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Abstract

CAGO (Comparative Analysis of Genome Organization) is developed to address two critical shortcomings of conventional
genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With
dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify
distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous
patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To
implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG) format and
allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R
statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating
complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual
comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based
application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be
accessed at http://cbs.ym.edu.tw/cago.
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Introduction

Genome atlas plotters (also known as genome diagram plotters

or chromosome atlas plotters) are usually designed to plot genomic

features (positional annotations) and genomic properties (numer-

ical values) of a genome as chromosome tracks in a static picture

(Table S1). However, a static genome atlas does not provide the

functions of dynamic exploratory and signal analysis for genomic

properties.

We developed CAGO (Comparative Analysis of Genome

Organization) to address these shortcomings by integrating

dynamic exploratory functions into a genome atlas tool and

implementing signal analysis functions to analyze genomic

properties. The dynamic exploratory functions are not like the

navigating and zooming functions of conventional genome

browsers, but are designed to interactively manipulate each

individual track of a genome atlas by modifying its image

attributes. The image attributes include track position, angle of a

circular track, color opacity, track width, and image mirroring. For

example, users can change the color opacity of tracks and

reposition a track onto other tracks with the interactive functions,

and then compare similarities or differences between different

genomic features or genomic properties by visual comparison.

With signal analysis functions users can reveal the global identity

of a noisy genomic property by denoising functions, such as the

discrete wavelet transformation (DWT) [1]. In addition, users can

identify inconspicuous periodic patterns from a genomic property

by autocorrelation [2] and calculate correlations between different

genomic properties across multiple organisms by cross-correlation

analysis [3].

A genomic property is also a kind of waveform signal. Thus,

wavelet transformation is a useful method to analyze genomic

properties [4–13]. To extract the essence of a noisy genomic

property, discrete wavelet transformation is implemented to

decompose a genomic property into different scales of signal

frequencies. A smaller scale of signal frequencies represents the

noise parts of a waveform signal, while a larger one represents a

global identity of the waveform signal. The denoised version of a

noisy genomic property can be reconstructed from the decom-

posed signals [14].

Autocorrelation can detect rhythmic patterns from a genomic

property, for examples, identifying spatial periodic patterns of gene

expression activity in bacterial chromosome [15,16] and detecting

sequence periodicity of chromosomes [17–20]. The concept of

detecting periodic patterns is to compare a genomic property with

its phase-shifted versions at all positions, therefore, the output of

autocorrelation analysis is a series of correlation coefficients. If a

genomic property has a rhythmic pattern occurred at a specific

period, a high correlation peak can be identified at the position of

that specific period from the output of autocorrelation analysis.

However, if no correlation peak is found in the autocorrelation

output of a genomic property, the property is considered as a

random signal. Similar to the concept of autocorrelation, cross-

correlation is used to calculate the degree of similarity between a
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phase-fixed genomic property and another phase-shifted genomic

property at all positions. The output of cross-correlation is also a

series of correlation coefficients. If two genomic properties are

similar to each other, a high correlation peak can be found at a

specific position in the output of cross-correlation analysis. This

means that by sliding the phase-shifted version of genomic

property to the specific position, the overlapped regions of the

two genomic properties can become similar.

The web-based application of CAGO is available at http://cbs.

ym.edu.tw/cago, including source code, detailed user guides,

video demos, and examples used in this publication. The source

code of CAGO has also been published as an open source project

at Google Code (http://code.google.com/p/cago/) under a GNU

GPL license.

Results and Discussion

In our web-based CAGO, 222 (149 for eukaryotic sequences)

genomic features and genomic properties (See Table S2) are

applied to the sequences downloaded from the NCBI ftp site [21].

These sequences include 1,562 prokaryotic chromosomes, 2,398

prokaryotic plasmids, 227 eukaryotic chromosomes, 3,140 virus

genomes, 615 bacteriophage genomes, 2,518 mitochondrial

sequences, and 202 plastid sequences (downloaded on August

21, 2011).

User interfaces of CAGO
Customized Track Uploader. Besides providing pre-

computed genomic features and genomic properties of a

genome, we want our users to be able to create and view

additional features that can aid in their genomic studies.

