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Background: MicroRNAs may be important regulators of risk for type 2 diabetes. The purpose of this longitudinal
observational study was to assess whether circulating microRNAs predicted improvements in fasting blood glucose,

Methods: The study included participants (n =82) from a previously completed trial that tested the effect of
restorative yoga on individuals with prediabetes. Circulating microRNAs were measured using a flow cytometry
miRNA assay. Linear models were used to determine the optimal sets of microRNA predictors overall and by

Results: Subsets of microRNAs were significant predictors of final fasting blood glucose after 12-months (R* = 0.754,
p <0.001) and changes in fasting blood glucose over 12-months (R*=0731, p < 0.001). Three microRNAs (let-7c,
miR-363, miR-374b) were significant for the control group only, however there was no significant interaction by

Conclusions: Circulating microRNAs are significant predictors of fasting blood glucose in individuals with
prediabetes. Among the identified microRNAs, several have previously been associated with risk for type 2 diabetes.
This is one of the first studies to use a longitudinal design to assess whether microRNAs predict changes in fasting
blood glucose over time. Further exploration of the function of the microRNAs included in these models may
provide new insights about the complex etiology of type 2 diabetes and responses to behavioral risk reduction

Trial registration: This study was a secondary analysis of a previously completed clinical trial that is registered at
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Background

Type 2 diabetes (T2DM) affects more than 460 million
individuals globally [1] and is associated with $245 billion
in costs annually in the United States alone. [2]
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Individuals with T2DM are at risk for a number of ser-
ious complications, including cardiovascular diseases,
retinopathy, and renal disease. [2] One of the primary
challenges to preventing and treating T2DM is the in-
complete understanding of its multifactorial etiology. [3]
While a number of genetic risk factors for T2DM that
provide some insight into the mechanisms underlying
T2DM have been reported [4], modifiable lifestyle and
behavioral characteristics are equally important risk
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factors. The growing appreciation for the large impact of
this latter category of risk factors on genetic risk, broadly
characterized as gene-environment interactions, has re-
sulted in a focus on identifying and characterizing bio-
markers that can reflect these complex relationships. A
clearer understanding of gene-environment interactions
that influence risk for T2DM may allow for better speci-
fication of risk-reduction interventions for T2DM or fa-
cilitate development of new interventions based on
improved understanding of the underlying interactions.

Development of T2DM occurs on a continuum span-
ning normal blood glucose to prediabetes to T2DM.
Fasting blood glucose (FBG) is the biomarker used to as-
sess for risk for T2DM [5] and is easily measured in both
clinical settings and a patient’s home environment. FBG
can characterize glycemic variability over time, glycemic
progression (e.g., from normal glucose tolerance to pre-
diabetes or from prediabetes to T2DM), as well as gly-
cemic improvement in response to interventions. Even
prior to a T2DM diagnosis, T2DM related complications
can begin to develop, making FBG an important tool for
monitoring which individuals are in greatest need of in-
terventions. The possibility for novel prodromal bio-
markers that capture harmful physiological changes
prior increased FBG could further improve detection of
risk and prevention of T2D and related complications.

MicroRNAs (miRs) are short (i.e., 18—26 nucleotide)
regulatory elements of messenger RNA translation to
amino acids. Because miRs regulate gene expression,
they operate as a function of both underlying genetic
risk for disease as well as environmental factors such as
responses to risk reduction interventions, including be-
havioral factors. [6, 7] Circulating miRs are easily mea-
sured from blood serum or plasma and are potential
biomarkers for risk for development of T2DM, [8-10]
exhibiting changes in expression levels prior to the onset
of T2DM. [11, 12] There are at least two potential appli-
cations of miRs as predictive biomarkers related to
T2DM: the first is improved identification of which indi-
viduals are at greatest risk for progression towards
T2DM; and the second is identification of individuals
who are likely to respond to risk reduction interventions,
including behavioral interventions. Because miRs capture
changes in physiology before the onset of elevated FBG,
they have the potential to be important prodromal
markers of risk for T2D.

