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Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and

one of the leading causes of morbidity and mortality worldwide. It is characterized by

persistent respiratory symptoms and airflow limitation due to abnormalities in the lower

airway following consistent exposure to noxious particles or gases. Acute exacerbations

of COPD (AECOPD) are characterized by increased cough, purulent sputum production,

and dyspnea. The AECOPD is mostly associated with infection caused by common cold

viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable

Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost

half of the infective exacerbations caused by bacteria. This is supported by reports that

NTHi is commonly isolated in the sputum from COPD patients during exacerbations.

Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic

adaptation and virulent mechanisms that are developed over time to cope with changing

environmental pressures in the airway such as host immuno-inflammatory response.

Chronic inhalation of noxious irritants in COPD causes a changed balance in the

lung microbiome, abnormal inflammatory response, and an impaired airway immune

system. These conditions significantly provide an opportunistic platform for NTHi

colonization and infection resulting in a “vicious circle.” Episodes of large inflammation

as the consequences of multiple interactions between airway immune cells and NTHi,

accumulatively contribute to COPD exacerbations and may result in worsening of the

clinical status. In this review, we discuss in detail the interplay and crosstalk between

airway immune residents and NTHi, and their effect in AECOPD for better understanding

of NTHi pathogenesis in COPD patients.

Keywords: airway, COPD, exacerbation, immune response, infection, inflammation, non-typeable Haemophilus

influenza

INTRODUCTION

The lungs are vital organs involved in gas exchange between the vascular system and the
external environment, thus they are greatly exposed to the environment-derived microorganisms,
including fungi, viruses, and bacteria. The bronchial tree and parenchymal tissues of the lungs,
that until recently were considered as sterile, are colonized by phylogenetically-diverse microbes.
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The genera of Firmicutes, Bacteroidetes, and Proteobacteria
are the most common phyla identified and represent 60%
of the total bacterial microbiome in the healthy airway (1,
2). The majority of the lung microbiota belongs to the
normal flora that play an important role in the pulmonary
epithelial integrity, colonization resistance, and homeostasis of
the immune system in the respiratory tract (3). A small fraction
of them are, however, potentially pathogenic microorganisms
that are involved in a variety of lung diseases, as exemplified by
the genus Haemophilus. Non-typeable Haemophilus influenzae
(NTHi) is a Gram-negative coccobacillus that are commonly
residing in the human airways. Uniquely and yet unexplained,
NTHi is a commensal when colonizing the nasopharynx or
throat, but pathogenic in the lower airways triggering a robust
inflammatory response [for reviews see (4, 5)]. NTHi is
considered a potential opportunistic pathogen as it frequently
infects the lower respiratory tract of lungs with structural damage
as a consequence of non-infectious lung diseases or mechanical
injuries. Moreover, NTHi occasionally causes bronchitis and
pneumonia (6). In addition, lower airway colonization by NTHi
has been associated with disease progression of several more
or less non-infectious lung diseases such as bronchiectasis (7),
cystic fibrosis (8), interstitial lung diseases (9, 10), but mostly
in chronic obstructive pulmonary disease (COPD) (11, 12).
COPD is a severe inflammatory lung disease characterized
by airflow limitation with a range of pathological changes.
Both genetics and environmental factors trigger the onset of
COPD, however, microbes including NTHi play an important
role in the acute exacerbations. This review describes the
disease progression of COPD in the context of host immune-
interactions linked to NTHi, and the overall impact in disease
exacerbation.

THE PATHOPHYSIOLOGY OF COPD

COPD is the third leading cause of morbidity and mortality
worldwide expected to affect more than 210 million people by
2030 (13, 14). According to the Global Initiative for Chronic
Obstructive Lung Disease (GOLD), COPD is a pulmonary
disease that is manageable, but significant exacerbations and
co-morbidities may, however, contribute to the overall severity
in individual patients (15). COPD is characterized by chronic
airflow limitation of the peripheral airways with a range of
pathological changes in the lung that are not fully reversible, and
usually become progressively worse over time. The progression
of COPD is associated with an abnormal inflammatory response
of the lung to noxious particles or gases.

From a pathological point of view, COPD comprises a group
of pulmonary abnormalities related to the inflammatory reaction
of the airways, alveoli, and pulmonary vessels (16–19). These
include (i) pulmonary emphysema, (ii) chronic bronchitis, and
(iii) disease in the small airways. The pulmonary abnormalities
progressively affect all parts of the lung, resulting in increased
resistance of the conducting airways and thus chronic airflow
obstruction that eventually will lead to a declined lung function.
Emphysema is a permanent loss of elastic lung recoil caused

by elastolytic destruction and enlargement of the alveolar wall
distal to the terminal bronchioles. This consequently results
in the loss of alveolar attachments to the small airways and
thus limitation of airflow and gaseous exchanges. Chronic

bronchitis is characterized by consecutive and chronic cough
with expectorations that last for more than 3 months within 2
years. It is associated with inflammation of the bronchial walls
with increased inflammatory infiltrates, hyperplasia of goblet
cells, hypertrophy of tracheobronchial submucosa, increased
mucous secretion and, finally, dilatation of the airway ducts
(airways of about 2–4mm in internal diameter). The majority
of the ciliated epithelium lining the airways are also either
compromised or dysfunctionnal, and may be replaced by non-
ciliated squamous epithelial cells. Small airway diseases, on
the other hand, involve hyperplasia and metaplasia of mucosal
glands and goblet cells, hypersecretion of intraluminal mucus,
macrophage bronchiolitis, and accumulation of lymphocytes in
the small bronchioles (airways of ∼2mm or less in diameter and
terminal bronchioles). In addition, distortion, fibrosis, stenosis,
tortuosities, hyperplasia, and hypertrophia of the small airway
smooth muscles also contribute to the loss of elasticity in the
lung parenchyma. Although COPD mainly affects the lungs,
it also produces significant extrapulmonary consequences as
a results of an escalated inflammatory response orchestrated
by airway cells and immune mediators (20, 21). The co-
morbidities are commonly seen in COPD patients despite the
actual mechanism responsible for the systemic inflammation
remains to be elucidated.

THE RISK FACTORS OF COPD AND
CONSEQUENCES FOR AIRWAY FUNCTION

The development of COPD is multifactorial, with cigarette
or tobacco smoking being the primary cause of COPD
(22, 23). Other risk factors that may promote the onset
and progression of COPD includes prolonged occupational
exposure to particles/gases in mining and textile industries, air
pollution resulting from biomass combustion, and bronchial
hyperresponsiveness (16, 18, 24). The variability of COPD
incidences among smokers is also explained by a genetic pre-
disposition, such as α1-antitrypsin deficiency and cutis laxa
[mutation of the elastin gene (ELN)] (25, 26). The α1-antitrypsin
deficiency is caused by deleterious homozygous mutations in
SERPINA1 which contributes to 1–2% of COPD cases. The
deficiency results in increased neutrophil elastase activity that
ultimately leads to the degradation and collapse of the alveoli.
Importantly, meta-analyses of genome-wide association studies
(GWAS) and other genotyping studies have revealed that
multiple single nucleotide polymorphism (SNPs) in at least 34
genes from different pulmonary genomic loci are associated with
COPD susceptibility (27–30).

Airway epithelium exposed to cigarette or tobacco smoke
has compromised tight junctions and delayed epithelial wound
repair (31–34). Moreover, cigarette smoke alters basal cell
differentiation and subepithelial extracellular matrix (ECM)
composition, and thus causes airway remodeling (i.e., goblet

Frontiers in Immunology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 2530

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Su et al. NTHi-Immune Response in COPD

cell hyperplasia and small airway squamous metaplasia) (35–
37). This results in mucus hypersecretion, impaired mucocilliary
clearance, and airway obstruction. Tobacco or cigarette smoke
also enhances proliferation and ECMdeposition by activating the
extracellular signal related kinase (ERK) and the p38 signaling
pathway (38). The alteration of major ECM components are
widespread in all lung compartments in COPD patients with
a total increase of type I and III collagens, fibronectin, and
laminin in parallel with reduced concentrations of proteoglycans,
perlecan decorin, versican, biglycan, tenascin and elastin (39, 40).
Cigarette induced-overexpression of matrix metalloproteases
(MMPs-1, 2, 7, 9, 12, and 28) and elastase has also been reported,
and may contribute to the airway tissue destruction and fibrosis
(41–43). In addition, harmful volatile chemicals derived from
cigarette smoke (i.e., acetaldehyde, acrolein, and crotonaldehyde)
are prone to form carcinogen adducts with DNA and various
proteins (i.e., apoliprotein E and surfactant protein A). They
also dysregulate airway epithelial ion transport, disrupt the
phagocytic activity of airway phagocytes, and diminish the airway
surface liquid volume (44–46).

Numerous proteomics and transcriptomic analyses have
unveiled the crucial impact of cigarette or tobacco smoke
and COPD disease progression on airway gene expression
(47, 48). The differential gene expression studies were done using
COPD experimental models or clinical samples [i.e., bronchial
epithelial cells, sputum, plasma, blood, and bronchoalveolar
lavage (BAL) fluid]. Collectively, most of the altered genes are
involved in oxidative stress, xenobiotic metabolism, antioxidant
responses, DNA repair, ECM remodeling, inflammatory
responses, and immune defenses, which the latter two are our
major interest of discussion in this review. The omics data
aid in the increased knowledge of molecular mechanisms in
COPD. They may reflect the dynamic response and attempts
by the airway epithelial cells to repair the cytotoxic injury
primarily triggered by inhaled irritants. Deleterious and
irreversible alterations occurring and interfering with the airway
epithelial homeostasis and immune defense may promote
COPD development and progression. Notably, gene alterations
in phagosomal- and leukocyte transendothelial migration
pathways (LTM) are significantly correlated with the level of
T cells and airway obstruction in smokers (49). The LTM,
however, were found to be further dysregulated in COPD
patients. Hence, in addition to clinical/physiology variables,
a number of gene products with significant differential
gene expression may be targeted as specific proteomic
signatures or biomarkers for early COPD detection, patient
monitoring, disease subgrouping, and finally treatment selection
(50, 51).

