence, for each spermatozoon,
by a 488-nm laser by flow cytometry demonstrates the status
of DNA fragmentation (DNA fragmentation index) and the
chromatin structure. Also, terminal transferase dUTP nick-end-
labeling (TUNEL) can also be employed to evaluate sperm
DNA fragmentation by flow cytometry. This assay requires
the enzyme, terminal deoxynucleotidyl transferase to catalyze
the ration where deoxyuridine triphosphate nucleotides are
incorporated into DNA breaks at their 3

′
-hydroxyl ends.

TUNEL and SCSA accompanied with flow cytometry have
compatibility (195, 196) and produces accurate information
related to sperm fragmentation.

Sex sorting is a practical application of flow cytometry which
requires applicable protocols and high-speed cytometers. The
main principle of this techniques is to determine the DNA
content of individual sperms. In this technique, Hoechst 33342
fluorophore is incubated with sperm; it enters the cell and binds
to DNA. Because the X-chromosome has a lot more DNA than
the Y-chromosome, X- and Y-bearing sperm are separated using
flow cytometry (197). During flow through in the stream, each
spermatozoon is enclosed in droplets which are subsequently
captured by fluoresce detector. A fluorescence signal from X or Y
chromosomes is detected, and positive or negative charge is then
assigned to droplets. As they pass through the oppositely charged
plate, they are separated into either X or Y tubes consistent with
their DNA contents (198, 199).

There is a need to develop a more comprehensive
methodology and novel techniques for assessment of the
quality and viability of sperm should be developed or combine

new techniques including bioinformatics or mathematical
biology with the current techniques to study post-thaw viability.
Exploring important aspects of sperm cryobiology, for instance,
functional genomics (transcriptomics, proteomics, lipidomics,
and metabolomics) and epigenomics (DNA methylation and
chromatin dynamics), can have significant positive impact
on AI protocols. Novel biomarkers (proteins, small non-
coding RNAs such as microRNAs, lipids and small molecules,
or epigenomic markers) can be used to better understand
spermatogenesis, sperm quality, predict male fertility, and
develop better extenders.
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antioxidants on microscopic-oxidative stress indicators and fertilizing
ability of frozen-thawed bull semen. Acta Vet Brno. (2009) 78:463–9.
doi: 10.2754/avb200978030463

88. Bucak MN, Tuncer PB, Sariözkan S, Başpinar N, Taşpinar M, Çoyan K,
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