Our prior clinical trial (i.e., Practicing Restorative Yoga
vs. Stretching for the Metabolic Syndrome (PRYSMS);
clinicaltrials.gov identifier NCT01024816) showed that a
restorative yoga intervention was effective at decreasing
FBG compared to stretching in individuals with the
metabolic syndrome. [13] One of the hypothesized
mechanisms underlying the beneficial effect of restora-
tive yoga was decreased level of stress. However, a
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secondary analysis of the PRYSMS trial showed that cor-
tisol levels and self-reported measures of stress de-
creased more in participants from the stretching control
group than in the yoga intervention group. [14] There-
fore, the mechanisms underlying the beneficial effects of
restorative yoga on FBG remain largely unknown. Circu-
lating miRs, by characterizing effects of behavioral inter-
ventions on underlying genetic predisposition, may be
useful biomarkers of responses to and may provide new
insights about the underlying mechanisms of restorative
yoga.

The goal of this study was to characterize the associa-
tions between miRs and FBG both after 12-months as
well as change in FBG from baseline to 12-months. To
our knowledge, this is the first study to leverage a longi-
tudinal design to determine whether miRs might be use-
ful biomarkers to identify which individuals are likely to
respond to risk reduction interventions for T2DM and
which miRs might correspond with changes in FBG and
therefore be potential future mechanistic targets.

Methods

Participants

The study sample included participants from the previ-
ously completed Practicing Restorative Yoga versus
Stretching for the Metabolic Syndrome (PRYSMS) clin-
ical trial (clinicaltrials.gov identifier NCT01024816),
which tested the effects of restorative yoga versus active
stretching on FBG in overweight adults at risk for
T2DM. Participants in the PRYSMS study were recruited
from the San Francisco and San Diego areas and met
the International Diabetes Federation criteria for meta-
bolic syndrome. [15]. Exclusion criteria from the PRYS
MS trial included FBG =126 mg/dl, hemoglobin Alc
(HbAlc)>7.0%, fasting triglycerides >300 mg/dl,
weight > 400 pounds, neurological conditions that lim-
ited mobility, hospitalization for coronary heart disease
within the past 6 months, current pregnancy or lacta-
tion, history of bariatric surgery, substance abuse, and
use of medications affecting metabolic factors. Demo-
graphic and behavioral characteristics and medical his-
tory were collected by trained study personnel at the
baseline visit.

Study Design

Randomization was stratified by sex and race/ethnicity
and participants were assigned to either the restorative
yoga intervention or the active stretching group. Both
interventions were delivered in a group setting twice
weekly for the first 12-weeks, then weekly for 12-weeks,
then monthly for the remainder of the trial. In addition,
all participants received a presentation on healthy behav-
iors, including nutrition and physical activity
information.
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Clinical Data Collection

Clinical data were collected at baseline, 3-, 6-, 9-, and
12-months. Participant weight was measured on a stand-
ard balance beam scale and height using a stadiometer.
Waist circumference was measured using a Gullick II
tape spring-tension measure at the site of maximum cir-
cumference midway between the lower ribs and the an-
terior superior iliac spine. The mean of two waist
circumference measurements was calculated. Body mass
index (BMI) was calculated as weight in kilograms di-
vided by height in meters squared.

FBG was measured using an automated analyzer with
an immobilized enzyme biosensor (YSI 2300 STAT Plus,
YSI Life Sciences, Yellow Sprints, OH). Total cholesterol,
triglycerides and HDL-cholesterol were measured by en-
zymatic calorimetric methods (Quest Diagnostics, San
Jose, CA), and LDL-cholesterol was calculated using the
Friedewald equation [16]. Blood used for banking of
plasma was collected by venipuncture into vacutainers
containing the preservative EDTA, centrifuged at 4 °C to
separate plasma from cellular blood components, and
stored at -80 °C.