ALTERATION OF AIRWAY GENE
EXPRESSION AND IMMUNE RESPONSE IN
COPD

Effects of Tobacco or Cigarette Smoking
Tobacco or cigarette smoke regulates airway gene expression via
two main mechanisms, by altering the status of (i) chromatin

remodeling, and (ii) DNA methylation of the target genes
(Figure 1) (52–54).

Chromatin remodeling is a result of a disrupted balance
in histone acetylation/deacetylation (55). Excessive activation
of more than 20 transcription factors including NF-κB, and
lipoprotein peroxidation products (peroxinitrite, acrolein, and
4HNE from tobacco smoking) contributes to such anomaly.
NF-κB is a key inflammatory and redox-sensitive transcription
factor that plays a direct role in cigarette smoke-induced
airway inflammation. NF-κB has been described as a “smoke-
sensor” due to its sensitive activation by tobacco residues
(56). Stimulation of multiple signaling cascades [p38 mitogen-
activated protein (MAPK) kinases, mitogen and stress-activated
kinase 1 (MSK1), protein kinase C zeta (PKCζ), and IκB
kinase (IKK) complex (IKKα, IKKβ, and NEMO)] by tobacco
residues promotes the activation and nuclear translocation of
transcription factor NF-κBRelA/p65 (54, 57–64). This is followed
by a complex formation of NF-κB/CBP-p300 [coactivator, CREB-
binding protein (CBP) or CBP/p300] at target DNA sequences.
It should be noted that CBP/p300 also has intrinsic histone
acetyltransferase (HAT) activity. Subsequent acetylation and
phosphorylation of the subunit p65 in the NF-κB/CBP-p300
complex by the activated MSK1/PKCζ-signaling pathways (and
other 11 different kinases), and CBP/p300, respectively, are
required for the full activation of NF-κB (57, 60, 63). This
enhances the DNA binding affinity of the complex. Histones H3
and H4 in the chromatin complex of target sequences are then
being acetylated (histone H3 at Lys9; H4 at Lys8 and Lys12)
and phosphorylated (histone H3 at Ser10) by the subunit CBP
of the NF-κB/CBP-p300 complex, and the activated MSK1 and
PKCζ, respectively. The hyperacetylated core histones, however,
fail to be neutralized or deacetylated by a dysfunctional histone
deacetylase (HDAC2). Peroxinitrite nitrates the tyrosine residues
of the HDAC2 and causes inhibition of activation and reduced
expression of the protein. Of note, peroxinitrite is a by-product
generated from the immune cell-derived nitrite oxide (NO) and
reactive oxygen species (ROS) of cigarette smoke (65, 66).

Cigarette or tobacco smoke disturbs the DNA methylation
status of target genes through several mechanisms. Firstly,
DNA damage caused by cigarette smoke stimulates the
DNA methyltransferase 1 (DNMT) to actively induce CpGs
methylation at the damaged site (67). The hypermethylation is
prone to introduce error of methylation in some target genes,
resulting in reduced gene expression. Secondly, activation of
nicotine signaling pathway by tobacco smoke causes CaMKII/IV
and ERK/MAPK pathway activation that subsequently induces
the activity of CBP to suppress the expression of DNMT1. This
may result in reduced DNA methylation and thus altered level of
gene repression by DNMT (68–70). Finally, enhanced activities
of transcription factors such as hypoxia inducible factor 1 due to
the high level of carbon monoxide and hypoxia have also been
reported to influence airway gene expression (71).

Consequently, the combinatorial effect from both aberrant
acetylation of histone and DNA methylation promotes the
transformation of chromatin from a condensed structure
to an activated open conformation. This facilitates irregular
accessibility of DNA for transcription machineries, hence
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FIGURE 1 | Cigarette and tobacco smoke has several effects on gene regulation. Nicotine and other compounds in the smoke alter gene expression by two

pathways, firstly, chromatin remodeling (Left) and secondly, DNA methylation (Right). Chromatin remodeling involves activation of kinases signaling pathways,

activation and nuclear translocation of transcription factor NF-κB (RelA/p65), and complex formation with CBP/p300 on specific DNA sites. CBP/p300 is intrinsically a

histone acetyltransferase (HAT). Subunit p65 is further phosphorylated at Ser276 and Ser311, respectively, by MSK1 and PKCζ, whereas CBP acetylates p65 at

Lys310. The phosphorylation and acetylation enhance the interaction within the NF-κB/CBP/p300 complex while stabilizing the DNA binding of NF-κB. The complex

of NF-κB/CBP/p300 then modifies the histones through CBP-mediated acetylations of histone H3 (at Lys9) and H4 at Lys 8 and Lys12, and phosphorylation of H3 at

Ser10 by MSK1 and PKCζ. This results in the structure change of chromatin, from a condensed structure (repressed) to an activated open conformation. The

transcription of target genes is therefore increased. In the second mechanism, several side effects resulting from cigarette smoking such as DNA damage and nicotine

signaling could trigger the hypermethylation or decreased methylation of target DNA. This may lead to DNA methylation anomalies and thus altered DNA expression.

Resulting hypoxia due to high concentrations of carbon monoxide also contributes to altered gene expression. The aberrant gene expression by cigarette smoke

mostly occurs in pro-inflammatory genes with resulting increased production of inflammatory mediators, and amplified inflammation in the COPD lung upon exposure.

irregular gene expression by various cell types in the airway. The
mechanisms reported are responsible for increased expression
of NF-κB-dependent proinflammatory gene products [i.e., IL-
1β, IL-6, IL-8, CCL-5 cyclooxygenase (COX)-2, and MIP-
2/CXCL2] in both pulmonary structural cells (bronchial, small
airway, and alveolar epithelial cells) and immune cells (alveolar
macrophages), increased VEGF and iNOS in nasal fibroblasts and
lymphocytes (Jurkat T cells), respectively, and decreased activity
of antioxidant transcription factor Nrf2 and α1-antitrypsin in
bronchial epithelial cells (54, 56, 57, 59, 62–64, 72–79). These
may contribute to the anatomical anomalies in the airway and

excessive inflammatory responses among smokers during the
course of COPD.

The Inflammatory Immune Response in
COPD
COPD is associated with chronic inflammation in the peripheral
airways orchestrated by both innate and adaptive immune
responses that are interconnected via dendritic cells (80).
Increasing numbers of inflammatory cells (neutrophils,
macrophages, T and B lymphocytes, mast cell, eosinophils, and
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dendritic cells) and inflammatory mediators are accumulated in
the airway lumen/wall in the lung parenchyma (19, 81). These
immune cells and inflammatory mediators can hence be detected
in the sputum and BAL fluid of COPD patients. The level of
accumulation is positively correlated with disease severity. An
increasing number of studies using animal models and clinical
tissues have reported the nature of excessive airway inflammatory
responses in COPD. Despite this, the heterogeneity in symptoms
progression among COPD patients remain unexplained. The
overall mechanism of COPD inflammatory immune response is
depicted in Figure 2.

The First Line of Defense in the Lung—The Innate

Immunity and Inflammasome
Lung structural cells (epithelial and endothelial cells, fibroblasts,
and airway smooth muscle cells) are activated by inhaled irritants
through the stimulation of several pattern recognitions receptors
(PRRs), with Toll-like receptor (TLR)-4 being reported as the
key player in most of the inflammatory responses (82–85).
This causes an increased expression and release of an array
of pro-inflammatory mediators and chemokines through the
oxidative pathway by the activated bronchial epithelial cells
and immune cells (alveolar macrophages). The inflammatory
mediators [(interleukin (IL)-1β, IL-6, IL-8, IL-33, C-X-C motif
chemokine ligand (CXCL) 10, granulocyte-macrophage colony-
stimulating factor (GM-CSF), granulocyte-colony stimulating
factor (G-CSF), tumor necrosis factor (TNF)-α, fibroblast growth
factor 1 and 2 (FGF1/2), transforming growth factor (TGF)-
β1, C-C motif chemokine ligand (CCL) 2, CCL20, and thymic
stromal lymphopoietin (TSLP)] act on recruited immune cells
and resident cells to initiate a series of innate immune responses
(23, 86–90). Meanwhile, activated alveolar macrophages, which
are usually patrolling the lung parenchyma, further release
more pro-inflammatory mediators and chemokines [IL-1β,
IL-6, IL-8, IL-23, TNF-α, CCL1, CXCL1, CXCL5 (ENA-78),
CXCL9, CXCL10, CXCL11, CCL2, leukotriene B4 (LTB4)], ROS,
elastolytic enzyme [matrixmetalloprotease protein (MMP)-2,−9,
and−12; and cathepsin-K,- L, and -S], GM-CSF, and G-CSF
(23, 91, 92). The enhanced levels of CCL2 and CXCL1 result in
recruitement of blood monocytes expressing CCR2 and CXCR2
(receptors for CCL2 and CXCL1, respectively), to the lung and
differentiate locally into macrophages. Interestingly, there are
higher expression levels of the CCR2 and CXCR2 found on blood
monocytes in COPD subjects (93). This may explain the rapid
recruitment and excessive accumulation of monocyte-derived
interstitial macrophages in the lung tissue of COPD patients
(94, 95).

Upregulation of neutrophil chemoattractors (LTB4, CXCL1,
CXCL5, IL-8, and TNF-α) induces a massive migration of
circulating neutrophils into the lung parenchyma (96). The
transmigration of blood neutrophils occurs through adherence
of the granulocytes to E-selectin of endothelial cells that is
found to be upregulated in COPD (97). This results in airway
neutrophilia in several COPD patients (96, 98, 99). The recruited
neutrophils (to the lung) are then activated to secrete granule
proteins [myeloperoxidase (MPO) and neutrophil lipocalin]
while releasing its own IL-8 for further neutrophilic recruitment

and amplification of the inflammation (100). In addition to the
macrophage-derived proteases, neutrophils also secrete serine
proteases [neutrophil elastase (NE), cathepsin G, proteinase-3,
MMP-8, and MMP-9] that are associated with serious alveolar
destruction in emphysema (101). The protease activity may
be further enhanced in conditions with genetic deficiencies or
suppressed expression of α1-antitrypsin by tobacco smoke. In
addition, NE, cathepsin G, and proteinase-3 are involved in the
stimulation of mucus secretion from submucosal glands and
goblet cells, resulting in airway mucus hypersecretion and airway
obstruction in COPD (101).

