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ABSTRACT P<0.001), triglycerides (TG) (r=0.450,
P<0.001), fasting blood glucose (FBG)

Introduction: Impaired glucose tolerance (IGT) (r=0.469, P<0.001), 2-hour postchallenge
glucose (2hPG) (r=0.397, P=0.001),

is the major cause of the development of both
type 2 diabetes and atherosclerosis. Regulated
upon activation, normal T cells expressed and
secreted  (RANTES), a  proinflammatory
chemokine, is associated with atherosclerosis.
We investigated the effect of atorvastatin on
circulating RANTES in IGT patients with
hypercholesterolemia.

Methods: This study evaluated cross-sectional
and interventional studies of 32 IGT patients
with hypercholesterolemia (group A) and 32
controls (group B). Group A was treated with
atorvastatin (20 mg/day) for 8 weeks.
Platelet-free plasma (PFP) RANTES and clinical
characteristics were examined.

Results: PFP RANTES was significantly higher
in group A compared with group B (9.76 + 3.10
vs 6.43 +£2.16 ng/ml, P<0.001). PFP RANTES
was positively correlated with total cholesterol
(TC) (r=0.589, P<0.001), low-density
lipoprotein cholesterol (LDL-C) (r=0.583,
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glycosylated hemoglobin (HbAlc) (r=0.353,
P=0.004), and high sensitivity C-reactive
protein (hsCRP) (r=0.616, P<0.001), and
negatively related to high-density lipoprotein
cholesterol (HDL-C) (r=-0.272, P=0.029).
After controlling for confounders, LDL-C
(f=2.109, P<0.001) and hsCRP (5 =0.272,
P=0.029) were independently related to
RANTES. After atorvastatin treatment, PFP
RANTES significantly decreased in group A
compared with baseline (from 9.76 £+ 3.10 to
7.48 £2.78 ng/ml, P <0.001).

Conclusions: Atorvastatin decreased circulating
RANTES in IGT patients with
hypercholesterolemia, indicating that statins
may play an important role in inhibiting
inflammatory responses in patients with IGT.

Keywords: Atorvastatin;
Hypercholesterolemia; Impaired glucose
tolerance; Regulated upon activation, normal
T cells expressed and secreted

INTRODUCTION

Diabetes is a cardiovascular risk equivalent, and
atherosclerotic cardiovascular disease (ASCVD)
is the major risk of death in patients with type 2
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diabetes. Recent studies have demonstrated that
the risk of ASCVD begins to increase
considerably before the onset of diabetes.
Impaired glucose tolerance (IGT), characterized
by high postprandial blood glucose levels, is the
major cause of the development of both type 2
diabetes [1] and atherosclerosis [2]. The
postprandial  blood glucose levels are
associated with the highest diurnal levels of
glycemia and the greatest fluctuations in blood
glucose levels that may have more damaging
effects on the vasculature [3, 4], including
activation of inflammatory pathways, elevated
insulin resistance, increased oxidative stress,
extensive procoagulant state, and abnormal
vasomotion.

Atherosclerosis, a major risk factor for
diabetic  cardiovascular complications, is
considered as a chronic disease characterized
by inflammation. Chemokines are
proinflammatory cytokines, which may lead to
atherosclerosis and plaque destabilization not
only by recruiting activated leukocytes into the
lesion but also by directly contributing to
plaque rupture and thrombus formation. In
addition, inflammation might be crucial for
insulin resistance and hyperglycemia [5].
Chemokines are also involved in the
pathogenesis of insulin resistance which may
cause metabolic syndrome and disorders of
glycometabolism ultimately. Recent in vitro
evidence has suggested that monocyte
chemotactic protein 1 (MCP-1) induces insulin
resistance in both adipocytes and skeletal
muscle cells [6]. Regulated upon activation,
normal T cells expressed and secreted
(RANTES), also known as C-C chemokine
ligand 5 (CCLS), belongs to the C-C
chemokine family, which is secreted by many
cell types such as endothelial cells, smooth
muscle cells, macrophages, platelets, and
activated T cells. RANTES plays a critical role
in the chronic inflammatory processes and the
progression of atherosclerosis [7]. Moreover,
RANTES has been shown to affect
glycometabolism and insulin resistance. Based
on our previous studies, high RANTES levels
were reported in type 2 diabetes patients with
hypertriglyceridemia compared with controls
[8]. Therefore, RANTES administration has been

proposed as a potential therapeutic strategy to
protect the cardiovascular system [9-11]; thus,
it may have implications for decreasing
cardiovascular risk of diabetes and prediabetes.