Molecular Data Collection

Plasma specimens were banked at the same time points
as when clinical data were obtained (i.e., baseline, 3-
months, 6-months, 9-months, and 12-months) for the
parent trial. The Firefly Bioworks Multiplex Circulating
MicroRNA Assay (Abcam, MA) was used for direct
quantification of miRs from plasma at all five timepoints.
MiRs were hybridized to complementary oligonucleo-
tides covalently attached to encoded hydrogel micropar-
ticles. The bound target was ligated to oligonucleotide
adapter sequences that serve as universal PCR priming
sites. The miR-adapter hybrid models were then dena-
tured from the particles and reverse transcription poly-
merase chain reaction (RT-PCR) was performed using a
fluorescent forward primer. Once amplified, the fluores-
cent target was rehybridized to the original capture par-
ticles and scanned on an EMD Millipore Guava 6HT
flow cytometer (Merck KGaA Darmstadt, Germany). Ex-
pression levels of 59 miRs (Supplemental Table 1) were
measured from plasma specimens collected at each of
the five timepoints on a subset of 86 participants from
the PRYSMS trial. The selection of these 59 miRs was
based on a previous discovery analysis from a larger set
of miRs in an independent subset of participants from
the PRYSMS trial (manuscript in press). In this discovery
analysis, expression levels of 336 reliably detectable cir-
culating miRs were measured on a subset of 10 partici-
pants in 2016 and 402 reliably detectable circulating
miRs were measured from an additional subset of 10
participants in 2018. The 59 samples included in the
study described in this manuscript represent the union
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of all miRs that were significantly differentially expressed
between individuals with normal and stable FBG levels
compared to those with elevated and highly variable
FBG over the 12-month trial period in the discovery
analyses. All miRs and all sample wells included in this
experiment passed quality control measures, which in-
cluded a signal > 1,000 arbitrary units or detection of a
spike-in control and a blank signal from particles with
no microRNA probes.

The study described here included the subset of par-
ticipants with banked plasma specimens from the base-
line study visit with availability of at least two additional
follow-up timepoints (n = 82). Samples were not previ-
ously thawed.

Statistical Analysis

Descriptive statistics were calculated to examine and
evaluate the demographic and clinical characteristics of
participants. (R, 2019) Means and standard deviations
are reported for continuous variables and counts and
percentages are reported for categorical variables. Com-
parisons between the intervention and control groups
used independent groups Student’s t-test for continuous
variables and chi-squared tests for categorical variables.
Missing values for FBG were imputed using the mean
FBG for the individual participant.

The absolute number and range of copies of individual
miR that occur in a biological sample, as estimated using
the flow cytometry-based Firefly assay in arbitrary units
(AU), can vary considerably. To control for the differ-
ences in the scale of the miRs measured by AUs, miRs
were standardized using z-scores to facilitate cross-miR
comparisons of estimates of association with FBG
measures.

A limitation of approaches to adjustment for multiple
comparisons is that they may not be appropriate given
the underlying assumption that all tests are independent,
whereas the roles of individual miRs associated with a
given physiological process are likely not independent.
In this study, we applied a data-driven approach to de-
termine which combination of miRs (of all possible com-
binations of the 59 measured miRs) accounted for the
largest estimated proportion of the variability (ie., R
value) for both FBG after 12-months and change in FBG
from baseline to 12-months. MiRs were used in linear
models alone and then with adjustment for statistically
relevant covariates. Models were fit overall and by inter-
vention group. For the analyses stratified by group, p <
0.10 was used as a criterion for selection in order to
identify miR predictors that might otherwise be missed
because of multicollinearity. [17] Estimates of association
and statistical test of significance for each covariate and
the overall models are reported. All statistical modeling
was done using Stata version 16.1, College Station, TX.
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Expression of individual miRs was normalized using
the set of miR probes (i.e., hsa-miR-92a-3p, hsa-mir-93-
5p, hsa-miR-17-5p) identified by the geNorm algorithm
for each experiment. [18] All included miR targets
passed quality control measures and were retained in the
analysis.

For the miRs that were included in the models, box
and whisker plots were created in order to assess the
overall variability in individual miRs (Microsoft Excel
2019, Redmond WA).

The TargetScan database was used to identify pre-
dicted messenger RNA (mRNA) targets of the miRs that
were identified as optimal predictors of FBG and identify
which miRs are within families. [19]

Results

Participant Characteristics

A total of 82 participants from the PRYSMS trial were
included in this analysis. The mean age was 55 + 7 years,
the majority identified as female (73 %) and White
(70 %) and had a college degree or higher level of educa-
tion (66 %). The study sample was obese with a mean
BMI of 35.1 +7.2 kg/m?> Overall, the group met the cri-
teria for prediabetes with a mean FBG of 104 + 13 mg/
dL. Additional demographic and clinical characteristics
in the overall sample and by intervention group are
shown in Table 1 and Supplemental Tables 2 and 3. In
this subset of 82 participants from the PRYSMS trial,
FBG at baseline was 105 + 13 mg/dL in the intervention
group compared to 100 + 11 mg/dL in the control group
(p=0.08). The change in FBG over 12-months was —
4+ 10 mg/dL in the intervention group compared to 9 +
40 mg/dL the control group (p < 0.05).

