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Summary

Owing to the large‐scale epidemic of Zika virus disease and its association with micro-

cephaly, properties that allow flaviviruses to cause nervous system diseases are an

important area of investigation. At present, although potential pathogenic mecha-

nisms of flaviviruses in the nervous system have been examined, they have not been

completely elucidated. In this paper, we review the possible mechanisms of blood‐

brain barrier penetration, the pathological effects on neurons, and the association

between virus mutations and neurotoxicity. A hypothesis on neurotoxicity caused

by the Zika virus is presented. Clarifying the mechanisms of virulence of flaviviruses

will be helpful in finding better antiviral drugs and optimizing the treatment of

symptoms.
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1 | A BRIEF INTRODUCTION TO
FLAVIVIRIDAE AND NERVOUS SYSTEM
DISEASES

The name “flavivirus” is derived from the Latin word “flavus,” meaning

yellow, because of the jaundice caused by yellow fever virus (YFV).

Flaviviruses are primarily transmitted by arthropods. Symptoms of fla-

vivirus infection can range from mild fever and malaise to fatal

encephalitis and haemorrhagic fever.1

Viruses in the genus Flavivirus, which contains more than 70

viruses, including the Japanese encephalitis virus (JEV), YFV, West

Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV)

(Table 1), pose a serious threat to human health.2-7 Of these viruses,

ZIKV can be transmitted through sexual intercourse8-10 and blood
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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donation,11 increasing the concern about possible outbreaks of ZIKV

disease. By contrast with other flaviviruses, a neurological presenta-

tion of disease occurs more often with ZIKV disease. In addition to

neurological symptoms such as Guillain‐Barré syndrome, brain

malformations in children born to mothers infected during preg-

nancy, including encephalitis, myelitis, and microcephaly, have been

identified.12 Microcephaly is a disease involving impaired prolifera-

tion and death of cortical progenitors in the brain, which can lead

to varying degrees of mental retardation.13 The appearance of micro-

cephaly14 has made ZIKV neuropathy a focus of attention world-

wide. Recent publications indicate that other emerging neurotropic

flaviviruses may share the capacity for transplacental transmission

with ZIKV, as well as the potential to infect growing fetuses and

affect their development.15 In this review, we describe progress in
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TABLE 1 Mosquito‐borne flavivirus classification

Cluster Serocomplex Virus

Mosquito‐borne Japanese encephalitis West Nile
Kunjin
Japanese encephalitis
Murray Valley encephalitis
St. Louis encephalitis

Dengue Dengue‐1
Dengue‐2
Dengue‐3
Dengue‐4

None Yellow fever

Selected serocomplexes (serological classification) and flaviviruses are
shown in the table.
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understanding neurologic diseases caused by several species of

flaviviruses that can provide new directions for the study of neuro-

logical diseases and suggest mechanisms that underlie the neurotox-

icity induced by ZIKV.
2 | POSSIBLE MECHANISMS BY WHICH
FLAVIVIRUSES PENETRATE THE
BLOOD‐BRAIN BARRIER

The flaviviruses presented in this paper can produce neuropathy, with

brain lesions being the most prominent neurologic effect. Research on

the penetration of flaviviruses through the blood‐brain barrier has

increased. Notably, JEV16 and DENV17 have been found to cross the

blood‐brain barrier and cause encephalitis.

2.1 | Effects of inflammation

Inflammation and subsequent breaches in the blood‐brain barrier play

an important role in JEV invasion of the central nervous system

(CNS).18 Infection of microvascular pericytes in the brain can induce

and/or amplify neuroinflammation caused by JEV infection.19
FIGURE 1 Schematic diagram of the extracellular effects of West Nile vir
(OPN), which recruits polymorphonuclear neutrophils (PMNs), increasing t
the release of interferon (IFN), allowing the virus to penetrate the blood‐b
Researchers have found that the inflammatory chemokine osteopontin

(OPN) can loosen the blood‐brain barrier in mice and promote WNV

nerve invasive infection (Figure 1).20 The study found that interferon

(IFN) signalling regulates permeability of the blood‐brain barrier after

WNV infection.21 Some researchers have found that WNV affects the

activation of the JAK‐STAT pathway by reducing the steady‐state level

of tyrosine phosphorylation, antagonizing the immune response induced

by IFN (Figure 1).22 Thus, we speculate that inflammation may assist the

entry of flaviviruses and allow them to infect brain tissues.
2.2 | Apoptotic effects