Statins, the 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase inhibitors,
are widely wused in clinical practice as
low-density lipoprotein cholesterol
(LDL-C)-lowering agents, which have been
conclusively demonstrated to have benefits in
primary [12, 13] and secondary [14, 15]
prevention of cardiovascular diseases. In
addition to lipid-lowering effects, statins have
been documented to induce favorable effects on
regulating vascular redox state, improving
endothelial function, suppressing platelet
activation, promoting plaque stabilization, and
inhibiting T cell activation, macrophage
infiltration, and wvascular wall inflammation
[16]. Therefore, the anti-inflammatory effect of
statins has been considered responsible for their
protective effects by some clinical researchers
(12, 14, 17-19].

Although statins were proven to reduce
cardiovascular complications in patients with
diabetes [20], only few reports about the
regulation of the inflammatory processes by
statins in patients with prediabetes have been
published. To the best of our knowledge, the
effects of statins on circulating RANTES levels in
patients with impaired glucose tolerance have
not been well characterized. In this study, we
aimed to examine whether atorvastatin
modulated platelet-free plasma (PFP) RANTES
levels in the impaired glucose tolerance patients
with hypercholesterolemia.

METHODS

Subjects

All participants (both genders) ranging in age
from 30 to 70years were recruited from
December 2014 to March 2015, and 75 g oral
glucose tolerance tests (OGTT) were performed
at screening.

Thirty-two impaired glucose tolerance
patients with hypercholesterolemia (group A)
were recruited for this study from a group of
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outpatients at the Department of
Endocrinology, Beijing Chao-Yang Hospital,
Capital Medical University, Beijing, China.
Patients diagnosed with IGT, as defined by the
American Diabetes Association criteria, were
eligible for the study. Additionally, the LDL-C
levels of participants were greater than
2.6 mmol/l. The following exclusion criteria
for group A were applied: normal glucose
tolerance, impaired fasting glucose, diabetes,
and contraindicating treatment with
atorvastatin.

Thirty-two healthy people (group B) were
recruited as the control group from the
community or from the group of people
undergoing routine medical checkups. None of
them had a history of prediabetes (including
impaired glucose tolerance and impaired fasting
glucose), diabetes, or hyperlipidemia.

Moreover, people with hypertension, coronary
artery disease, endocrine disease, systemic
inflammatory disease, infectious disease, cancer,
chronic kidney disease [i.e., creatinine (CR) greater
than 120 pmol/l], hepatic enzymes [i.e., aspartate
aminotransferase (AST) and alanine
aminotransferase (ALT)] greater than 1.5 times
the upper normal limits, creatine kinase (CK)
greater than 1.5 times the upper normal limit, a
history of alcohol abuse, using heparin within the
last 3 months, pregnancy and lactation were
excluded from both groups. People taking agents
known to influence glucose or insulin metabolism,
and/or people being treated with lipid-lowering
drugs were also excluded from both groups.

Study Design

Participants in group A were required to attend
three study visits: the screening visit, visit 1, and
visit 2 (spaced 8 weeks apart), while participants in
group B attended the screening visit. Starting at
visit 1, the group A participants who fulfilled the
inclusion criteria (without any exclusion criterion)
were administered atorvastatin 20 mg/day for
8 weeks. The tablets were counted at visit 2, and
compliance was considered to be satisfactory if
more than 90% of tablets were taken.