Therefore, we developed the Customized Track Uploader for

users to upload their genome sequences, customized genomic

features, and customized genomic properties (Figure 1). An

automatic pipeline is used to produce all pre-defined genomic

features and genomic properties for the uploaded sequences. The

genomic features and genomic properties generated by the

pipeline and the customized data can then be used in a genome

atlas configuration interface. To protect data privacy, a browser

session is kept in cookies and stored in the client-side computer,

users can only access the data uploaded by themselves.

Genome Atlas Configurator (Geniter). Geniter is an

interface for configuring a genome atlas (Figure 2). With

Geniter, users can select genomic features and genomic

properties of one or many organisms. To produce a genome

atlas, track parameters such as opacity, track style, and track

width, can be configured individually for each chromosome track.

A set of pre-defined settings is given when using Geniter, and users

can adjust the parameters to produce more complex genome atlas.

The SVG-based genome atlas will then be generated and

presented in our SVG Genome Atlas Viewer.

SVG Genome Atlas Viewer. SVG Genome Atlas Viewer is

not only an interface for presenting a genome atlas but also an

interface for manipulating chromosome tracks. To demonstrate

the basic presentation function of SVG Genome Atlas Viewer, the

genomic features and genomic properties of Escherichia coli (E. coli)

str. K-12 substr. MG1655 were plotted as circular tracks (Figure 3).

The tracks arranged from the inner circle to the outer circle are as

follows: (1) bacteria-specific core genes of E. coli (customized data),

(2) forward and (3) reverse strands of coding sequences (CDSs), (4)

codon adaptation index [22], (5) functional categories of clusters of

orthologous groups (COGs) of CDSs [23], (6) sequence

conservation data (customized data) downloaded from UCSC

archaeal genome browser [24], (7) GC percentage (window

size = 1 kb), (8) cumulative GC skew (window size = 1 kb), and

(9) DNA Curvature [25]. In this example, all the default settings

were used and only the track resolutions were modified to

4,000 units.

The operation menu of dynamic exploratory functions is placed

at the top of the viewer (Figure 3A). The SVG canvas of nine

chromosome tracks is placed in the Genome Atlas panel

(Figure 3B). Legends for all chromosome tracks are listed at the

right-hand side of the Genome Atlas (Figure 3C). The min, max,

mean, and standard deviation of a genomic property are placed

around the four corners of its legend. The window size used to

condense a genomic feature or a genomic property into a

chromosome track is placed below its legend. For instance, in

the case of DNA Curvature, a sliding window with size of 1,160 bp

was used to condense the original Curvature property into

4,000 units (4639 kb/1.16 kb).

In CAGO, tracks of genomic features are presented in solid

colors (track 1, track 2, track 3, and track 5); and tracks of genomic

properties can be presented in three styles: histograms (track 4 and

track 9), data dots (track 8 and track 7) and gradient colors (track

6). Blue and red colors are used to indicate the forward and reverse

CDSs (track 2 and track 3), respectively. The colors used to

represent different COG categories (track 5) are adopted from

NCBI COG website [26]. If positional annotations of a

customized genomic feature have no color code assigned before

upload, the solid colors of the positional annotations are assigned

randomly from a pre-defined color palette (track 1) by SVG

Genome Atlas Viewer. For a track that is presented in histogram

or data dot, a two-color scheme is used to indicate whether values

of a genomic property exceeded a certain value such as mean. For

a track using gradient colors, values of a genomic property are

converted to corresponding colors. And the darkest colors on the

both ends of a two-color scheme are used to indicate the minimum

(leftmost) and the maximum (rightmost) values of a genomic

property.

Dynamic exploratory functions for visual comparison
To demonstrate the dynamic exploratory functions for manip-

ulating linear and circular tacks in SVG Genome Atlas Viewer,

four kinds of chromosome tracks were plotted in linear (Figure 4A)

and circular tracks (Figure 4B) for three Mycoplasma species,

including Mycoplasma gallisepticum R (M. gallisepticum), Mycoplasma

genitalium G-37 (M. genitalium), and Mycoplasma pneumoniae M129 (M.

pneumonia). The four chromosome tracks demonstrated here are,

from top to bottom and from inner circle to outer circle, forward

and reverse strands of CDSs, GC skew (window size = 1 kb), and

cumulative GC skew (window size = 1 kb).

The configurations of the linear genome atlas (Figure 4A) were

as follows: (1) linear track type; (2) canvas size of 2000 units; (3)

track resolution of 3000 units; (4) 45 units of spacer size between

tracks. The parameters of the circular genome atlas (Figure 4B)

were as follows: (1) circular track type; (2) canvas size of

1000 units; and (3) track resolution of 3000 units. To demonstrate

scale-independent organizations of the three Mycoplasma species,

ratios of all chromosome lengths were discarded.