Associations Between miRs and FBG

Of the 59 measured miRs, none were independently as-
sociated with FBG after 12-months or the change in
FBG after 12-months in univariate models.

Using a general linear model, 14 miRs (let-7c, miR-17,
miR-20b, miR-22, miR-92a, miR-93, miR-106b, miR-
167d, miR-192, miR-197, miR-296, miR-342, miR-363,
miR-374b) were identified as the optimal set of miR pre-
dictors of FBG at 12-months with an overall model R-
squared of 0.754 (p <0.001) (Table 2). Addition of the
three covariates that differed between the intervention
and control group (i.e., waist and hip circumference,
weight) did not change the observed differences, nor
were these variables significant in the overall model. For
change in FBG after 12-months, 12 miRs (let-7c, miR-
17, miR-20b, miR-22, miR-92a, miR-93, miR-106b, miR-
186, miR-192, miR-296, miR-342, miR-374b) were iden-
tified as the optimal set of predictors with an overall
model R-squared of 0.731 (p<0.001) (Table 2). To
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Table. 1 Demographic and Clinical Characteristics of the

Sample
n (%) oraverage * standard deviation n=82
Age (years) 55+ 7
Male sex (n) 22 (27)
Completed College 54 (66)
Race
Asian 11 (13)
Black 45
Latin 8 (10)
White 57 (70)
Other/Mixed 22
Glucose (serum) (mg/dL) 104 £ 13
Total Cholesterol (mg/dL) 206 + 39
Triglycerides (mg/dL) 167 £ 63
LDL Cholesterol (mg/dL) 125+ 35
HDL Cholesterol (mg/dL) 49 £ 11
Body Mass Index (kg/m?) 351472
Waist Circumference (cm) 110+ 13
Hip Circumference (cm) 117 £12
Weight (pounds) 211 +43
Systolic Blood Pressure (mmHg) 124 + 15
Diastolic Blood Pressure (mmHg) 72+8

cm centimeters; dL deciliters; HDL high density lipoprotein; kg kilograms;
LDL low density lipoprotein; m meters; mg milligrams; mmHg millimeters
of mercury

facilitate interpretation of single unit changes in miR ex-
pression (in AU) to single unit change in FBG (mg/dL),
non-standardized values for individual miRs that were
significant predictors in the models are shown in
Table 3.

There was no statistically significant interaction with
intervention group for FBG at 12-months or change in
FBG over 12 months. However, in stratified analyses by
intervention group, there were some differences in the
subset of miRs identified as the optimal predictors of
FBG. The active control group retained five miRs that
were independently statistically significant (i.e., let-7c,
miR-92a, miR-93, miR-363, miR-374b), whereas the
intervention group retained only two miRs (miR-92a,
miR-93) with independent statistical significance (p < 0.1
for all). These associations were the same for both FBG
outcomes (ie., at 12 months, change from baseline at 12
months) (Supplemental Tables 4 and 5).

The full list of all predicted mRNA targets of miRs
identified in the models is shown in Supplemental
Table 6. There are a total of 11,584 predicted miR-
mRNA pairings. Some of the identified miRs in both
predictive models are within families. There two sets of
families identified. The first includes miR-17-5p, miR-
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Table 2 Standardized® MicroRNA Predictors of Fasting Blood Glucose

Fasting Blood Glucoseat 12-Months

Change in Fasting Blood Glucose after 12-Months

R%(p-value) 0.754 (p < 0.001) 0.731 (p <0.001)