Blood samples and the data on the medical
history, height, weight, and blood pressure were

collected at the screening visit (groups A and B)
and at visit 2 (group A) (under fasting
conditions, as described below). At visit 1,
each participant in group A received
instructions to maintain his/her usual
nutritional and exercise habits. Participants in
group A were asked to immediately report the
development of unusual muscle soreness or
pain throughout the study. In addition, any
adverse event in each group A participant was
recorded at visit 2.

Compliance with Ethics Guidelines

The study was approved by the Medicine and

Pharmacy Ethics Committee of Beijing
Chao-Yang Hospital, Capital Medical
University, Beijing, China. All procedures

followed were in accordance with the ethical
standards of the responsible committee on
human experimentation (institutional and
national) and with the 1964 Declaration of
Helsinki, as revised in 2013. Informed consent
was obtained from all participants for being
included in the study.

Data Collection and Laboratory Tests

A complete medical history, including duration
and treatment of any disease, was obtained
from each participant; height and weight were
determined using a standardized protocol. Body
mass index (BMI) was calculated as weight (kg)/
[height (m)]>. Blood pressure was measured
using a  calibrated standard mercury
sphygmomanometer. All readings were
measured after a 5-min rest, with the patients
in the sitting position.

Fasting blood samples were collected in the
morning after an 8-h overnight fast. Total
cholesterol (TC), high-density lipoprotein
cholesterol (HDL-C), LDL-C, triglycerides (TG),
fasting  blood  glucose (FBG), 2-hour
postchallenge glucose (2hPG), high sensitivity
C-reactive protein (hsCRP), AST, ALT, CR, CK,
and glycosylated hemoglobin (HbAlc) were
measured in the central laboratory of Beijing
Chao-Yang Hospital, Capital Medical
University.
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Blood samples for preparation of
platelet-free plasma from all participants
were collected through standard phlebotomy
into citrate tubes. They were promptly placed
on ice after blood collection and were
centrifuged within 30 min at 4 °C for 10 min
at the relative centrifugal force (RCF) of
11,000g. Each supernatant was isolated using
a plastic transfer pipet, taking care not to
disturb the plasma in the bottom of the tube,
and was placed in a plastic centrifuge tube
with a cap. The platelet-free plasma samples
were stored at —80 °C within 2 h after blood
collection; they should not be thawed until
analyses. RANTES concentrations were
measured in duplicate at the same time
using enzyme-linked immunosorbent assay
(ELISA) kits (R&D Systems, Minneapolis, MN,
USA) with CV 3.5% for intraobserver and
8.4% for interobserver for quantitative
detection with an automated ELISA reader
(VARIOSKAN FLASH-5250040, Thermo
Scientific, USA).

Adverse events were recorded throughout
the study. The safety parameters included AST,
ALT, CR, and CK.

Statistical Analysis

All analyses were performed with Statistical
Package for Social Sciences version 19.0 (SPSS,
Inc, Chicago, IL, USA). Normally distributed
data were expressed as the mean =+ standard
deviation (SD). Non-normally distributed data
were given as medians (25th and 75th
percentiles). Comparisons of the baseline
clinical and biochemical markers, as well as
the RANTES levels, between groups A and B
were performed using independent sample t
tests and  Mann-Whitney U  Tests.
Comparisons of the pretreatment and
posttreatment (with atorvastatin) clinical
and biochemical markers, as well as the
RANTES levels, in group A were performed
with paired t tests and Wilcoxon tests.
Proportions were analyzed wusing the
Chi-squared test. The association between
the baseline values of RANTES and the other

baseline parameters was examined using
Pearson’s and  Spearman’s  correlation
coefficient analyses. Variables with a P value
less than 0.05 in Pearson’s and Spearman’s
correlation coefficient analyses were retained
for the multiple stepwise regression analysis.
In all statistical tests, P values less than 0.05
were considered to be significant, and all tests
were two-sided.

RESULTS

Baseline Clinical Characteristics
of the Study Participants

The baseline clinical characteristics of the study
participants are listed in Tablel1. The
participants in the two groups were similar in
sex, age, BMI, systolic blood pressure (SBP), and
diastolic blood pressure (DBP) (P> 0.05 for all).
The levels of TC, LDL-C, TG, FBG, 2hPG,
HbAlc, and hsCRP were higher and the levels
of HDL-C were lower in group A compared with
group B (P <0.01 for all).