The manipulation procedures of Figure 4A were as the

followings. First, all chromosome tracks were repositioned by

aligning the beginning of the tracks to the center of genome atlas.

To present a circular chromosome in linear track, a display

function called caterpillar can make a linear chromosome track to

have a circular rotation effect. To elaborate the caterpillar

function, when a linear track is repositioned horizontally to the

leftmost side of the canvas and beyond the boundary of canvas, the

leftmost side of the track would disappear. At the same time, the
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disappeared region is shown up from the rightmost side of the

canvas. Due to the caterpillar function all linear tracks were

remained intact after the manipulation (Figure 4C). Second, the

color opacity of all forward and reverse strands of CDSs was

changed to 30%. Third, the track widths of forward and reverse

strands of CDSs for M. gallisepticum, M. genitalium, and M. pneumoniae

were changed to 15, 30, and 50 units, respectively. Finally, the

forward and reverse strands of CDSs of each organism were

repositioned onto its GC skew track. The final result of the

chromosome track manipulation is shown in Figure 4C.

The manipulation procedures of Figure 4B were as the

followings. First, the color opacity of all forward and reverse

strands of CDSs was changed to 30%. Second, all chromosome

tracks of M. pneumoniae were rotated 90 degrees clockwise. Third,

all chromosome tracks of M. gallisepticum were flipped vertically.

Fourth, all chromosome tracks of M. genitalium were flipped

horizontally. Finally, the diameters of the circular tracks of

forward and reverse strands of CDSs of each organism were

increased to overlap onto its GC skew track. The final result of the

chromosome track manipulation is shown in Figure 4D.

The plots of GC skew [(G2C)/(G+C)] and the cumulative GC

skew (the sum of GC skew) of a prokaryotic chromosome have

been used to identify the origins of replication (oriC) [27–35].

Over 70% of the completely sequenced prokaryotic chromosomes

have GC skew polarities, that is, the number of nucleotide G is

always more abundant than that of nucleotide C in the replication

leading strand in a prokaryotic chromosome. Prokaryotic

chromosomes that do not have GC skew polarities are those of

thermophiles, cyanobacteria and Deinococcus radiodurans [34]. If a

chromosome has GC skew polarities, two polarities can be

observed in its GC skew plot. The replication origin and terminus

of a chromosome can be identified at the switch points of the two

polarities. A detailed review of identifying prokaryotic replication

origins can be found in Reference [36]. Furthermore, if a

chromosome has GC skew polarities, the plot of cumulative GC

skew can form a L-shaped, V-shaped or shifted L/V-shaped

curve. The formation of a L-shaped, V-shaped or shifted L/V-

shaped cumulative GC skew plot depends on whether the starting

base of a chromosome is the replication origin, the replication

terminus, or an arbitrary position. For a chromosome that has a

plot of L- or V-shaped cumulative GC skew, the positions of

minimum and maximum values of a cumulative GC skew usually

coincide with the sites of replication origin and terminus of the

chromosome, respectively. However, exceptions are found in the

chromosomes of Streptomyces coelicolor A3 (2) and Streptomyces griseus

subsp. griseus NBRC 13350. The replication origins of the two

Streptomyces are at the center of chromosomes where the maximum

cumulative GC skews are. To improve the accuracy of predicting

the origins of replication in prokaryotic chromosomes, many

genomic signals, such as mononucleotide skews (such as AT skew),

dinucleotide skews (such as keto skew), oligonucleotide skews, and

gene strand skews can be combined together [34,36]. In addition,

replication-associated genomic features such as the locations of

dnaA gene and rRNA operons [32,37], the positions of Chi

(crossover hotspot instigator) motifs, parS motifs and motifs

regarding segregation of replication origin should be good criteria

for identifying the replication origins of prokaryotic chromosomes

[38].

In Figure 4, through the dynamic exploratory functions, users

can manipulate chromosome tracks and compare the global

arrangements of different tracks across multiple organisms.