High JEV loads have the potential to subvert host cell apoptosis by

deactivating proapoptotic proteins.23 In addition to causing inflamma-

tion, apoptosis damages barrier cells to increase the effects of inflam-

mation, magnifying the resulting neuropathies.
2.3 | Gate theory

DENV destroys endothelial cells and forms vacuoles in brain tissue.24 A

number of researchers found that the virus activates endothelial cells

and affects the structure and function of the blood‐brain barrier, which

promotes immune cell migration to benefit the virus.17 The result is

similar to the “gate theory” proposed by Andre Barkhordarian and

other researchers. The “door theory” argues that DENV infection and

immune activation openTH17/TH9‐controlled gates and destroy close

connections between endothelial cells that comprise the blood‐brain

barrier, so that immune cells and immune factors can penetrate the

barrier,25 causing inflammation and allowing the virus to enter the

brain. To a certain extent, changes in the permeability of the blood‐

brain barrier have been shown to be closely related to the gate theory.
us (WNV). WNV can induce the inflammatory chemokine osteopontin
he inflammatory effects (as shown on the left). WNV can also reduce
rain barrier (shown on the right)



CHEN ET AL. 3 of 12
2.4 | Additional mechanisms

There may be additional mechanisms that assist WNV infection of

endothelial cells or the choroid plexus epithelium and passively trans-

port the virus to the CNS. WNV infects olfactory nerves and spreads

to olfactory bulbs, entering through a “Trojan horse mechanism.”20

Infected immune cells transport the virus to the CNS, and infected

neurons are relayed to other neurons by retrograde transport.25

Human trophoblasts constitutively release type III IFN, which pro-

tects trophoblast and nontrophoblast cells from ZIKV infection. How-

ever, this study could not determine whether ZIKV passes through the

placenta through other means.26 One study suggests that DENV, YFV,

and ZIKV have similar tropisms for trophoblasts. ZIKV infection

decreases the levels of IFN and increases the inflammatory immune

response in trophoblasts; placental inflammation, in turn, leads to neo-

natal brain damage and the risk of premature birth.27

Therefore, research on barrier mechanisms is critical. Destruction

of the barrier may result in a variety of injuries; therefore, the gate

theory deserves further attention.
3 | NERVOUS SYSTEM TARGET CELLS
INFECTED BY FLAVIVIRUSES

Flaviviruses infect human nervous system cells, causing neurological

damage. Research on the target cells in the nervous system that are

infected by flaviviruses helps us to understand the causes of neurolog-

ical symptoms.
3.1 | Neural progenitor cells

JEV was found to suppress the cycling of neural progenitor cells

(NPCs), preventing their proliferation.28 Regarding the differentiation

neural stem/progenitor cells (NSPCs), neuronal and astrocyte differen-

tiation both appear to be severely affected.29 Researchers have also

found that DENV2 causes the death of NPCs and neurons, reducing

brain volume.30

A recent study on ZIKV showed that human NPCs (hNPCs) show

higher levels of infection (up to 90% higher) than three other

viruses.31 In addition, ZIKV infection causes cytopathic effect without

affecting cell viability, decreasing the amount of proteins secreted in

mice neural stem cell (NSC) supernatants.32 This suggests that flavivirus

infection may cause the depletion of neural precursors and/or the

differentiation of NPCs, leading to neurological sequelae.
3.2 | Glial cells

Researchers have begun to study glial cells. White matter astrocytes

have been found to be key responders to viral infection,21,33 and ZIKV

can infect astrocytes.34 For JEV, microglia and astrocytes, especially

the primary cell types, are the more important effector cell types.35-41

In addition, human microglia infected by JEV can transmit the

virus to neighbouring cells in a contact‐dependent manner.42 Further,

microglia have been found to devour ZIKV‐infected NPCs and to
transmit the virus to uninfected NPCs.43 This is consistent with the

previously mentioned Trojan horse mechanism.

In summary, the ability of microglia to spread and increase inflam-

matory effects also supports the infection of other cells.