Baseline RANTES Levels of the Study
Participants

The fasting PFP RANTES levels were
significantly higher in group A than in group
B (9.76 £ 3.10 vs 6.43 £+ 2.16 ng/ml, P <0.001)
(Fig. 1).

Correlation Between RANTES Levels
and the Baseline Parameters

The following parameters were found to be
positively correlated with the PFP RANTES
levels: TC, LDL-C, TG, FBG, 2hPG, HbAlc, and
hsCRP (P < 0.01 for all). In addition, HDL-C was
negatively related to PFP RANTES levels
(P<0.05) (Table2). After adjusting for the
confounders, the multiple stepwise regression
analysis showed that only increased LDL-C
(P<0.001) and hsCRP (P =0.029) levels were
independently related to high PFP RANTES
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Table 1 Baseline clinical characteristics of the study participants

Parameters Group A (n = 32) Group B (n = 32) P value
Sex (M/F) 19/13 15/17 0.316
Age (years) 56.97 + 8.89 55.13 4+ 7.02 0.361
BMI (kg/m?) 26.11 £ 4.57 24.84 + 3.60 0.222
SBP (mmHg) 126.50 £ 5.17 124.60 & 8.97 0.303
DBP (mmHg) 75.56 £ 8.70 7272 £ 7.38 0.164
TC (mmol/l) 5.57 £ 0.88 428 +0.52 <0.001
HDL-C (mmol/l) 134 & 0.24 1.63 + 0.36 <0.001
LDL-C (mmol/l) 3.40 + 0.64 2.20 £ 0.30 <0.001
TG (mmol/I) 1.15 (0.98, 2.04) 0.69 (0.50, 0.88) <0.001
FBG (mmol/l) 644 4 0.29 4.99 £ 0.35 <0.001
2hPG (mmol/1) 9.31 +0.82 643 + 0.74 <0.001
HbAlc (%) 6.20 + 0.31 5.46 & 0.33 <0.001
hsCRP (mg/1) 1.84 (1.02, 3.26) 1.15 (0.78, 1.63) 0.009

Group A impaired glucose tolerance patients with hypercholesterolemia, Group B control subjects, BMI body mass index,
SBP systolic blood pressure, DBP diastolic blood pressure, 7C total cholesterol, HDL-C high-density lipoprotein cholesterol,
LDL-C low-density lipoprotein cholesterol, TG triglycerides, FBG fasting blood glucose, 2hPG 2-hour postchallenge
glucose, HbAlIc glycosylated hemoglobin, hsCRP high sensitivity C-reactive protein

P <0.001
20+ r
— E3 Group A

= &3 GroupB
£ 15 P
=)
£
& 104
'—
z
g
X 54

0

Group A Group B

Fig. 1 Baseline platelet-free plasma regulated upon activa-
tion, normal T cells expressed and secreted (RANTES)
levels in the study participants. The values are expressed as
medians (25th and 75th percentiles). Group A: impaired
glucose tolerance patients with hypercholesterolemia
(n = 32); Group B: control subjects (z = 32)

levels (Table 3). The multiple regression
equation was YRANTES =1.601 + 2-109XLDL—C
+ 0.272Xyscrp- The model had an adjusted
R squared of 0.370, F =19.500, and P < 0.001.

Effects of Atorvastatin on the Clinical
Characteristics in Group A

The pretreatment and posttreatment (with
atorvastatin) clinical parameters in group A are
summarized in Table 4. Compared with baseline,
at visit 2 the patients in group A presented
significantly lower levels of TC, LDL-C, and
hsCRP (P<0.01 for all). In addition, no
statistically significant changes were observed
in BMI, SBP, DBP, HDL-C, TG, FBG, AST, ALT, CR,
and CK after 8 weeks of atorvastatin treatment
compared with baseline (P > 0.05 for all).