B SE p-value B SE p-value
(Constant) 116.835 9455 <0.001
let-7c-5p 57.793 17.213 0.006 36473 15.538 0.039
miR-17-5p 103.369 56.573 0.095 115.762 51.070 0.045
miR-20b-5p -44.197 19.784 0.047 -46.590 17.859 0.024
miR-22-3p 54453 21.730 0.029 40.900 19616 0.061
miR-92a-3p 153475 75.753 0.068 155.501 68383 0.044
miR-93-5p 109430 47467 0.042 102.078 42.849 0.036
miR-106b-5p -36.680 12.263 0.012 -26.795 11.070 0.034
mir-186-5p -10.961 22123 0.283 -12.247 23.123 0456
miR-192-5p -57.402 21.394 0.021 -41.995 19.312 0.052
miR-197-3p 82.176 32636 0.029
miR-296-5p 42.881 13913 0.010 35448 12.560 0.017
miR-342-3p 29.558 11615 0.027 25671 10485 0.032
miR-363-3p 24191 11.045 0.051
miR-374b-5p 40.072 22111 0.097 36.522 19.960 0.094

“Because expression levels measured by flow cytometry cannot be directly compared between individual microRNAs, all microRNA values were standardized to z-
scores so that the mean expression level is equal to zero and a 1-unit change is equal to one standard deviation from the mean

B beta value; SE standard error

20b-5p, miR-93-5p, and miR-106-5p. The second in-
cludes miR-92a-3p and miR-363-3p.

Discussion

This study assessed whether microRNAs were significant
predictors of FBG after a 12-month behavioral interven-
tion in participants with prediabetes. Using linear mod-
elling, we assessed both FBG at 12 months and the
change in FBG after 12 months and identified 14 and 12
miRs that were statistically significant predictors, re-
spectively. The models overall accounted for significant
variability in both FBG outcomes (i.e., R%>0.7). While

no evidence of statistical interaction by intervention
group was observed, three miRs were significant predic-
tors of FBG in the active control group but not the
intervention group, suggesting the effects of the inter-
vention on FBG may be mediated by miRs. Finally, we
assessed the variability of the significant miR predictors
from the model for FBG after 12 months and identified
miRs with the greatest variability and potential for a
greater physiological range.

Prior studies have typically focused on the associations
of single miRs with T2DM and related outcomes based
on a priori hypotheses or agnostic hypothesis-generating

Table 3 Non-standardized microRNA values associated with fasting blood glucose outcomes

Final Fasting Blood Glucoseat 12-Months

Change in Fasting Blood Glucose after 12-Months

R?(p-value) 0.873 (p <0.001) 0.734 (p < 0.001)
B SE p-value B SE p-value

miR-106b-5p -0.007 0.009 0431 -0.010 0.013 0431
let7c-5p -0.003 0.009 0.763 -0.007 0.015 0.659
miR-20b-5p -0.003 0.004 0.529 0.003 0.006 0.664
miR-296-5p -0.184 0.091 0.045 -0.237 0.150 0.120
miR-342-3p 0.020 0017 0257 0.068 0.028 0.019
miR-92a-3p 0.023 0.003 0.000 0.022 0.003 0.000
mir-93-5p 0.021 0.005 0.000 0.021 0.004 0.000
miR-17-5p 0.016 0.004 0.000 0014 0.003 0.000

B-values represent single unit change in flow cytometry-measured fluorescence signal (arbitrary units (AU)) that corresponds to a single unit change in

FBG (mg/dL)
B beta; FBG fasting blood glucose; SE standard error
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approaches with correction for multiple comparisons. In
contrast, we sought to use linear modelling to derive the
set of miRs that was the most accurate for prediction of
FBG outcomes. There is a growing consensus that miRs
act synergistically through co-regulation of individual
genes and sets of genes that have related functions or
are co-located in biological pathways. [20] A limitation
of the agnostic approach with adjustment for multiple
comparisons is that it may not be appropriate given the
underlying assumption that all tests are independent,
whereas the roles of individual miRs associated with a
given physiological process are likely not independent.
In this study, we applied a data-driven approach to de-
termine which combination of miRs accounted of the
largest estimated proportion of the variability for both
FBG after 12-months and change in FBG from baseline
to 12-months. This approach not only allows for greater
statistical power by including a set of miR predictors,
but also offers the possibility of identifying sets of miRs
that may co-regulate genes, sets of genes, and biological
pathways that underlie risk for T2DM. For example,
both miR-192 and miR-20b target components of per-
oxisome proliferator activated receptor gamma (PPARG)
[21], which is located in the Type II diabetes mellitus
pathway [22]. PPARG is primarily expressed in adipose
tissue, has a role in regulation of adipocyte differenti-
ation, and has been associated with risk for obesity and
T2DM. [23] In addition, this receptor is the target of the
thiazolidenidone class of medications that are used to
improve insulin sensitivity and decrease risk for T2DM
or control FBG in individuals diagnosed with T2DM. In
silico analysis of the predicted mRNA and biological
pathway targets of the sets of miRs associated with FBG
may provide additional information about larger net-
works that underlie risk for T2DM. Further, the miRs
identified by these models are potential therapeutic tar-
gets that may be able to impact multiple mechanisms
underlying risk for T2DM.