3.3 | Immunocytes

In conjunction with these effects, CD8+ T cells secrete proinflamma-

tory cytokines and viruses lyse nerve cells, both of which contribute

to the neuropathogenesis of WNV infection.44 CD8+ T cells may be

involved in breakdown of the barrier system, making it easier for cells

to cross the blood‐brain barrier. These cells may also be involved in

the exogenous damage of nerve cells.

3.4 | Cortical and neural cells

DENV2 can directly infect and replicate in neurons.45 ZIKV was found

to infect human embryonic stem cells (hESCs), human‐induced plurip-

otent stem cells (hiPSCs), immature cortical neurons,31 and human

organoid cortical tissues.46 This suggests that viruses might cause

direct damage to neurons, directly leading to neurological symptoms.

Although DENV2 infection is similar to that of ZIKV, deleterious

consequences of ZIKV infection in human NSCs (hNSCs),

neurospheres, and brain organoids are not apparent.47 This suggests

that ZIKV may interfere with the proliferation of nerve cells, which

may provide insight into the mechanisms of action of ZIKV.
4 | POSSIBLE MECHANISMS UNDERLYING
FLAVIVIRUS‐ INDUCED NEURONAL LESIONS

Studying the possible mechanisms of neurocytopathies caused by

flaviviruses will help clarify the mechanisms of flavivirus neurovirulence.

4.1 | Extracellular effect mechanisms

Extracellular effect mechanisms protect the body from damage and

can help the virus to infect cells, aggravating the damage. Effector

CD8+ T cells48 and IFN49 play a protective role in viral infections

and prevent nerve invasion by viruses, possibly maintaining the integ-

rity of the blood‐brain barrier. This extracellular effect may assist the

virus in causing neuronal pathological changes, and the mechanism

underlying this effect can be divided into the following components.

4.1.1 | Cell surface receptors

Researchers have identified “heat shock protein 70” (Hsp70).50 One of

these, GRP78,51 is a possible receptor for JEV entry into cells

(Figure 2). In addition, JEV may exploit dopamine‐mediated neuronal

communication to increase the susceptibility of D2R‐expressing cells

to JEV infection (Figure 2).52 Currently, studies indicate that through

a toll‐like receptor 7 (TLR7)–related mechanism, pericytes might play

a pathological role in Japanese encephalitis–associated neuroinflam-

mation by initiating and/or amplifying inflammatory cytokine expres-

sion (Figure 2).19 Glycosaminoglycans (GAGs), as JEV and ZIKV host



FIGURE 2 Mechanisms of Japanese encephalitis virus (JEV) entry. The figure illustrates the JEV cell surface receptors GRP78, D2, and TLV7, as
well as caveolin‐1–assisted entry of JEV into nerve cells
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cell entry factors,53,54 may facilitate the invasion of placental cells. This

suggests that GAGs could have an important role to play in neuropathy.

In addition, AXL is a candidate ZIKV entry receptor.55

Apart from the above receptors, JEV can invade human neuronal

cells through a caveolin‐1–dependent endocytosis pathway

(Figure 2),56 whereas DENV entry may be mediated by clathrin

(Figure 3).57 This suggests that flaviviruses have multiple routes to cell

infection, rather than a single receptor that allows cell entry. Subse-

quent to entry, viral acidification‐dependent viral replication within

nerve cells leads to neurotoxicity.

4.1.2 | Cytokines and kinases

The absence of the chemokine receptor CCR5 gene58 and receptor‐

interacting protein kinase (RIPK3)59 enhances susceptibility of cells

to viruses, resulting in increased risk of neuroinfectious diseases.

DENV can increase the production of IFN‐γ, IL‐12, and CD80, activat-

ing microglial cells to serve as antigen‐presenting cells, which in turn
FIGURE 3 Dengue virus (DENV) endocytosis mediated by clathrin.
Clathrin mediates the endocytosis of DENV, and the viruses
subsequently replicate in the cell, leading to neurotoxicity
stimulated cytotoxic T lymphocyte (CTL) proliferation and activation

(Figure 4).60 These findings suggest that cytokines promote antiviral

immune responses that limit infection and neuropathy.