Effect of Atorvastatin on the Levels
of RANTES in Group A

After 8 weeks of atorvastatin treatment, the PFP
RANTES levels in group A were significantly
decreased compared with the baseline levels (from
9.76 £3.10ng/ml at pretreatment to 7.48+
2.78 ng/ml at posttreatment, P < 0.001) (Fig. 2).
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Safety Parameters

All participants completed the study, and no
serious adverse effects were observed
throughout the study.

Table 2 Correlation analyses of the baseline parameters

associated with RANTES

Parameters r P value
Age (years) 0.014 0914
BMI (kg/m”) 0212 0.092
SBP (mmHg) 0.087 0.493
DBP (mmHg) 0.132 0.299
TC (mmol/l) 0.589 <0.001
HDL-C (mmol/l) —0.272 0.029
LDL-C (mmol/I) 0.583 <0.001
TG (mmol/l) 0.450 <0.001
FBG (mmol/l) 0.469 <0.001
2hPG (mmol/1) 0.397 0.001
HbAlc (%) 0.353 0.004
hsCRP (mg/1) 0.616 <0.001

RANTES regulated upon activation, normal T cells
expressed and secreted, BMI body mass index, SBP
systolic blood pressure, DBP diastolic blood pressure, 7C
total cholesterol, HDL-C high-density lipoprotein
cholesterol, LDL-C low-density lipoprotein cholesterol,
TG triglycerides, FBG fasting blood glucose, 2hPG 2-hour

DISCUSSION

In this study, we demonstrated that PFP
RANTES levels were significantly higher in the
impaired glucose tolerance patients with
hypercholesterolemia compared with the
controls. This finding is similar to our previous
results that RANTES levels were significantly
higher in type 2 diabetes patients with
hypertriglyceridemia compared with controls
[8], and aligns with some other studies
indicating that circulating RANTES levels were
significantly  higher in  patients with
dyslipidemia [21], hyperglycemia [22, 23], or
metabolic syndrome [24] compared with
controls. Our present study also documented
that PFP RANTES levels were positively
correlated with the levels of TC, TG, FBG,
2hPG, and HbAlc, but negatively related to
the levels of HDL-C, which supported that
RANTES might be associated with disorders of
metabolism. In particular, our finding that
increased LDL-C and hsCRP, major predictors
for cardiovascular events, were independently
related to high PFP RANTES levels after
controlling for confounders suggested that
RANTES might play an important role in
inflammatory processes and cardiovascular
events.

Importantly, we report for the first time here
that atorvastatin treatment administered to the
impaired glucose tolerance patients with
hypercholesterolemia for 8 weeks resulted in a
significant decrease in PFP RANTES levels,

postchallenge glucose, HbAIc glycosylated hemoglobin, suggesting that statins might cause the
hsCRP high sensitivity C-reactive protein inhibition ~ of  cardiovascular  diseases,
Table 3 Multiple regression analysis of the baseline parameters associated with RANTES

Parameters p SE Standardized 95% CI P value
Constant 1.601 1.172 —0.743 to 3.945 0.177
LDL-C (mmol/l) 2.109 0.417 0.523 1.275-2.942 <0.001
hsCRP (mmol/1) 0272 0.122 0.232 0.029-0.515 0.029

Adjustment for the variables with P < 0.05 in Pearson’s and Spearman’s correlation coefficient analyses: total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C), LDL-C, triglycerides (TG), fasting blood glucose (FBG), 2-hour
postchallenge glucose (2hPG), glycosylated hemoglobin (HbAlc), and hsCRP