For most miRs, the complete biological implications
are not fully known. This study validated a subset of the
findings observed in our preliminary discovery analysis
of an independent subgroup of participants from the
PRYSMS study sample. For example, in an independent
sample, miR-192, miR-93, and miR-197 were previously
found to be associated with variability (i.e., individuals
showing high variability in FBG compared to individuals
with stable FBG) over 12-months. We also previously
observed cross-sectional associations between miR-106b
and miR-22 and baseline FBG. [24] In another study
sample, we observed associations between miR-197 and
glycemic progression over 12-months [12] and let-7c
and 106b showed changes in expression following a 3-
month behavioral intervention for weight loss [24].
There is evidence that miR-93 has a role in processes
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related to T2DM, including insulin resistance and subse-
quent polycystic ovarian syndrome [25], and a prior
genome-wide association study found an association
between insulin like growth factor binding protein 5
(IGFBPS), which is a mRNA target of miR-197, and adi-
pose tissue volume in women. [26] Our own recent in
silico analyses of the 57 miRs evaluated here showed
clear enrichment of target genes on pathways relevant to
T2DM. For example, AKTI is a mRNA target of miR-
192. AKT1 is highly expressed in the pancreas and liver,
both of which are related to the pathophysiology of
T2DM, including skeletal muscle uptake of glucose,
glucose metabolism and lipogenesis in adipose tissue,
and hepatic glucose production. [27] Multiple studies
showed decreased expression of miR-106b following bar-
iatric surgery. [28] MiR-106b is associated with GLUT4
expression and translocation in response to insulin-
induced glucose uptake in skeletal muscle. [29] In vitro
studies of human adipocyte differentiation showed con-
sistent changes in expression of miR-106b in mature adi-
pocytes compared to their precursors, and miR-106b
targets genes located in pathways associated with adipo-
cyte differentiation. [30]

For the remaining miRs associated with FBG, the bio-
logical functions are less clear, but associations with
T2DM and related conditions have been reported. MiR
let-7c is as a potential therapeutic target to mediate the
activity of transforming growth factor Bl (TGF-BI) in
diabetic kidney disease and [31] and polarization of mac-
rophages in immune responses [32]. MiR-186, [33] miR-
342, [34] miR-363, [35] miR-374, [36] and miR-92a [37]
have been identified in studies of vascular endothelial
cell function and therefore may be more related to
complications from, rather than the etiology of, T2DM.
Similarly, miR-296 appears to target sodium-glucose
transporter-2 (SGLT2) to promote wound healing in in-
dividuals with T2DM [38]. Additional studies exploring
the functional role of these miRs related to T2DM and
whether they can serve as predictive markers of not only
T2DM but also related complications are needed.

MiRs with narrow physiological ranges (i.e., low vari-
ability in expression levels) may be difficult to manipu-
late for therapeutic purposes and result in off-target
effects. Conversely, manipulation of miRs that show a
greater dynamic range may be better tolerated and more
variable miRs may be better therapeutic targets. Thera-
peutic manipulation of miRs can occur through adminis-
tration of synthetic miR mimics or inhibitors that bind
to endogenous miRs and prevent binding to their mRNA
targets. The variances of the miRs included in models
for FBG after 12-months are shown in Fig. 1. Let-7c,
miR-20b, and miR-22 show relatively greater variance
compared to others. Preliminary evidence supports asso-
ciations between miR-20b and risk for T2DM, including
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Fig. 1 Box and Whisker Plots Depicting Variability in MicroRNA Expression Levels. Within each box, the bottom border represents the 25th
percentile, the center line represents the 50th percentile, and the upper border represents the 75th percentile. The lowest horizontal line
represents the minimum, and the upper horizontal line represents the maximum. Small black circles represent outliers. Individual microRNAs are
represented on the x-axis. Arbitrary florescence units (AU) are represented on the y-axis. Because the overall range of AU was large, subsets of
microRNAs were grouped into panels. Panel A shows microRNAs with median AUs < 500. Panel B shows microRNAs with AUs between 500-1000.
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insulin uptake in skeletal muscle [39] and T2DM-related
complications including diabetic retinopathy [40] and
endothelial cell function [41]. Similarly, miR-22 has been
associated with adipose tissue mass, insulin sensitivity,
and glucose homeostasis [42] and diabetic cardiomyop-
athy [43]. Evaluation of which miRs have a high relative
variance and show evidence for associations with risk for
T2DM may prioritize which miRs may be therapeutic
targets controlling or decreasing FBG and preventing
onset of T2DM.