Neurons in the brain are a potential source of proinflammatory

cytokines able to mediate the activation of astrocytes.61 However, a

negative feedback loop also seems to contribute to neuropathy.

Researchers have found that suppressor of cytokine signalling (SOCS)

may play a role in neuroprotection, but limiting cytokine responses

may enhance the ability of WNV and tick‐borne encephalitis virus to

spread and cause disease.62 Cytokines have a dual nature that allows

them to contribute to immunity to as well as to the pathogenicity of

viruses. Defining the roles of cytokines can allow the construction of

cytokine network maps and an understanding of the neuropathic

mechanisms of flaviviruses.

4.2 | Intracellular effect mechanisms

Understanding the mechanisms underlying intracellular effects is key

to a comprehensive evaluation of neuropathic effects that will allow

the development of antiviral therapies.

4.2.1 | Intracellular membrane structures

Neurons in the later phase of infection show structural changes in the

endoplasmic reticulum (ER) and Golgi apparatus, as well as regenera-

tive changes in membranous organelles.63 The mitochondrial protein

prohibitin and heterogeneous nuclear ribonucleoprotein hnRNPC

(C1/C2) interact with viral RNA.64 We hypothesize that flaviviruses

bind to intracellular membrane structures, affecting their functions.

Studies have revealed that ZIKV binds to intracellular membrane

structures (eg, mitochondria and vesicles).47 Further, ZIKV particles

have been detected in the nucleoplasmic compartment, and the

nuclear membrane was disrupted in ZIKV infections (Figure 5), which

has not been seen with DENV.65 In addition, ZIKV capsid protein

causes ribosomal stress.66 Changes in intracellular membrane struc-

tures may be one mechanism by which ZIKV causes serious

neuropathy.



FIGURE 4 Dengue virus (DENV)–activated
microglial cells. DENV can activate microglial
cells to become antigen‐presenting cells,
which in turn stimulated cytotoxic T
lymphocyte (CTL) proliferation and activation.
IFN, interferon

FIGURE 5 Intracellular Zika virus (ZIKV)
infection leads to ribosomal stress and
disruption of nuclear membranes. ZIKV
damages nuclear membranes and mediates
ribosomal stress, causing neuropathy. ER,
endoplasmic reticulum
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4.2.2 | Cell function

WNV may interfere with the intracellular protein degradation sys-

tem,67 and the release of S100B protein may enhance neurodegener-

ation.68 Nedd4, an E3 ubiquitin ligase highly expressed in the CNS,

attenuates JEV‐induced autophagy, negatively regulating virus replica-

tion during infection.69 JEV infection of neuronal cells leads to the

activation of sensors of ER stress mediated by XBP1 and ATF6

(Figure 6).70

ZIKV infection drastically affects the host cell cytoskeleton.71 In

addition, infected NPCs can release infectious ZIKV particles,

dysregulating cell cycle progression and increasing cell death.72

Researchers have found that pTBK1 relocation may underlie

neurodevelopmental defects associated with ZIKV infection.73 A

new report indicates that ZIKV kidnaps Musashi‐1 (MSI1) for self‐

replication and disrupts the normal developmental progression of neu-

ral stem cells.74

These findings suggest that the virus uses various means to alter

the function of cells and promote replication, which leads to nerve

dysfunction. Changes in cell function may be linked to cytokines.

Infected neurons may secrete proinflammatory cytokines61 to pro-

mote inflammation and enhance neurotoxicity.
4.2.3 | Signalling pathways

By antagonizing postreceptor intracellular signalling of IFN, along with

activation of SOCS3 expression and protein tyrosine phosphatase

activity75 in human astrocytes, p21‐activated kinase 4 (PAK4) may

regulate the JEV‐mediated inflammatory response through the

mitogen‐activated protein kinase (MAPK) and NF‐κB/AP‐1 signalling

pathways (Figure 6).76 AXL regulates the expression of SOCS155 in a

STAT1/STAT2‐dependent manner, promoting ZIKV infection in

human astrocytes.34 Thus, it appears that flaviviruses not only antago-

nize the host IFN antiviral response but also utilize intracellular signal-

ling mechanisms to support their pathogenesis.
4.2.4 | Apoptosis

The mechanisms involved in apoptosis induced by JEV include the fol-

lowing: direct neuronal infection, infection of other CNS cells such as

microglia and astrocytes, and inflammation. The mechanisms involved

have recently increased. ER stress reduces normal cellular activities64

and mixed lineage kinase domain‐like protein (MLKL)–mediated

necroptosis,77 leading to cell apoptosis.