RANTES regulated upon activation, normal T cells expressed and secreted, SE standard error, CI confidence interval,
LDL-C low-density lipoprotein cholesterol, AsCRP high sensitivity C-reactive protein
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Table 4 Pretreatment and posttreatment clinical characteristics of the impaired glucose tolerance patients with

hypercholesterolemia treated with atorvastatin

Parameters Pretreatment (2 = 32) Posttreatment (72 = 32) P value
BMI (kg/m”) 26.11 + 457 26.03 £ 4.57 0.244
SBP (mmHg) 12650 + 5.17 125.63 + 5.46 0.255
DBP (mmHg) 75.56 + 8.07 73.84 + 8.06 0.151
TC (mmol/1) 5.57 +0.88 427 125 <0.001
HDL-C (mmol/l) 1.34 4+ 0.24 1.58 & 0.78 0.091
LDL-C (mmol/I) 3.40 & 0.64 2.37 £ 0.93 <0.001
TG (mmol/l) 1.51 (0.98, 2.04) 1.18 (0.81, 1.64) 0.060
FBG (mmol/l) 644 4 029 6.23 4 0.54 0.078
hsCRP (mg/1) 1.84 (1.02, 3.26) 1.36 (0.38, 2.16) 0.002
AST (U/1) 20.34 + 5.68 20.67 & 8.76 0.836
ALT (U/l) 23.53 +9.92 2241 + 10.67 0.638
CR (umol/l) 63.68 =+ 14.84 66.04 & 16.05 0515
CK (U/l) 83.22 + 27.81 86.81 % 36.39 0.487

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, 7C total cholesterol, HDL-C high-density
lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TG triglycerides, FBG fasting blood glucose, hsCRP
high sensitivity C-reactive protein, 4ST aspartate aminotransferase, ALT alanine aminotransferase, CR creatinine, CK

creatine kinase

201 P < 0.001

. —_ &3 Pre-treatment
E €38 Post-treatment
> 151

£

i

o 10+

z

<

14 54

0

Pre-treatment Post-treatment

Fig. 2 Platelet-free plasma regulated upon activation,
normal T cells expressed and secreted (RANTES) levels
in the impaired glucose tolerance patients with hyperc-
holesterolemia after 8 weeks of atorvastatin treatment
compared with the baseline levels. The values are expressed

as medians (25th and 75th percentiles) (7 = 32)

independent of their effects on the reduction in
LDL-C.

Statins have been reported to have beneficial
anti-inflammatory effects apart from lowing
LDL-C levels by some large-scale research

studies. The pravastatin treatment significantly
reduced C-reactive protein (CRP) levels in
subjects with or without cardiovascular
diseases, independent of any changes in LDL-C
[17]. Later studies extended these findings and
established that patients who achieved both
reduced LDL-C levels and  decreased
inflammatory mediators benefited the best in
the prevention of cardiovascular events through
statin treatment [18]. Furthermore, statin
treatment was shown to remain effective at
alleviating risk in subjects with high CRP but
low LDL-C [13, 19]. Other smaller clinical

studies have also demonstrated
anti-inflammatory properties of statins: they
mitigated CRP and circulating

proinflammatory cytokine levels in patients
with  hypercholesterolemia [25], diabetes
mellitus [26], or metabolic syndrome [27].
Recent evidence has indicated that RANTES,
a proinflammatory chemokine, is associated
with cardiovascular events and hyperglycemia.
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However, the data have been inconsistent. Most
studies have supported that the elevated
RANTES levels are related to  high
cardiovascular risk. Increased levels of RANTES
were reported in patients with acute coronary
syndromes compared with controls [28] and
were proven in patients with refractory
ischemic symptoms compared with stabilized
patients [29]. RANTES levels were associated
with carotid wall thickness and lipid-core
volume [30], suggesting that high RANTES
levels might be related to extensive carotid
atherosclerosis and plaque at high risk of
rupturing. Therefore, the inhibition of RANTES
is supposed to cause cardioprotective effects
through its anti-inflammatory capacities. By its
ability to bind to its chemokine receptors
expressed on T cells or monocytes, RANTES
might contribute to the adhesion and the
transmigration of Tcells and monocytes
through the endothelial wall ([31]; thus,
blocking these receptors by injecting RANTES
receptor antagonists could alleviate
atherosclerosis [9, 10] and might attenuate the
infarct size [12]. Controversially, there have
been some studies indicating that low RANTES
levels might be correlated with atherosclerosis
[32, 33]. It might be hypothesized that the
decreased circulating RANTES levels in patients
with high risk of cardiovascular events could
reflect increased deposition of RANTES on the
vascular endothelium leading to more RANTES
receptor stimulation. In addition, RANTES has
been involved in developing abnormal glucose
metabolism. Patients with IGT or with type 2
diabetes presented increased RANTES levels
compared with controls [8, 22, 23]. Moreover,
the high levels of RANTES were related to the
development of type 2 diabetes independently
of metabolic syndrome-related risk factors [22].
These studies might support the idea that
diabetes and prediabetes are the major cause
of ASCVD. PPAR-a agonists have been reported
to decrease RANTES expression in vitro and
animal studies [34-37]. Furthermore, our
previous study demonstrated that RANTES
levels reduced through fenofibrate treatment
in type 2 diabetes mellitus patients with