The NLRP3 (NLRP3: nucleotide-binding domain, leucine-
rich-containing family, pyrin domain-containing-3 OR Nod-like
receptor protein 3) inflammasome is a cytosolic multi-protein
complex (consisting of the inflammation sensor protein NLRP3,
adapter protein ASC, and the effector protein caspase-1) (102).
The NLRP3 inflammasomes are involved in the COPD airway
inflammation by regulating the production of pro-inflammatory
cytokines IL-1α, IL-1β, and IL-18. These cytokines are important
for neutrophil survival and activation of T helper (Th) 17
cells (103). Interestingly, local airway NLRP3 inflammasome
activation is positively correlated with acute exacerbations and
lower airwaymicrobial colonization in COPDpatients (103, 104).
Moreover, in an elastase-induced emphysema model, the NLRP3
inflammasome is activated in addition to hyperproduction of
mucin MUC5AC by diesel extract particles, extracellular ATP,
and inflammatory protein S100 (105, 106).

The Adaptive Immunity in COPD
The adaptive immunity is initiated at a later stage, and is
recognized by the increased number of T and B lymphocytes
and pulmonary dendritic cells. Dendritic cells are the major
antigen-presenting cells (APC) in the airways, and link the
innate and adaptive immunity. Circulating dendritic cells
(expressing receptors CCR2 and CCR6) are recruited to the
airway via dendritic chemoattractants CCL2 and CCL20 released
by activated airway epithelial cells in response to cigarette smoke
(107, 108). Dendritic cells act by endocytosis of inhaled irritants
that subsequently are processed into antigen peptides during
maturation and further migration to lymph nodes.

Uncommitted T lymphocytes are thereafter primed by the
presented antigen. These important cells are activated by IL-12
released from dendritic cells for subsequent commitment into
antigen-specific T cell lineages, i.e., T helper 1 (Th1; CD3+CD4+)
cells, whereas immature dendritic cells in the airway promote
Th2 differentiation (23, 109). Interestingly, in COPD patients,
pulmonary Th and cytotoxic T cells (Tc; CD3+CD8+) express
more CXCR3 receptors compared to healthy individuals (110,
111). This enhances their migration toward chemoattractants
CXCL9, CXCL10, and CXCL11 that are actively released by
alveolar macrophages in COPD subjects. Activated CD8+ T
cell subset type 1 (Tc1) releases perforins, granzyme B, and
TNF-α to induce alveolar cells apoptosis, contributing to the
emphysema (112). In parallel, pulmonary Th17 T cells are
activated by alveolar macrophage-derived IL-6 and IL-23 to
secrete IL-17A and IL-22 causing neutrophilic inflammation
(113, 114). Inflammatory cytokines are also released by type 3
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FIGURE 2 | Non-typeable H. influenzae-dependent immune responses in the lower airway of COPD patients result in inflammation. Airway epithelium exposed to

cigarette or tobacco smoke display an increased permeability with compromised tight junctions, and airway remodeling (goblet cell hyperplasia and small airway

squamous metaplasia). Cigarette smoke causes the activation of airway epithelium and alveolar macrophages. The activated airway structural and resident immune

cells release an array of chemotactic factors responsible for recruitment of inflammatory and immune cells to the lung. Activated epithelium produces TGF-β and FGF

that triggers the production of ECM molecules by fibroblasts. Increased deposition of ECM causes progression of fibrosis and air flow limitation. The chemokines

CXCL1 and IL-8, and LTB4 attract the circulating neutrophils through the receptors CXCR2 and BLT1, respectively. Meanwhile, CXCL1 and CCL2 targeting the

receptors CXCR2 and CCR2 on blood monocytes are also released. Recruited blood monocytes differentiate into macrophages in the airway tissue. Activated alveolar

macrophage and epithelium cell also release inflammasome (1L-1β and IL-18) for neutrophils survival and activation of helper T cells Th17. The chemokine IL-23 are

released by macrophages to attract T helper cell subset Th17, and ILC3. Both Th17 and ILC3 will release IL-17 and IL-22 that will act on the alveolar epithelium to

release CXCL1 and IL-8 for enhanced recruitment of neutrophils, resulting in neutrophilic inflammation. Activated neutrophils are thereafter degranulated and release

myeloperoxidase (MPO), lipocalin, neutrophil elastase (NE), cathepsin-G (CG), proteinase-3 (Prot-3), and matrix metalloprotease (MMP) 8 and 9. The granulated

products are proteolytic and elastilolytic to aveolar, causing alveolar destruction and emphysema. In addition, NE, CG, and Prot-3 are also targeting goblet cells and

submucosal glands to induce hypersecretion of mucus. Dendritic cells carrying the receptors CCR2 and CCR6 are recruited to airway tissue via chemottractants

CCL2 and CCL20. The dendritic cells uptake the antigen (smoke residues), and present the antigens to the naïve T cells at lymph nodes. Uncommitted T lymphocytes

are thereafter primed to the presented antigen and activated by IL-12 derived from dendritic cells (professional antigen presenting cells; APC). Mature/activated T cells

expressing receptor CXCR3 are chemotactic toward CXCL9, CXCL10, and CXCL11 and are recruited to the lung tissue. Cytotoxic CD8+ T cell subtype Tc1 releases

perforin and granzyme B resulting in epithelial apoptosis contributing to emphysema progression. For the humoral immune response, B cells are activated by Th2,

enter the circulation via high-endothelial venule (HEV)-like vessel and transported to lung tissue, and organized into lymphoid follicles at peripheral airway. B

cell-derived plasma cells from lymphoid follicles release IgA, and secreted into airway lumen as secretory IgA (sIgA) via the polymeric immunoglobulin receptor.

Mucosal antibodies play an important role to eradicate pathogens and noxious antigens via immune exclusion. However, the airway defense by sIgA is diminished by

NTHi IgA protease that degrade the antibodies. TLR2 and TLR4 of the airway phagocytes and epithelium following exposure to cigarette smoke are not responding to

P6 and LOS of NTHi. This results in defective phagocytosis and delayed bacterial clearance from the airway. The suppressed TLR4 induction in T cells has also lead to

Th2 predominant immune response, with low production of IFN-γ and reduced T cell-mediated immune killing of NTHi. Moreover, NTHi downregulates Foxp3 of Tregs

and thus impairs the anti-inflammatory/pro-inflammatory balance of Tregs. The extensive immunosuppressive activity by Tregs diminishes the response of effector T to

(Continued)
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FIGURE 2 | NTHi stimulation. Lastly, plasma cells from COPD patients fail to produce NTHi-specific antibodies and compromised immunoglobulin class switching.

The impairment of the host immune response in COPD toward NTHi infection are labeled in blue. In total, NTHi infection in COPD lung adversely reduces the

production of IL-1β, IL-6, IL-8, CXCL-10, IL-22, TNF-α, antimicrobial peptide (AMP), and IFN-γ. This may explain the inefficient eradication of airway pathogens in

COPD patients whereby persistent NTHi infection concomitantly escalates the inflammation and thus exacerbation in COPD.

innate lymphoid cells (ILC3) (115). The ILCs are involved in the
homeostasis of lung immunity and are regulated by epithelially
produced IL-33 and TSLP (116, 117), and are further stimulated
in response to cell damage.

The accumulation of B lymphocytes in the peripheral
airway and within lymphoid follicles is associated with airway
autoimmunity in the progression of COPD (118). Airway tissue
damage in conjunction with impaired T-regulatory cells (Tregs),
both related by cigarette smoke, contributes to the formation
of autoantibodies against airway components. Autoantibodies
against elastin, epithelial, endothelial, carbonylated, and
citrullinated proteins are found in the circulation of COPD
patients (119–124). The generation of autoantibodies might
activate plasma exudate-derived complement components
resulting in a chronic inflammation, and consequently damage
of the airways with emphysema progression (124–127).

From a physiological point of view, amodulated inflammatory
process is important for a protective and optimal immune
response. However, the prolonged airway inflammation in COPD
as a results of impaired homeostasis leads to serious side effects
since it amplifies the tissue damage and impairs the local
immune defenses. The abrogated local immune systemmaymake
the airways of COPD patients susceptible for opportunistic or
recurrent infections by viruses and bacteria that in turn might
exacerbate the disease.

ACUTE EXACERBATIONS OF COPD
(AECOPD) AND ASSOCIATION WITH
MICROBIAL COLONIZATION

Acute exacerbations of COPD (AECOPD) are episodes of
acute symptom worsening that usually are associated with both
respiratory (increased airway inflammation) and non-respiratory
(system inflammation/co-morbidities) effects (128–130). The
typical symptoms of an AECOPD include increased production
of purulent sputum, dyspnea, cough, wheezing, and symptoms
of a cold that may last from 7 days up to 12 weeks (15, 130,
131). It commonly occurs in patients with advanced COPD and
results in additional therapy based on the level of exacerbations.
Exacerbations are classified in three levels according to GOLD.
There is the mild disease that can be treated with short acting
bronchodilators (SAB); moderate disease with SAB combined
with antibiotics and/ or oral corticosteroids; and finally severe
exacerbations with acute respiratory failure which requires
emergency room visit and eventually hospitalization (15, 130).

AECOPD is a complex yet multifactorial consequence of
COPD.Most of the exacerbations could be triggered by infectious
(up to 80%) or non-infectious agents (∼10%) (AECOPD with
known etiology), whereas up to 30% of cases are of unknown
etiology (132, 133). Respiratory tract infections are the major

causes for AECOPD with known etiology and are mainly
attributed to infections by viruses, bacteria, and atypical bacteria
(not detected with conventional Gram-staining) (11, 134,
135). Non-infectious causes of AECOPD include air pollution,
environmental factors, meteorological effects, and comorbidities
of the patients, all of which are partially contributing to COPD
exacerbations (133, 135, 136).

Viral and Bacterial Infections in AECOPD
Respiratory viral infections are often the primary cause in the
infection-dependent AECOPD, and virus was identified as single
or multiple infecting strains from up to 64% of COPD patients
with exacerbations recorded between years 2001–2017 (137–
145). The most common infecting viruses are, by far, human
rhinovirus, influenza virus A, and respiratory syncytial virus,
whereas parainfluenza virus, coronavirus, echovirus, human
metapneumovirus, and adenovirus are considerably rare.