FIGURE 6 Japanese encephalitis virus (JEV)
intracellular effect mechanism. JEV infection
uses XBP1 and ATF6 stress sensors on the
endoplasmic reticulum (ER) and the MAPK‐
NF‐κB/AP‐1 signalling pathway to support its
pathogenesis
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4.2.5 | Genes and proteins

Increased glutamate levels may be associated with oxidative stress.78

A number of pathways may be responsible for JEV infection, including

intracellular protein transport and ER stress–associated unfolded pro-

tein response.79 Researchers have also found that 13 proteins are dif-

ferentially expressed in JEV‐infected and JEV‐uninfected hNSCs

(Table 2). Viral infection of cells leads to abnormal cell function, with

abnormal proteins triggering relevant pathways.

To gain a deeper understanding of neuropathies, researchers have

conducted genetic studies. DENV can raise the level of tumour necro-

sis factor α (TNF‐α)80 and expression of 151 genes, such as those

encoding CD14, CD274, h2‐ea, Tap1, Tap2, and Stat2.81 Over 500

proteins and genes were differentially expressed with ZIKV

infection.82

It is worth paying attention to how the virus induces programmed

death, increasing the inflammatory effect.
TABLE 2 Thirteen proteins were found to be differentially
expressed in the human neural stem cells (hNS1) cell line

Spot
No. Protein ID

1 Uncharacterized protein C19orf45 (Homo sapiens) NP_940936

2 Lamin isoform D (Homo sapiens) NP_001244303

3 Prohibitin (Homo sapiens) NP_001268425

4 Mitochondrial ATP synthase, H+ transporting F1 complex beta
subunit (Homo sapiens) NP_001677

5 Calreticulin precursor (Homo sapiens) NP_004334

6 78‐kDa glucose‐regulated protein precursor (Homo sapiens)
NP_005338

7 Vimentin (Homo sapiens) NP_003371

8 Heterogeneous nuclear ribonucleoprotein C(C1/C2) (Homo
sapiens) NP_001070911

9 Zinc finger protein 224 (Homo sapiens) NP_037530

10 RNA polymerase II subunit A C‐terminal domain phosphatase
(Homo sapiens) NP_430255

11 Actin, cytoplasmic 1 (Homo sapiens) NP_001092

12 HYOU1 protein (Homo sapiens) NP_001124463

13 Nebulin‐related anchoring protein (Homo sapiens) NP_932326

A proteomic study of hNS1 cells after Japanese encephalitis virus (JEV)
infection showed that 13 proteins were differentially expressed between
infected and uninfected hNS1 cells.
5 | EFFECT OF FLAVIVIRUS GENE
MUTAGENESIS ON NEUROTOXICITY

Many proteins in flaviviruses are involved in the pathogenesis of neu-

ronal cells, such as E protein,15,50,51 capsid protein‐mediated ribosome

stress,34 and NS1 protein.30,83 Here, we will describe the effects of

various flavivirus gene mutations and their effects on nerve virulence.
5.1 | Mutations in the E protein gene

The Asn154 glycosylation site and its surrounding amino acid residues

on the surface of ZIKV may contribute to attachment of the virus to

host cells. Differences in amino acids of flaviviruses are associated

with differences in virus recognition of and attachment to receptors

on cells.84,85 Glycosylation of E protein was the main determinant of

a neuroinvasive phenotype.53,86-88

Further, revertant mutations at E107 and E138 of the E gene

resulted in greater SA14‐14‐2 virulence.89 With JEV, three substitu-

tions in domain III90 (305F → V, 326K → E, and 380R → T) showed

that neither positions 380 (380T) nor 305 (305V) independently

affected neuroinvasiveness, whereas residue 326 was found to be a

critical determinant of YFV neuroinvasiveness.91 The study also indi-

cated that changes at position 303 may be important for YFV

virulence.92

N‐linked glycosylation of the E protein is an important determi-

nant of ZIKV virulence and neuroinvasion93 (Figure 9). Substitutions

V603I and D679E were found in primary antigen region of the E pro-

tein. In addition, isoleucine at position 603 and glutamic acid at posi-

tion 679 are present in all epidemic strains of ZIKV but in none of

the pre‐epidemic strains.94 Taken together, we hypothesize that the

E gene plays an important role in the neurotoxicity of flaviviruses.
5.2 | Mutations in the pre‐M protein gene