Three microRNAs (i.e.,, let-7c, miR-363, miR-374b)
were significant contributors to the models for both final
FBG and change in FBG in the active control group but
not the restorative yoga intervention group (Table 4).
This finding may provide some insights into the poten-
tial mechanisms underlying the effect of restorative yoga
on FBG observed in the PRYSMS trial. [13] A prior sec-
ondary analysis of the PRYSMS trial investigated the hy-
pothesis that the effect of restorative yoga may be
through decreased stress. However measures of both
perceived stress and salivary cortisol failed to support
this hypothesis. [14] MiR-363 and miR-374b have largely
been studied in relation to cancer. However, miR-374b

Table. 4 Overlapping MicroRNAs By Intervention Group and
Blood Glucose Outcome

Final FBG Change in FBG
C | C |
MicroRNAs let-7c X X
miR-363 X X
miR-374b X X
miR-92a X X X
miR-93 X X X X

C control group; FBG fasting blood glucose; / intervention group

downregulates expression of phosphatase and tensin
homologue (PTEN), which is associated with impaired
insulin sensitivity, a major risk factor for T2DM. [44] An
animal model study showed changes in spermatozoic
let-7c levels in response to a high fat diet that were
maintained in offspring and that let-7c targets mRNAs
expressed in white adipose tissue. [45] The lack of asso-
ciation of these miRs with FBG outcomes in the inter-
vention group may indicate that restorative yoga
decreases expression of these miRs in individuals who
are at risk for T2DM with potential downstream upregu-
lation of their mRNA targets and corresponding protein
products. Additional studies, including in silico analysis,
of the predicted mRNA and biological pathway targets
of the miRs that were associated with stretching but not
yoga in individuals at risk for T2DM are needed.

Conclusions

This study focused on circulating miRs that predicted
FBG at 12-months as well as change in FBG after 12-
months. This is one of the first studies to use a longitu-
dinal design to assess whether miRs can predict changes
in FBG over time. Rather than evaluating single miRs as
predictors, we used linear modelling to identify the opti-
mal subsets of miRs, which resulted in approximately
75 % of the variance in FBG outcomes explained by the
models. Among the identified miRs, several have previ-
ously been associated with risk for T2DM in other stud-
ies, and preliminary evidence suggests that others could
be related to vascular endothelial complications from
T2DM. Finally, we identified three miRs that were in-
cluded in the set of optimal predictors for the active
control group but not the intervention group. Further
exploration of the function of these miRs may provide
new insights about the poorly understood positive
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impact of restorative yoga on FBG. This study had limi-
tations. Not all participants in the PRYSMS dataset had
sufficient banked biospecimens available for inclusion in
the current study, thus the sample may not be represen-
tative of the full PRYSMS study sample. However, as
with the full PRYSMS sample, there were no significant
differences in FBG at baseline between the intervention
and control groups. We previously performed a discov-
ery analysis using an independent sample of participants
from the PRYSMS trial that measured the subset of reli-
ably detectable circulating miRs in order to inform the
selection of the 59 miR included in the design of the
custom assay used in the study described in this paper.
Additional relevant miRs may have been excluded in the
custom assay. Future studies that are powered to include
a larger number of miRs may identify these additional
relevant miRs as useful additions to prediction models.
Future directions include replication of these findings in
an independent sample to determine whether the predic-
tion models still explain a high level of variance in FBG
and functional assessment of the miRs included in the
models to further understand their potential mechanistic
contributions to risk for T2DM and responses to behav-
ioral risk reduction interventions.
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