Bacterial infections contribute to an average of 50% of
infective acute exacerbations with a prevalence being reported
ranging from 26 to 81% (132, 135, 146–148). The most
commonly pathogenic bacterial species isolated from the lower
airway of COPD patients during AECOPD are NTHi,Moraxella
catarrhalis, Streptococcus pneumoniae, Staphylococcus aureus,
Pseudomonas aeruginosa, and Klebsiella pneumoniae (11, 129,
133, 136, 149–152). It has been suggested that infection with new
strains of the infecting species, rather than a new species, is highly
associated with an increased risk of exacerbation (11, 153, 154).
Atypical bacteria that cause exacerbations are Chlamydia spp.,
Legionella pneumophilia, andMycoplasma spp.

In contrast to viral infections that are diagnosed in 5–45%
of COPD patients with stable disease and increase to 39.3–64%
during COPD exacerbations, bacterial colonization in the airways
are more common with the same species during both stable
disease (25–86%) and exacerbations (58.8–81%) (11, 132, 136,
137, 142, 155–158). Hence the precise or direct role of bacterial
infection as the primary cause in triggering AECOPD remains
controversial although a significantly increased bacterial load is
observed during exacerbation in several patients. This further
suggests that bacteria might be more involved as secondary
invaders after an initial viral infection.

Viral infections have been reported to cause several
physiological changes in the lung that in turn facilitates
secondary bacterial invasion. The mechanism of bacterial
superinfection has been described for H. influenzae,
S. pneumoniae, S. aureus, and many other airway pathogens
(159–161). Firstly, viral infections destroy the tight junctions
of the airway epithelial barrier while inducing epithelium
apoptosis. This results in the onset of airway epithelium lining
repair whereby the sloughed off dead cells would become
a rich nutrient source for growth of infecting bacteria. The
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damaged epithelium lining also enables bacterial adherence
to the exposed basement membrane and ECM. Secondly, the
demolished ciliated clearance as a result of the virus-damaged
airway epithelium lining further promotes bacterial colonization
and subsequent epithelial transmigration into deeper tissues
(162–164). Lastly, viral infections are also detrimental to the
airway immune defense by causing degradation of antimicrobial
peptides (AMP), and by triggering IFN-γ secretion by immune
cells. This results in suppressed macrophage and neutrophil
responses to infecting bacteria, and thus enables bacterial evasion
of the airway immune defense (165–168). Nevertheless, viral
and bacterial coinfection have greater impact in the AECOPD
airway inflammatory responses than bacteria or virus infection
alone (168, 169). This is in parallel with the co-isolation of both
respiratory viruses and bacteria from 6 to 30% of AECOPD
patients (129, 133, 136, 170–174).

Infective AECOPD is also attributed to impaired functions
of AMP, macrophages, and neutrophils triggered by inhaled
irritants such as tobacco smoke. Expression of microbial-
induced AMP (human β-defensin 2) is suppressed in airway
epithelial cells when exposed to cigarette smoke (175, 176).
Both the alveolar andmonocyte-derived macrophages in patients
with COPD are defective in phagocytosis of bacteria such
as H. influenzae and S. pneumoniae (177, 178), and in
efferocytosis of apoptotic neutrophils and epithelial cells. In
addition, neutrophils from COPD patients are aberrant in
chemotactic response with defective accuracy (179). All these
factors contribute to the failure to resolve inflammation in COPD
leading to facilitated chronic microbial colonization, also during
exacerbations.

The Role of the Lung Microbiome in
AECOPD
The low number of cultivable bacteria found in healthy
individuals previously led to the conclusion that healthy and
normal lungs are virtually sterile. This hypothesis is currently
being revised, since the introduction of 16S rDNA based
molecular diagnostics has shown that even healthy lungs have
a distinct microbial community, different from that seen in the
upper respiratory tract (180, 181). This has led to the concept of
a core human lung microbiome which can be altered in COPD
stable disease and during exacerbations (182). The role of the
lung microbiome in the pathogenesis of COPD by influencing
host immune response has also been suggested (151, 183–
188).

The stability of the lung microbiome has profound impact
on maintaining local immune homeostasis (189). According
to the “vicious circle” hypothesis, airway inflammation and
impaired immune defenses caused by either viral infections
or irritant inhalation have ecological influence on the airway
microenvironment and growth conditions that would eventually
lead to dysbiosis of the lung microbiota (182, 190). The changed
lungmicrobiomewould then cause amaladaptive immunological
response resulting in further inflammation and damage of the
lung immune defenses, and additional alteration of the lung

microbiome. The chain of events thus generates a vicious circle
that contributes to COPD progression and exacerbation.

Several studies have documented that COPD progression
from stable state to an exacerbation could inducemicrobiota shift
in the lower airway (bronchioles), sputum, and throat (151, 190–
196). Alteration in the microbiome complexity or richness is
associated with the inflammatory process and changes in ECM
protein expression in the lung, as observed in COPD (185, 197).
Declined diversity in the lung microbiome has been reported to
be related to disease severity, inflammation and decreased lung
functions in COPD. This includes the increased emphysematous
destruction, bronchial tissue remodeling, lymphoid follicle
formation, elevated autoantibodies, and IL-17A production, and
finally increased neutrophil extracellular traps (NET) formation
in the airway of animal models or AECOPD patients (198–
201). It has recently been reported that lung microbiome
diversity is also associated with genetic factors. Mannose-binding
lectin (MBL) deficiency has also been associated with disease
severity and exacerbations in patients with cystic fibrosis and
bronchiectasis (202). However, COPD patients with a genetic
deficiency in MBL are less susceptible to Haemophilus spp.
colonization, lowering the risk of exacerbations while their lung
microbiota is more diverse than normal COPD patients (203).

THE CLINICAL ROLE OF NTHi IN COPD

In this review we will focus on NTHi, one of the dominant genera
that is relatively abundant in the total COPD-dependent lung
microbiome, due to its role of infection in COPD immunological
responses (136, 149, 192–195, 198, 204–206).

The microbiology of H. influenzae has recently been reviewed
in detail by our group and others (4, 5, 207). It is a Gram-
negative coccobacillus that commonly colonizes the human
nasopharynx, and is typed as capsulated (type a–f) or non-
encapsulated strains (NTHi). H. influenzae may cause both
invasive and mucosal disease (208). Since the introduction of
capsule polysaccharide conjugate vaccines against type b (Hib),
NTHi dominate, followed by capsule type f (Hif) (209, 210).
Mucosal infections, including acute otitis media, sinusitis, and
exacerbations in COPD, are nowadays mainly associated with
NTHi. There has also been a significant shift in the epidemiology
of severe invasive disease, fromHib infections in small children to
NTHi in adults (210, 211). The most common principal infection
focus by H. influenzae is now community acquired pneumonia
(CAP), whereas the incidence of historically common diagnoses
such as meningitis and epiglottitis have significantly decreased
(210, 211). Patients with underlying conditions, notably COPD,
seem to be at higher risk for invasive infections (209).

There is consensus thatH. influenzae is one of the key bacterial
pathogens involved in pathogenesis of both stable COPD disease
and acute exacerbations (207). However, the relative abundance
and significance of NTHi in COPD varies between different
studies. Several factors, such as sampling methodology, choice of
microbiological analysis and, if the patient has a stable disease
or an exacerbation, or has been subject to previous antibiotic
therapies, tend to affect the outcome of the studies (212).
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Common sampling methods from the lower respiratory
tract include both bronchoscopy techniques such as protected
specimen brush (PSB) and collection of BAL fluid as well
as non-invasive methods like sputum sampling (213). All
of these methods, particularly sputum, are to some extent
subject to the risk of contamination from the normal microbial
flora of the oro- and nasopharynx, which might reduce their
specificity (213). However, several studies still show a distinct
association between lower respiratory tract samples and clinical
parameters in COPD patients, making the information valuable
(214).

Cultivable bacteria are seldom found in the lower airways of
healthy individuals (215), whereas COPD patients show bacterial
growth in 30–50% of cases even during stable disease (Table 1).
On top of that, several studies have shown a significant increase
in the Proteobacteria phylum, which includes Haemophilus spp.,
in individuals with both stable disease and AECOPD (Table 2).
NTHi is consistently one of the predominating bacterial species
isolated in those cultures; other important pathogens include
S. pneumoniae, M. catarrhalis, and P. aeruginosa (219). During
AECOPD, the bacterial load is increased even further, and NTHi
continues to be the predominating species (208). Furthermore,
acquisition of a new NTHi strain has, in one study, been
linked to the onset of AECOPD (153). Moreover, the growth
and dominance of H. influenzae following rhinovirus infection
was observed in the sputum microbiome of patients with
COPD (190).

COLONIZATION AND ADAPTATION OF
NTHi IN THE LOWER AIRWAYS OF COPD
PATIENTS

The chronic inflammation that characterizes COPD pathogenesis
causes significant changes to the pulmonary tissue. The lower
respiratory tract of patients suffering from this disease is
marked by epithelial denuding, hypersecretion of mucus,
disproportionate phagocyte presence and imbalances in
antioxidant/oxidants (220). This altered milieu selects for
specific bacterial species that are genetically equipped
to competently address these environmental stressors
(151, 195, 221). NTHi is the most common pathogen isolated
from the sputum of COPD patients, and the primary cause
of exacerbations (212), indicating a unique ability to colonize
and persist in the chronically inflamed lower respiratory
tract.

In recent years, great efforts have been made in understanding
how NTHi colonizes the pulmonary tissue. In addition to
the regular arsenal of virulence factors associated with NTHi
(5), the bacterial pathogen undergoes specific adaptations to
increase its fitness in the COPD setting. Specific genetic
islands that include ureABCEFGH, lic2b, hgbA, iga, hmw1, and
hmw2 have been reported to be enriched in NTHi strains
isolated from COPD patients compared to commensal NTHi
(222). These genes are involved in raising the pH of the
environment, lipooligosaccharide (LOS) synthesis, iron uptake,
immune evasion, and attachment to host tissue. The validity

of these findings is strengthened by previous work identifying
upregulation of many of the same bacterial gene products during
growth in COPD sputum (223). Moreover, peroxiredoxin-
thioredoxin, an antioxidant enzyme, was found to be one
of the most enriched proteins in NTHi during growth in
COPD sputum, suggesting that the bacteria upregulate oxidative
stress-countermeasures when facing oxidative imbalances in the
diseased lung (223). Oxidative stress resistance has previously
been shown to be vital for NTHi survival in infection
models (224).