One study has shown that determinants of flavivirus

neuroinvasiveness are entirely located in the envelope proteins pre‐

M (prM)95 and E96 (Figure 7). A single amino acid substitution (serine

to asparagine, S139N) (Figure 9) in the viral precursor membrane pro-

tein substantially increased ZIKV infectivity.97 A V153M substitution



FIGURE 7 The locations of mutations in the
yellow fever virus (YFV)–encoding gene. The
pre‐M (prM) and E proteins, coloured blue and
yellow, respectively, may harbour
determinants of neural invasion, with three
possible causative substitutions in the E
protein (305F → V, 326K → E, and
380R → T). In addition, N‐linked glycosylation
sites of E and NS1 proteins may affect
neurotoxicity
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in the region was found in all ZIKV epidemic strains. In addition, other

amino acid substitutions, K143E, S139N, A148P, H157Y, V158I,

K246R, and V262A, differed between the African and Asian line-

ages.94 These results suggest that changes in the PrM protein gene

affect flavivirus neurotoxicity.
5.3 | Mutations in nonstructural protein (NS) genes

The flavivirus NS1 glycoprotein is highly conserved and contains two

N‐linked glycosylation sites. The NS1 protein of WNV contains three

N‐chain glycosylation (n‐x‐s/T) sites in NS1(130), NS1(175), and

NS1(207).98 Researchers have found that mutants lacking the first

or two glycosylation sites88 (Figure 7) or substituting alanine in

all three glycaemic sites with asparagine98 can reduce the

neuroaggression of WNV. Further, in addition to other residues

in glycosylated sites NS1(130‐132), mutation of asparagine to serine

or glutamine can reduce the neuroinvasion and neurotoxicity of WNV

in mice.99 Other researchers have found that NS1‐p250l mutations

(Figure 8) are associated with significantly decreased neuroinvasive

toxicity.100 These studies indicate that both changes in glycosylation

and mutations in the NS1 gene affect the neurotoxicity of

flaviviruses.

The effects of wild‐type NS2A on apoptosis induced without IFN

have been verified.101 In addition, nonstructural protein NS2A of

WNV was found to be the main inhibitor of the IFN‐β promoter, and

an amino acid replacement in the NS2A gene (A30P, an alanine

replaced with proline) (Figure 8) significantly reduced its inhibitory
FIGURE 9 Locations of known mutations in
Zika virus (ZIKV) genes encoding C, pre‐M
(prM), E, NS1, and N2B proteins. The coloured
proteins may harbour determinants of neural
invasion. Substitutions in prM (S139N) and E
(V603I and D679E) may also affect
neurotoxicity

FIGURE 8 The locations of mutations in
West Nile virus (WNV) gene encoding pre‐M
(prM), E, NS1, 2A, and 4B proteins. N‐linked
glycosylation sites in E and NS1 may be

determinants of neural invasion. Substitutions
in NS1(P250L), 2A(A30P), and 4B(C102S) are
of particular interest
ability.102 Further studies have shown that viral toxicity was

reduced with the following substitutions (from high to low):

WT > A30L > A30E > A30P/A30G.

There are four cysteine residues in NS4B (residues 102, 120, 227,

and 237), and C102S mutations (Figure 8) are associated with attenu-

ation of neuroinvasive and neurotoxic phenotypes.103 Moreover, in

NS4A gene, single point mutations to alanine and a deletion mutation

of the viral protease dibasic cleavage site affect viral replication and

reduce the formation of virus particles.104

In summary, mutations in NS1, NS2A, NS4A, and NS4B may

affect the neurotoxicity of viruses.
5.4 | Other genes

Other substitutions in regions encoding proteins NS4A and NS5 and in

the 3′ untranslated region (UTR)90,94 may be virulence determinants in

neuroadapted YFV strain YF17D.105 This implicates the 3′ UTR in

neurotoxicity.