hypertriglyceridemia [8]. Although there was a
study showing that simvastatin did not reduce
RANTES levels in obesity without comorbidities
[38], most studies have supported that statins
might reduce RANTES levels. Statins have been
found to alleviate inflammatory cell infiltration
in the arterial wall by attenuating RANTES
expression in animal studies apart from the
beneficial effects on cholesterol metabolism
[39, 40]. In clinical studies, statins might also
reduce circulating RANTES levels in patients
with coronary artery disease [41]. It is possible
that these conflicting data are caused by the
poly-pharmacotherapy or other confounding
variables of the study populations, such as age,
sex, and species of the subjects. These
discrepancies might also be due to differences
in the assays used by the different studies.
Hence, the administration of statins could

exert beneficial effects on inhibiting
inflammatory  responses and  protecting
cardiovascular system through alleviating

inflammatory mediators such as RANTES.

Therefore, the reduction of circulating
RANTES levels in the impaired glucose
tolerance patients with hypercholesterolemia
through atorvastatin treatment in the present
study may partially explain the beneficial effects
of statin therapy in clinical trials in which the
favorable effects only partly correlated with
cholesterol changes, although further animal
and clinical studies are still needed to
investigate the mechanism by which statins
protect against the cardiovascular
complications of hyperglycemia.

Our study had some limitations. Firstly, our
study population was limited to Chinese.
Therefore, our findings may not be directly
applicable to other populations. Secondly, our
sample size was relatively small so that our
findings might not be powerful enough to
account for potentially confounding factors in
our analysis, and our results could be
improperly influenced by some outliers due to
the sample size. However, we performed the
post hoc sample size calculation (with G*Power
3.1.9.2) showing that the power to compare the
baseline RANTES levels between the impaired
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glucose tolerance patients with
hypercholesterolemia and the controls was
1.00, and that the power to compare the
pretreatment and  posttreatment  (with
atorvastatin) RANTES levels in the impaired
glucose tolerance patients with
hypercholesterolemia was 1.00 (x=0.05,
two-sided test). Additionally, a small sample
size may result in a type II error in the statistical
analysis, but we have demonstrated that
atorvastatin decreased RANTES levels in the
impaired glucose tolerance patients with
hypercholesterolemia in the present study.
Therefore, the power of the analyses might be
sufficient in our study. Thirdly, because this was
not a crossover study, we could not determine a
causal relationship; however, it certainly raises
credible hypotheses to be confirmed and
extended by future prospective cohort and
mechanistic studies. Finally, one should
acknowledge that long-term follow-up will be
necessary to evaluate whether statin treatment
delays the progression of cardiovascular disease
in patients with impaired glucose tolerance
eventually. Despite these limitations, our
results still provide strong evidence for the
effectiveness of atorvastatin in reducing
circulating RANTES levels in the impaired
glucose tolerance patients with
hypercholesterolemia.

CONCLUSION

We found a significant increase in circulating
RANTES, a proinflammatory chemokine, in the
impaired glucose tolerance patients with
hypercholesterolemia. More importantly, we
presented novel data that atorvastatin
treatment significantly attenuated circulating
RANTES levels in the impaired glucose tolerance
patients with hypercholesterolemia. These
results indicate that statin therapy plays a key
role in preventing inflammatory responses in
patients with impaired glucose tolerance. The
physiologic and pathologic significance of our
findings remain to be further elucidated.
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