In a seminal investigation by Pettigrew et al., whole-
genome sequencing (WGS) was conducted to follow the in vivo
adaptation of NTHi to the COPD environment over time (225).
Several interesting findings were reported in this work. Firstly,
the median duration of persistence by the pathogen was found to
be 161 days, but it could persist in patients for up to as many
as 1,422 days. Secondly, slipped-strand mispairing-mediated
phase variation was identified as the primary genetic adaptation
to the niche. Poignantly, the genes affected by the regulation
mechanism encoded for (among others) the HMW adhesins,
LOS biosynthesis, and iron uptake, that is, the same processes
identified in the previous studies as important for COPD
adaptation (222, 223). Thirdly, and somewhat surprising, it was
observed that a very limited number of genes were gained/lost
during persistent colonization, meaning that selection for
strains that thrive in the inflamed lower airways occurs at the
very onset of colonization. Finally, the authors reported that
genetic changes occurred in 8 of the 12 investigated vaccine
antigens during persistent infections, a fact that might be taken
into consideration for potential vaccine development against
NTHi.

Another virulence factor that has been reported by Murphy
and co-workers to play a pivotal role for NTHi survival in
COPD settings is IgA-protease, a hydrolytic enzyme that cleaves
secretory IgA (sIgA) antibodies in the mucosal epithelium (226–
228). Four genes encode for the same number of different variants
of the endopeptidase with various cleavage site specificities:
two igaA (igaA1 and igaA2) and two igaB (igaB1 and igaB2).
The igaA is present in all NTHi whereas igaB is present in
∼40% of the strains (226). The igaB1 gene has been reported
to be more prevalent in COPD exacerbation-causing strains,
although the in vivo expression levels did not differ from
asymptomatic colonization strains that also carried the gene
(226). However, IgA-protease B1 and B2 have been found to
promote the intracellular survival of NTHi in human epithelial
cells, providing a secondary function (in addition to hydrolysis
of IgA antibodies) that could facilitate NTHi growth in inflamed
environments (227). While a majority of the persistent NTHi
strains that dwell in COPD patients continuously express one
or more variants of the enzyme, it has recently been found that
a phase variation to an OFF-state can occur via slipped-strand
mispairing over time (228). This suggests that during certain
conditions, there is a fitness benefit in not expressing iga in the
airways of COPD patients, albeit the specifics of this process are
currently unknown.

Another interesting aspect of NTHi colonization of COPD
patients is with regard to biofilm formation (229). NTHi strains
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TABLE 1 | Abundance and significance of NTHi and other potentially pathogenic bacteria in healthy individuals and various stages of COPD using culture-based methods.

Sample type Microbiological

analysis

Main findings Study

Healthy individuals AECOPDb Stable COPD disease

PSBa Quantitative culture Potentially pathogenic bacteria

found in 4% of patients

Potentially pathogenic bacteria

found in 54% of patients

Potentially pathogenic

bacteria found in 29% of

patients

Rosell et al.

(148)

NTHi found in 3% of patients NTHi found in 30% of patients

(predominating species)

NTHi found in 17% of patients

(predominating species)

BALc Quantitative culture Potentially pathogenic bacteria

found in 0% of ex-smokers

and in 20% of non-smokers

(no NTHi)

N.A.d Potentially pathogenic

bacteria found in 34% of

patients

Sethi et al.

(216)

NTHi predominating species

Sputum/Throat

swab/PSB /BAL

Culture and molecular

typing of strains

NTHi recovered in 35% of

patients at any respiratory site

NTHi recovered in 7% of

intubated patients with respiratory

exacerbation

NTHi recovered in 57% of

patients at any respiratory site

Bandi et al

(217)

Sputum Culture and molecular

typing of strains

N.A. Isolation of a new strain of NTHi

significantly associated with

exacerbation

N.A. Sethi et al.

(153)

Patients with a new NTHi-strain

twice as likely to have AECOPD

Sputum Quantitative culture N.A. Potentially pathogenic bacteria

found in 70% of exacerbations

Potentially pathogenic

bacteria found in 48% of

patients

Wilkinson

et al. (172)

NTHi predominating species

(38%)

NTHi predominating species

(14%)

Sputum Quantitative culture N.A. Potentially pathogenic bacteria

found in 55% of exacerbations

Potentially pathogenic

bacteria found in 38% of

cultures

Papi et al.

(171)

NTHi predominating species NTHi predominating species

aPSB, protected specimen brush.
bAECOPD, acute exacerbation of COPD.
cBAL, bronchoalveolar lavage.
d N.A., not applicable.

that colonize the Eustachian tube causing otitis media are known
to build up biofilms in situ (230). However, strains isolated
from COPD patients tend to have significantly diminished ability
to form biofilm compared to invasive strains or those isolated
from otitis media patients (229), suggesting that this mechanism
is not important for survival in the COPD niche. As biofilms
tend to protect the bacterial community from external assaults,
these findings could indicate that the hypermucoid milieu in
the COPD airways is severely impaired in its ability to deliver
an apt immune response for optimal clearance of residing
microorganisms. In light of this impairment, biofilm formation
might not be necessary for NTHi to persist in this particular
environment.

Infections with NTHi have also been shown to reduce cellular
levels of E-cadherin, a protein required for tight junction
formation and epithelial cell integrity in human cells (231).
Considering that perturbations in the epithelial cell barrier
caused by the loss of E-cadherin is a common symptom of COPD,
NTHi-mediated exacerbations likely contribute to this step of
COPD pathogenesis. The subsequent denuding of the epithelium
could facilitate microbial colonization of the basal lamina, a

well-established virulence mechanism employed by NTHi and
other pathogens (232). It is currently unknown which bacterial
virulence factor(s) that induce the reduction of E-cadherin levels
in the host.

In summary, investigations from recent years show that the
environment of the lower respiratory tract of COPD patients
selects for NTHi strains that can upregulate adhesins, modify
LOS biosynthesis pathways, increase antioxidant stress responses
and cellular invasion strategies, and, finally, trigger tolerance
against acidic pH. These important colonization mechanisms
thus provide researchers with viable targets for developing novel
therapies.

NTHi-DEPENDENT AIRWAY IMMUNE
RESPONSES IN COPD

NTHi is a commensal in the nasopharyngeal site but is
often associated with strong inflammatory responses in the
lower respiratory airways, especially in patients with COPD,
bronchiectasis, cystic fibrosis, pneumonia, or idiopathic
pulmonary fibrosis (11, 233). Colonization and subsequent
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TABLE 2 | Abundance and significance of NTHi and other potentially pathogenic bacteria in healthy individuals and various stages of COPD using molecular methods.

Sample Microbiological

analysis

Main findings Study

Healthy individuals Stable COPD disease AECOPD

Sputum 16S rDNA N.A. Baselinea Significant increase of the

Proteobacteria phylum (which

includes Haemophilus spp.)

Huang et al.

(195)

Sputum 16S rDNA N.A. Baselinea An increase in relative abundance of

Haemophilus spp. as well as other

bacteria typically associated with

exacerbations

Millares et al.

(218)

Sputum 16S rDNA No increase in numbers of

proteobacterial sequences

following rhinovirus infection

N.A. Significant increase in numbers of

proteobacterial sequences, mainly

H. influenzae, following Rhinovirus

infection

Molyneaux et al.

(190)

Sputum 16S rDNA N.A. Baselinea An increase in the relative

abundance of Haemophilus spp.

following exacerbation, an increase

of Haemophilus following

corticosteroid treatment but a

decrease after antibiotic treatment

Wang et al. (149)

Sputum 16S rDNA N.A. A significant increase in the

abundance of Haemophilus with

increasing disease severity

No significant increase in

abundance of Haemophilus genera

during exacerbation

Mayhew et al.

(151)

aComparison of the microbiota sampled from a patient during stable disease (defined as baseline) and during an exacerbation.

infection of NTHi in the lower airways of COPD patients
elicits episodes of immune responses orchestrated by both
the innate and adaptive immunity. NTHi infection is thus
commonly associated with inflammation that is mainly mediated
by transcription factor NF-κB-dependent production of
proinflammatory mediators. The activation of NF-κB requires
induction of cross-signaling networks and cascades via activation
of PRRs (pattern recognition receptors) of host innate immune
cells (234). Unresolved or prolonged (chronic) inflammation or
failure to restore the homeostatic inflammatory status potentially
contributes to exacerbations. This is clearly shown in murine
COPD simulation models with NTHi-triggered inflammation
(235–237). Mice exposed to NTHi lysates display inflamed
airways loaded with increased levels of inflammatory mediators
and phagocyte infiltrates. Moreover, multiple exposures to
bacterial lysates which may represent a chronic NTHi infection
caused extremely high infiltration of phagocytes and lymphocytes
in the airways of this particular mouse model. In addition, the
airway walls of the infected animals were also thickened due
to increased collagen deposition (fibrosis) that reflects the
typical COPD features. The host immune response and specific
interactions during NTHi infection in COPD is summarized in
Figure 2.

NTHi Stimulation of PRRs in Immune
Activation
The epithelium and alveolar macrophages are predominant cell
types in the airway compartment. They comprise the first line of
defense in the cellular immune response against potential inhaled
pathogens and antigens. The sensing of bacteria, and particularly
NTHi in the lower airways is initiated via PRRs expressed on

innate immune cells and endothelium in addition to epithelial
cells (238–240). TLRs are PRRs that sense stimulation by NTHi-
derived pathogen-associated molecular patterns (PAMPs), and
play a primary role in initiating effector cellular responses and
intracellular signaling for NF-κB activation (238). Among the
different TLRs, most of the studies on NTHi infection have by
far been focused on TLR2 and 4. Lipoproteins including NTHi
P6, and LOS are potent immunomodulators for activation of
TLR2 and TLR4, respectively, and has been described in several
studies on airway epithelial cells and alveolar macrophages (241–
244).