Compared with the Uganda ZIKV prototype strain, five amino acid

substitutions in the C protein (Figure 9) (N25S, L27F, R101K, I110V,

and I113V), four in NS1 (E842D, K859R, A984V, and V1026I), and

eight in NS3 and NS5 (M1970L, T2630 V, A2783V, N2892S,

K3046R, P3158S, S3219D, and D3383N) are different between the

pre‐epidemic and epidemic strains. In addition, an analysis showed a

possible recombination fragment in the NS2B coding region.94 We

can speculate that compared with earlier strains of the ZIKV, the prev-

alence of mutations in current ZIKV strains may explain why more
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recent ZIKV strains can penetrate the blood‐brain and placental bar-

riers, leading to brain lesions.

Flavivirus genes control the neurotoxicity and virulence of

flaviviruses. Studying flavivirus genes and the interactions between

virus genes and target cells will help us to understand the neurotoxic-

ity associated with species gene expression and to systematically

understand the neurotoxic effects of flaviviruses.
6 | HYPOTHESIS FOR ZIKV‐ INDUCED
NEUROTOXICITY

In the neurotoxicity hypothesis proposed in this review, flaviviruses

show differences in their neurovirulence. We propose possible mech-

anisms of intracellular effects that lead to ZIKV neurotoxicity. Accord-

ing to activation of the JAK‐STAT pathway22, the STAT2 gene82 will
FIGURE 10 JAK‐STAT pathway in Zika virus
(ZIKV)–infected neurons. Sustained
hyperactive JAK‐STAT signalling and low
suppressor of cytokine signalling (SOCS)
expression may contribute to ZIKV
neuropathy

FIGURE 11 Illustration of a virus
penetrating the blood‐brain barrier. This virus
can cause cell apoptosis, decrease
inflammation, and open gates, allowing the
virus to enter and damage nerves. IFN:
interferon

FIGURE 12 Flaviviruses in a nerve cell
schematic. Flaviviruses may bind with high
affinity to nerve cells, entering cells through
multiple routes, increasing the sensitivity of
nerve cells to infection



FIGURE 13 The cellular effect hypothesis.
Flaviviruses may be linked cell membrane
structure (mitochondria and vesicles), leading
to ribosomal stress and so on eventually
apoptosis. ER: endoplasmic reticulum
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be upregulated and the STAT1/STAT2 pathway35 will be activated.

We speculate that the JAK‐STAT signalling pathway plays a role in

the effects observed in ZIKV‐infected neurons.

ZIKV binds to nerve cell membrane receptors and deactivates the

JAK‐STAT pathway. STATs phosphorylated by JAK regulate the

expression of cytokine genes such as IFN. The presence of ZIKV and

type II IFN activate STAT2, resulting in sustained hyperactive JAK‐

STAT signalling and low SOCS expression. This eventually leads to

abnormally active target cells and promotes the replication of ZIKV

in these cells, resulting in neurotoxic lesions (Figure 10).
7 | SUMMARY

Flaviviruses can penetrate the blood‐brain barrier through various

means (Figure 11). For example, perivascular pericytes that are

infected with flaviviruses recruit inflammatory cytokines and open

TH17/TH9‐controlled gates to increase the permeability of the

blood‐brain barrier. Paths to penetrate the blood‐brain barrier are

diverse, and flaviviruses are likely to have various mechanisms that

lead to neuropathy.

Flaviviruses may enter nerve cells through various routes

(Figure 12), including through high‐affinity interactions with cell mem-

brane receptors (eg, GRSP78) or cavolin. Following these interactions,

cells are susceptible to flavivirus infection.

There are several explanations for neuropathic effects of flavivirus

infection (Figure 13), such as the virus induces apoptosis and depletes

cells of important proteins, altering normal cell function. There also

may be a “Trojan horse mechanism.”

We can draw on similarities of these viruses to better understand

the mechanism of action of flaviviruses in the nervous system. With

additional research, we will elucidate the mechanism of

neurovirulence of flaviviruses to develop more effective antiviral drugs

and optimize treatment of diseases associated with these viruses.
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