Interaction of NTHi lipoprotein P6 with TLR2 on human
epithelial cells [type II alveolar A549 and human middle ear
epithelial cells (HMEE)] causes NF-κB-dependent activation
via two distinct TLR-signaling pathways, that is, the NF-
κB translocation-dependent, and -independent pathways (242).
The NF-κB nuclear translocation-dependent pathway requires
activation of NF-κB-inducing kinase IKK complex. In the second
pathway, the MKK3/6-p38 MAPK signaling cascade is recruited
for direct nuclear phosphorylation, and thus activation of NF-
κB. The branching of both pathways may occur at the TGF-β
activated kinase 1 (TAK1) signaling junction. NTHi stimulation
via TLR2 and downstream activation of p38 MAPK/NF-
κB-dependent pathways result in expression of COX-2 and
prostaglandin (E2) (PGE2) that promote inflammatory responses
(245).

TLR4 stimulation by NTHi LOS also contributes to the
activation of NF-κB via two signaling pathways, the primary
activating pathway of MyD88 cascade and the alternative
pathway of Toll/IL-1R domain-containing adapter-inducing
interferon-β (TRIF). Both pathways activate NF-κB through
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phosphorylation and degradation of inhibitor IκBα (243, 246).
NTHi-TLR4 signaling mediates an effective innate immune
response that leads to upregulation of TNF-α, IL-1β, IL-
6, macrophage-inflammatory protein (MIP)-1α, MIP-2, and
neutrophil infiltration in the airways of mice. The TLR4 response
promotes efficient pulmonary clearance of bacteria in TLR4-
expressing animals compared to CD14/TLR4 knockout mice
(243, 244). A recent study by Jungnickel et al. revealed that,
in parallel with the infection-induced pulmonary neutrophilic
inflammation, NTHi-dependent stimulation of both TLR2
and TLR4 in a transgenic mouse [(KrasLA1) with oncogenic
Kras allele in the lung epithelium] additionally promotes the
proliferation of Kras-induced early adenomatous lesion in the
lung in an TLR-dependent manner (247). The association or
role of NTHi-induced airway inflammation in lung cancer
progression, however, is not supported by another recent cohort
study showing the lack of differences in NTHi specific-antibodies
between cancer- and non-cancer COPD patients (12).

Lastly, Dectin-1 and the epidermal growth factor receptor
(EFGR) pathway also have proinflammtory effects upon
interaction with NTHi (248, 249). Activation of the Dectin-
dependent proinflammatory response requires NTHi-induced
phosphorylation of the Dectin-1 hem-immunoreceptor tyrosine-
based activation motif (hemITAM) (248). Direct activation of
EFGR in alveolar cells and HMEE by NTHi-derived EGF-
like factor has been shown to contribute to NF-κB activation.
The EFGR-dependent NF-κB activation is mediated via an NF-
κB nuclear translocation-independent pathway, which involves
both MKK3/6-p38 and PI3K/Akt signaling pathways (249).
Surprisingly, the interaction of EFGR and NTHi also results in
negative regulation and suppression of the induction of TLR2
via the Src-MKK3/6-p38 α/β MAP kinase-dependent signaling
cascade, and this in turn may facilitate NTHi infection (250).
The actual components of NTHi that exhibit the EGF-like
factor activity have, however, yet to be defined. The EFGR-
dependent negative regulation of TLR2 may thus suggest a
novel mechanism targeted by NTHi for immune evasion by
attenuating the responses of host PRR, despite the contradicted
role of EFGR in proinflammatory and innate immune responses
of the airway epithelium (251). NTHi infection also upregulates
the NRLP3-inflammasome during NTHi-induced inflammation
in the airway epithelium and alveolar macrophages, leading to
increased secretion of IL-1β and IL-8, and thus neutrophilic
influx to the lung (252).

Synergetic Action of NTHi and
Inflammatory Mediators
Some of the endogenous inflammatory mediators that are
produced in response to NTHi infection, including TNF-α, IL-
1α, and TGF-β1, may act synergetically with NTHi on the airway
epithelial and immune cells. The synergetic interaction drives
a positive feedback loop to amplify the NF-κB transcriptional
activity on proinflammatory genes and further augments airway
inflammation.

The synergetic activation of NF-κB by NTHi and TNF-α
in HMEE and normal human bronchial epithelial (NHBE)

cells occurs via NF-κB nuclear translocation-dependent
and independent pathways. The latter pathway involves
MAPK/extracellular signal regulated kinase kinase kinase 1
(MEKK1)-dependent activation of MAPK kinase 3/6–p38
MAPK pathway (253). However, the synergetic action of
NTHi with TGF-β1 is mediated by another mechanism which
involves Smad3/4-protein kinase A (PKA)-p300-dependent
signaling cascade. The pathway components, PKA and p300,
phosphorylates residue Ser276 and acetylates Lys221 of the
NF-κB subunit p65, respectively. This results in enhanced
DNA-binding activity of NF-κB (254).

The synergetic action of NTHi with both TNF-α and TGF-β1
enhances the production of TNF-α, IL-1β, and IL-8 from airway
epithelial cells and interstitial polymorphonuclear infiltrates.
Recently, it has been reported that co-infection of human
rhinovirus and NTHi on the airway epithelial cells (NHBE cells
and the BEAS-2B cell line) also results in synergetic induction
of CCL20 and IL-8, albeit the exact mechanism remains to be
elucidated (255). Of note, activated macrophages also release
increased concentrations of TNF-α and IL-1α (256), further
enhancing the inflammatory synergetic effect of surrounding
immune cells.

Finally, IL-1α acts synergetically with NTHi to upregulate the
expression of AMP β-defensin 2 (DEFB-4) via the p38/MAPK
pathway (257). Of note, IL-1α could also act individually to
upregulate the expression of DEFB-4 via the Src-dependent
MEK1/2-ERK1/2 signaling pathway (258). Taken together, the
synergetic action may aid in the expansion of the inflammatory
response and in some cases worsen the clinical outcome.

Phagocytosis of NTHi by Airway
Phagocytes
Alveolar macrophages located in the air-parenchyma interface
are the primary professional phagocytes in the lung (259, 260).
These cells are responsible for infection eradication through
its phagolysosomal machinery while releasing a plethora of
inflammatory cytokines and chemokines for promoting a
local inflammatory response and recruitment of neutrophils.
Neutrophils are the first responder cells recruited from
circulation to the airway for efficient killing of pathogens
through an array of microbicidal strategies (261, 262). During
NTHi lung infection, both alveolar macrophages and neutrophils
are the main innate immune cells involved in the pulmonary
bacterial clearance through phagocytosis. They are also an
important source of cytokine secretion required for induction of
other immune cells and enhanced bacterial killing. Eradication
of NTHi by alveolar macrophages involves adhesion or contact,
phagocytosis and phagolysosomal processing of bacteria,
in addition to secretion of TNF-α. Phagocytic clearance
of NTHi by alveolar macrophages is orchestrated through
actin polymerization, plasma membrane lipid rafts, and
phosphatidylinositol 3-kinase (PI3K) signaling cascade upon
induction of macrophage PRRs by NTHi (256).

Interestingly, in response to NTHi infection, human alveolar
macrophages, and blood neutrophils produce extensive amount
of intracellular and extracellular ROS as a component of the
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antimicrobial defense. This leads to the formation of macrophage
and neutrophil extracellular traps (METs andNETs, respectively),
with co-expression of MMP-12 for enhanced bacterial killing
(263, 264). Nevertheless, the overexpression of MMPs may
adversely result in a protease imbalance and contribute to
alveolar emphysematous destruction and bronchiectasis in
COPD (265). Moreover, excessive endogenous ROS production
could also introduce airway oxidative stress that is detrimental
by causing chronic inflammation and tissue damage in the lung,
and thus contributing to the COPD exacerbation (266, 267). The
NET formation is elicited mainly by NTHi LOS in addition to
other Haemophilus PAMPs (264).

Cellular and Humoral Immunity in NTHi
Evasion
Several studies by King et al. have revealed that T cell-
mediated adaptive immune responses against NTHi airway
infection in patients with idiopathic bronchiectasis and COPD
has been predominated by a Th2/Tc2 response (268–270). The
activated T cells produce reduced level of the CD40 ligand
and IFN-γ, and increased levels of TNF-α, IL-13, and IL-17,
as well as altered IgG subclass production by plasma cells. It
is to be noted that the Th2/Tc2-mediated immune response
is less effective in suppressing NTHi infection. Redirecting
the Th2/Tc2-mediated immune response to Th1/Tc1 dominant
(which is more protective) by adding the Th1/Tc1 mediators
(CD40 ligand and IFN-γ) has helped to restore the T cell-
mediated immune killing of NTHi (269). However, a separate
study in a COPD mouse model by Lu et al. reported that NTHi
infection causes increased production of airway type 1 interferon
(1-IFN) (271). It was further reported that DNA of NTHi acts
as a PAMP in stimulating the STING/TBK1/IRF3 pathway, and
thus the production of 1-IFN. The impact of the bacterial DNA-
induced 1-IFN in host immune/inflammatory response, which
may potentially induce a Th1/Tc1 response requires further
investigations.

COPD patients also have abnormally higher number of Treg
cells, myeloid-derived suppressor cells (MDSC), and exhausted
effector T cells (PD-1+) than healthy individuals (272, 273).
Cigarette smoke-induced anti-inflammatory activity of Tregs in
a COPD model is further suppressed by NTHi infection. The
pathogen causes downregulation of Foxp3 (biomarker of Tregs),
and thus impairs the anti-inflammatory/pro-inflammatory
balance of Tregs (273, 274). This may lead to the extensive
immunosuppressive activity by Tregs on the proliferation of
NTHi P6-specific effector T cells, causing a diminished response
of effector T cells to sputum IL-6 and IL-8 induction, and
increased levels of IL-10 and TGF-β1 (272, 275). Recently, it has
been reported that mucosal-associated invariant T cells (MAIT)
from COPD patients are more effective in response to NTHi
stimulation and thus produce increased levels of IFN-γ, 3-, to
10-fold more than the COPD Th (CD4+) and Tc (CD8+) cells
(276). However, the pulmonary MAIT cell immune responses
are compromised in the presence of corticosteroids that are
commonly used for the treatment of COPD. This may potentially
prone the T cell-mediated immunity to a Th2/Tc2 response in

COPD patients treated with corticosteroids (277). Interestingly,
antigen-specific Th17 cells from NTHi-immunized non-COPD
mice model recognize both homologous and heterologous
strains of NTHi, and are able to confer protection upon adoptive
transfer (278). However, it is unclear whether the Th17 cell
which is prone to the inflammatory response could be “trained”
to counteract the NTHi infection in COPD patients, particularly
during exacerbations.

During the systemic humoral immune response in NTHi-
infected COPD patients, greater concentrations of NTHi-specific
IgG, IgA, IgM, and IgE serum antibodies are produced compared
to non-infected controls (12, 279–281). Some of the NTHi-
specific serum immunoglobulins are specific to P2, P5, and P6
(12, 282, 283). However, decreased mucosal antibodies associated
with sIgA deficiency, or decreased total IgG in the small airways
have been reported in COPD patients, and might be associated
with disease severity (283, 284). Importantly, NTHi-specific
mucosal sIgA has been found to be lower in the airways of
NTHi-infected COPD patients than the non-colonized patients
(285, 286).

The epithelial polymeric immunoglobulin receptor (pIgR) is
essential for the generation of mucosal sIgA. It is, however,
downregulated in COPD patients with a positive correlation
to disease severity and increased level of TGF-β (287). The
combinatorial effects of downregulated plgR and elevated TGF-
β1 contribute to an impaired mucosal IgA immunity in COPD
patients. A mouse model lacking the pIgR (−/−) is therefore
devoid of sIgA and are susceptible to airway stimulation
by an NTHi lysate resulting in increased inflammation and
airway neutrophilia. Interestingly, introduction of exogenously
added sIgA mitigated the airway inflammation (288). NTHi-
infected COPD patients with greater airway inflammation have
also decreased NTHi-specific mucosal IgG1 in the BAL fluid
compared to the non-colonized patients (283). Interestingly, the
phenomenon with decreased NTHi-specific antibodies seems to
be restricted to the airways, since the specific serum antibodies
are not affected. Therefore, the reduced mucosal IgG is unlikely
to be associated with hypogammaglobulinemia (IgG deficiency),
despite the latter was reported as a contributing factor in NTHi
infection (289). Decreased airway IgA might be attributed to the
expression of IgA proteases by NTHi. The bacterial IgA protease
degrades the local airway IgA during airway colonization to
avoid immune exclusion by sIgA (226, 228). Reduced mucosal
antibodies might promote host immune evasion and resistance
to complement-mediated killing of NTHi, thus enable persistent
colonization of NTHi in the airways of COPD patients, in
addition to a plethora of various other virulence mechanisms
(4, 5, 207).

IMPAIRED IMMUNITY IN COPD IN
RESPONSE TO NTHi
INFECTION—CURRENTLY KNOWN
MECHANISMS

In a cohort study of stable COPD patients, augmented
airway inflammation and plasma fibrinogen, but not systemic
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inflammation, were found to be constantly correlated with
the increased bacterial load (233). Higher numbers of NTHi
has a greater impact than S. pneumoniae and M. catarrhalis
in triggering inflammatory responses as measured by the
augmented levels of inflammatory cytokines in sputum including
IL-8, MPO, and 1L-1β. The increased inflammatory response
in affected patients is potentially attributed to the persistent
colonization of NTHi in the lower airway (207, 233). The
compromised innate immune response in COPD, particularly
the decreased microbicidal activity, has been regarded as
one of the culprits for persistent airway colonization by
NTHi, and is highly associated with COPD exacerbations
(Figure 2).

TLR Tolerance: Unresponsive to NTHi
Antigen Stimulation
Whilst the role of macrophage extracellular traps (MET)
for killing of NTHi remains unknown, it has been reported
that blood neutrophils and NET from COPD patients are
defective in the killing of planktonic or biofilm/NET-entrapped
NTHi, respectively (263, 264, 290). A series of studies by
Berenson et al. revealed that alveolar macrophages derived
from COPD patients are basically dysfunctional in eradication
of NTHi (177, 291–293). Intriguingly, TLR2 and TLR4
expressed on alveolar macrophages from COPD patients are
intrinsically unresponsive to the potent immunomodulatory
lipoprotein P6 and LOS, respectively. This causes decreased
LOS/P6-induced expression of TLRs, reduced NF-κB nuclear
activation and consequently diminished IL-8, TNF-α, and
IL-1β responses by alveolar macrophages from COPD patients.
The compromised TLR expression and signaling potentially
contribute to the defective complement-dependent and
independent phagocytosis of NTHi. The defective phagocytosis
is greater for NTHi than for M. catarrhalis, and correlates with
disease severity. Interestingly, the phagocytosis disability
was not detected in monocyte-derived macrophages in
COPD. In contrast, however, Taylor et al. reported that
monocyte-derived macrophages from COPD patients are
also defective in phagocytosis of NTHi and S. pneumoniae.
The author also suggested that the defective monocyte-
derived macrophages are not attributed to the alteration
in cell surface TLR2 or TLR4 expression, macrophage
receptor with collagenous structure (MARCO), CD163,
CD36 or the mannose receptor (178). The unresponsive
TLR2 and TLR4 in COPD alveolar macrophages to NTHi
lipoprotein and LOS might be explained by the recently
reported phenomenon of TLR tolerance (294). Repetitive
stimulation of COPD alveolar macrophages with the same
TLR ligands, Pam3CSK4 and LPS desensitizes the TLR2 and
TLR4, respectively, and generates TLR tolerance. Moreover,
the repetitive TLR stimulation further reduced the production
of TNF-α, CCL5, and IL-10 without affecting the constantly
augmented level of IL-6 and IL-8 in alveolar macrophages.
This may provide alternative explanations for diminished
immune responses against the recurrent/repetitive infection
by NTHi.

Altered and Abnormal TLR/PRR
Expression: Inaccurate Responses to NTHi
The intrinsically reduced expression of TLRs in COPD
patients may also contribute to the impaired pulmonary
immune response thus facilitating NTHi persistent colonization.
Expression of TLR2 or TLR4 are found to be lower on sputum
neutrophils, alveolar macrophages, nasal epithelium, and T cells
in COPD patients despite high concentrations of IL-8 and MMP-
9 (295–298).

The lack of the more protective Th1/Tc1 immune response
in COPD patients against NTHi infection might be attributed
to upregulated antagonists (A20, IRAK-M, and MyD88s)
of the MyD88/IRAK/MAPK signaling pathway in COPD T
cells (295). It should be noted that the MyD88/IRAK/MAPK
pathway is required for expression of TLR4 in Th1, whereas
production of IFN-γ in Th1/Tc1 is TLR4-dependent via the
TLR4/TRIF/IKKe/TBK1 signaling pathway. The antagonists
prevent the NTHi LOS-induced TLR4 expression in Th1 and Tc1
and thus a reduced secretion of IFN-γ. In addition, unusual high
numbers of Tregs in COPD patients have also contributed to
effector T cell dysfunction or a Th2/Tc2 predominant immune
response (272). However, Freeman et al. reported that Tc (CD8+)
cells from COPD patients have increased expression of TLR1,
TLR2, TLR4, TLR6, and TLR2/1 as well as Tc1 cytokines (IFN-
γ and TNF-α) compared to healthy individuals that may imply
the auto-aggressive response of lung Tc cells in COPD lung
inflammation (299). However, the COPD Tc cells can only
be stimulated by ligands for TLR2/1 (Pam3CSK4) yet tolerant
to other agonists, indicating the dysfunctional TLRs or TLR
tolerance on T cells despite their high level of receptor expression.

Inversely, peripheral blood neutrophils isolated from COPD
patients have increased expression of TLR2, TLR4, and NLRP3
(298, 300). Nevertheless, the increased TLRs expression might
not improve the microbicidal ability of COPD peripheral
neutrophils probably due to the inaccurate responses to cytokines
(179). In addition, certain types of SNPs (SNPs) in TLR2 and
TLR4 have also been associated with decreased lung function,
enhanced inflammatory responses and increased immune cell
infiltration in COPD (301). Interestingly, the diminished IL-8
responsiveness of COPD alveolar macrophage to NTHi infection
has a strong association with the carriage of TLR9 (T1237C)
polymorphism instead of TLR2 (Arg753Gln), TLR4 (Thr399Ile;
Asp299Gly), and TLR9 (T1486C) (302). The carriage of TLR9
(T1237C) is also positively correlated with diminished lung
function. Of note, the activation of TLR9-signaling cascade in
pro-inflammatory cytokine response requires stimulation from
microbial DNA (303).

The Tobacco Smoke: Negative Effects on
the Immune Defense Against NTHi
The microbicidal malfunction in both innate and adaptive
immune cells is also potentially linked to the deleterious
effect of tobacco smoke, the major risk factor for COPD.
It has been reported that, exposure of tobacco or cigarette
smoke can impair phagocytosis/engulfment of NTHi by alveolar
macrophages isolated from COPD patients (256, 304). Moreover,

Frontiers in Immunology | www.frontiersin.org 14 November 2018 | Volume 9 | Article 2530

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Su et al. NTHi-Immune Response in COPD

the chemical exposure also suppressed the TLR-induced TNF-
α, IL-6, and IL-10 production in COPD alveolar macrophages
that have been pre-stimulated with TLR2, 4, or 5 ligands
(Pam3CSK4, LPS, or phase I flagellin, respectively), or whole
NTHi bacteria (305). This may potentially delay the macrophage-
dependent bacterial clearance. The suppressive effect of cigarette
smoke in macrophage-dependent phagocytosis is due to the
suppression of the PI3K signaling cascade which is required for
optimal phagocytic activity and movement (256). Meanwhile,
the cigarette smoke also inhibits the activation of the p38-ERK
signaling pathway and p65/NF-κB, thus dampens the NTHi LOS-
induced cytokine production of COPD alveolar macrophages
(305). The diminished alveolar macrophage responsiveness could
also be related to anticholinergic agents used by COPD patients
that results in lower concentrations of NTHi-induced TNF-
α (306). Nevertheless, the impaired phagocytosis of NTHi
by COPD alveolar macrophages could be improved in the
presence of nuclear erythroid related factor 2 and microRNA
MiR-328 (307, 308). Interestingly, in addition to the constant
exacerbated inflammatory effect observed in different murine
model studies, Gaschler et al. observed a rapid pulmonary
clearance of NTHi in mice upon exposure to cigarette smoke,
and this was positively correlated with an increased neutrophilia
in the animal BAL fluid (236, 309–311). However, in other
COPD animal studies, cigarette smoke also impaired the IL-
22 production that has a potential anti-bacterial activity while
delaying the airway clearance of NTHi (311–313). Interestingly,
IL-22 might play a protective role in COPD exacerbation as
supplementation of IL-22 manages to restore the homeostasis
of airway immune response and improve NTHi clearance
(313).

The increased airway neutrophilia might be due to the
enhanced production of pulmonary IL-17 triggered by cigarette
smoke (152, 236, 311, 314). This may imply the important
microbicidal role of neutrophils (neutrophilia) in compensating
the COPD- or cigarette smoke-associated dysfunctional alveolar
macrophages (96, 315). However, such compensation may not
be adequate to provide optimal immune defense to eradicate
persistent NTHi lower airway colonization, since the cigarette
smoke also has profound suppressive effect on the host adaptive
immunity, thus constantly risking the COPD patients to episodes
of exacerbation and relapsed infection. In adaptive immunity,
cigarette smoke impairs the antigen-specific B and T cells
responses to NTHi infection. It suppresses the secretion of IFN-
γ and IL-4 by NTHi-specific T cells. Antibody production by
B cells has also been attenuated, with lower levels of specific
anti-P6 antibodies and compromised IgG1, IgG2a, and IgA class
switching (311, 312).

A recent and some previous cohort studies revealed that
the level of airway antimicrobial cathelicidin (hCAP18/LL-
37) in COPD patients increase gradually from the stable
disease to exacerbation states (176, 316). Moreover, higher
levels of cathelicidin are positively associated with NTHi airway
colonization, sputum neutrophilia, and higher concentrations
of IL-8, particularly in the NTHi-infected COPD patients. Of
note, cathelicidin and other AMPs play important roles in
the innate immune defense against different pathogens and

persist immunomodulatory properties (317–319). Ironically,
it is plausible that the increased level of cathelicidin could
diminish or alter the balance in lung microbiota, and the
immune/inflammatory response. This might contribute to the
“vicious circle,” thus considerably increasing the risk for NTHi
infection during COPD exacerbations (214, 320). Moreover, the
microbicidal property of cathelicidin could be compromised by
the inflammatory conditions in the airway, such as low pH,
or the effect of cigarettes that causes peptide citrulination and
modification (321, 322). Finally, expression of AMPs (human
beta defensin 2 and S100A7) by COPD airway epithelium in
response to NTHi infection, is also disturbed by cigarette smoke.
The insulted airway cells have also a reduced expression of
TLR4 and IL-8, and impaired NTHi-induced NF-κB activation
(175, 296). Thus, a large body of evidence exists on the deleterious
effects of tobacco smoke.

ANTIBIOTIC TREATMENT OF NTHi IN
COPD

Antibiotic treatment of AECOPD has been shown to significantly
reduce the risk of treatment failure, especially for in-patients
with severe exacerbations and patients requiring intensive care
(323). The efficacity of antibiotic treatment for out-patients with
exacerbations is less clear (323, 324).

Recommendations on which empirical treatment to use
for AECOPD varies between different countries, but common
antimicrobial agents that are frequently used as definitive
therapy against NTHi include aminopenicillins (with or
without a beta-lactamase inhibitor), tetracyclines, trimethoprim-
sulfamethoxazole, and fluoroquinolones. In addition, the Clinical
and Laboratory Standards Institute (CLSI) has developed clinical
breakpoints for the macrolides azithromycin and clarithromycin
(325), whereas the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) have not set any clinical
breakpoints against this class of antibiotics due to lack of
clinical data (326). One study shows that NTHi frequently
develops resistance to macrolides during prolonged treatment
and that treatment failure may occur, making fluoroquinolones
more reliable for eradication in COPD-patients (327). As for
aminopenicillins, resistance is also common, with up to 10–20%
of NTHi isolates expressing beta-lactamases and an additional
10–20% of the isolates having amino acid substitutions in
penicillin-binding protein 3 (PBP3), which reduces their
susceptibility to these agents (328, 329). The fraction of isolates
expressing beta-lactamases has been stable during the last
years, whereas an increase has been seen in isolates displaying
altered PBP3 (330, 331). This is worrisome, since some of
these amino acid substitutions also confer resistance to third
generation cephalosporins (332). Moreover, there seems to
be a correlation between isolates expressing altered PBP3
and increased invasiveness. Studies have shown that strains
that express a mutated PBP3 with certain key amino acid
substitution have a significantly higher rate of invasion of
bronchial epithelial cells compared to strains with a wild type
PBP3 (333). However, when such mutated PBP3 was cloned into
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a susceptible wild type strain, invasion efficacy did not increase,
suggesting that PBP3 is only indirectly linked to invasion
(334).

Besides using antibiotics for acute management of COPD
exacerbations, some studies have considered the use of
continuous prophylactic antibiotics in the management of
patients with COPD (212). There is some evidence that
continuous administration of macrolide antibiotics would
prevent future exacerbations in a selected population of the
most severely ill patients, but a Cochrane review revealed
no support for a reduced all-cause mortality or less hospital
readmissions (335). However, more recent studies have shown a
significant decrease in both the frequency of exacerbations and
hospitalizations when long-term azithromycin treatment was
chosen (336).

The fact that macrolide antibiotics display not only
antimicrobial effects, but also have anti-inflammatory and
immunomodulatory properties, has made them interesting
to use as prophylactic therapy (212). It has been shown that
azithromycin inhibits mucus hypersecretion in the respiratory
tract by significantly inhibiting TNF-α induction of the
MUC5AC mucin secretion from human nasal epithelial cells
(337). More specifically, it has been shown that azithromycin
can reduce the NTHi-dependent induction of MUC5AC
expression by suppressing the transcription factor activator
protein-1 (338). Apart from affecting mucus secretion, it also
seems that low-dose azithromycin has the ability to improve
phagocytosis of bacteria by airway macrophages (339). One
study showed that azithromycin concentrations that were unable
to kill NTHi still increased the uptake rate of the bacteria into
alveolar macrophages by enhancing their phagocytic function
(340). However, the risk of development of antimicrobial
resistance limits the use of low-dose azithromycin solely for
its immunological properties. This has triggered an interest
in finding new macrolide substances that lack antibiotic
effect and solely interact with the airway immune system
(341).

PERSPECTIVE IN NTHi VACCINE
DEVELOPMENT

The considerable clinical problems caused by NTHi with regard
to COPD exacerbations and otitis media has prompted the
scientific community to investigate whether a vaccine can be
developed against the pathogen (5, 58, 342). The search has
been intensified due to a steady increase in antibiotic resistance
and a trend of more invasive infections caused by NTHi over
the last decade (5). Whereas, a highly efficient glycoconjugate
vaccine has previously been developed against Hib, an identical
strategy cannot be employed against NTHi due to the lack
of a polysaccharide capsule. Vaccine developments efforts have
thus been concentrated on identifying NTHi surface structures
that are immunogenic, have low antigenic variability, and are
conserved across this genetically highly heterogeneous species.
Several promising vaccine candidates have been identified

in the last 25 years, as excellently reviewed elsewhere (58,
342).

Two of these antigens, fused into one protein, Protein
E-PilA, are together with Protein D currently being tested
by GlaxoSmithKline in a phase IIb proof-of-concept clinical
trial (randomized, observer-blind, placebo-controlled, and
multicentric) for infection prophylaxis in COPD patients (50–70
years old) (5). Notably, the M. catarrhalis ubiquitous surface
protein A2 (UspA2) is also included in the vaccine so that an
immune response against both exacerbation-causing pathogens
could be elicited by the same preparation. This clinical study
(NCT03281876) is the only one currently being conducted on
NTHi (and M. catarrhalis) according to clinicaltrials.gov, and
as the investigations are on-going, the results are currently
unknown.

Due to an increase in the difficulty to treat NTHi infections,
an efficient and protective NTHi vaccine likely considerably
raises the quality of life of COPD patients. Since NTHi-mediated
exacerbations contribute to the progression of the disease and a
steady deterioration of the pulmonary capacity of those patients,
prevention against NTHi infections potentially slows down the
debilitating effect of the disease. It is therefore critical to continue
this line of research until such a vaccine has been obtained.
It could also be worth targeting non-conventional structures
with a vaccine, such as the secreted enzymes urease and IgA1-
protease that have proven important for NTHi infections in
COPD patients in several studies (222).

CONCLUSIONS

COPD is a multifaceted airway disease. Several factors influence
the clinical outcome of COPD. Importantly, the crosstalk
between intrinsic factors (the stability and integrity of the airway
immune response and structure in addition to hereditary factors),
and the extrinsic factors (lung microbiome, viral and bacterial
infections, meteorological factors, and noxious inhalation)
determines the fate of lower airway opportunistic infection by H.
influenzae. Intriguingly, NTHi has been one of the most isolated
pathogens at both stable and exacerbation states of COPD. Such
persistent airway colonization of NTHi costs virulence fitness
to counteract with the bactericidal effect of the host immune
response. Adversely, the impaired defense mechanisms in COPD
are not only unable to protect the lung structure from inhaled
physical assaults, but they also fail to suppress NTHi infection.
The disoriented immune response in COPD instead allows the
pathogen to cause more harm and inflammation in the airways.
The currently used bronchodilator and inhaled corticosteroid
therapies have limited efficacy in preventing disease progression
in COPD. Moreover, the inhaled corticosteroid therapies might
have side effects that may weaken the immune response. Hence,
more investigations are needed to garner a more adequate
knowledge regarding the variabilities in immune networking
of COPD. This knowledge will be an important platform
for a more efficient drug design. In addition, a vaccine
targeting NTHi is another important approach in controlling
the infective exacerbations in COPD as the antibiotic treatment
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is also getting dampened by the emergence of NTHi antibiotic
resistance.
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