Although the chromosome lengths of the three Mycoplasma

Figure 1. Screenshot of Customized Track Uploader. (A) For uploading a GenBank flat file and a protein table file of a sequence. The CAGO
pipeline can automatically generate all genomic feature tracks and genomic property tracks for the sequence. (B) For uploading users’ customized
tracks. A customized track must be written in Geniter data format (GDF; see online user guide for further details.) Together with a sequence name, a
sequence length, a track name, and a track type, users can upload the customized track to CAGO. (C) For listing and deleting uploaded and generated
chromosome tracks. Users can only see or delete chromosome tracks uploaded by themselves.
doi:10.1371/journal.pone.0027080.g001
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genomes are different, they all share scale-independent genome

organizations. Their genes are majorly encoded in replication

leading strands, and most of coding sequences are enriched in high

GC skews. In addition, all of their chromosomes have GC skew

polarities and all have L-shaped cumulative GC skews. This

indicates that despite the low GC contents of the chromosomes of

the three Mycoplasma species, they use more nucleotide G than

nucleotide C in the replication leading strands. In the three

Mycoplasma genomes, the replication origins are at the beginnings

of DNA sequences, which are confirmed by the locations of

annotated dnaA genes of the three Mycoplasma species and by the

experimental results from other studies [33–35].

Signal analysis of cumulative GC skews
To demonstrate signal analysis of genomic property, the

cumulative GC skews (window size = 1 kb) calculated from the

chromosomes of E. coli str. K-12 substr. MG1655, Aquifex aeolicus

(A. aeolicus) VF5, and Mycoplasma genitalium (M. genitalium) G37 were

used. The reason of choosing the three cumulative GC skews is

that the three curves have different shapes of skews. The

screenshot of the example is illustrated in Figure 5. The plot of

the cumulative GC skew of E. coli is a shifted L-shaped curve

(Figure 5B-1), and the plot of M. genitalium is a L-shaped curve

(Figure 5B-3). The positions of the minimum cumulative GC skews

of chromosomes of E. coli str. K-12 substr. MG1655 and M.

genitalium G37 are located at 3923.4 kb and 1 bp, respectively. The

two positions also coincide with the replication origins of the two

chromosomes. However, the plot of the cumulative GC skew of A.

aeolicus chromosome (Figure 5B-2) has no clear V-shaped pattern.

Although the predicted oriC of the chromosome of A. aeolicus is

located at 209 kb based on the DORIC database [35], the

minimum cumulative GC skew is located at 343.3 kb. Without a

clear V-shaped cumulative GC skew indicates that the GC skew of

A. aeolicus, a hyperthermophile, has no GC skew polarities. This

might be resulted from the fact that the chromosomes of

hyperthermophiles use different strategies to protect DNA from

extreme thermal environments compare to the strategies used by

mesophiles that have GC skew polarities [39]. Another speculation

of why thermophiles have no GC skew polarities is that the

nucleotide skews of thermophiles might be influenced by DNA

polymerases they used [34].

The parameters used for this example were as follows: (1) linear

track type; (2) ratios of lengths were discarded; (3) canvas size of

1200 units; (4) track style of 1 pixel dot; (5) track resolution of

3000 units; (6) discrete wavelet transformation, autocorrelation and

cross-correlation were turned on; (7) Haar wavelet filter; (8)

confidence interval at 99.9%; (9) vector size of 2,048; (10) maximum

decomposition level was four; (11) maximum lag was the same as

vector size; (12) JPEG image size of 100063000 pixel; (13) JPEG

resolution of 300 dots per inch; (14) JPEG font size of 15 point.

As discrete wavelet transformation, autocorrelation and cross-

correlation were applied to analyze genomic properties, two

Figure 2. Screenshot of Genome Atlas Configurator. (A) Available Sequences. Sequences uploaded by users and sequences processed by the
CAGO pipeline are listed in this panel. (B) Available Tracks. User’s customized tracks, genomic feature tracks, and genomic property tracks provided by
CAGO are listed in this panel. (C) Selected Chromosome Tracks. To plot a genome atlas, at least one chromosome track must be selected. By choosing
a sequence and a track and then click the ‘‘Add’’ button, a chromosome track can be added to the list of ‘‘Selected Chromosome Tracks.’’ (D) The
canvas parameters of a genome atlas, the parameters of chromosome tracks and legends, and the parameters for signal analysis of genomic
properties. See the online user guide for further details of the parameters (http://cbs.ym.edu.tw:8080/CAGO/userguide.html.). (E) Chromosome track
arrangement buttons. Users can use the buttons to modify the order of selected chromosome tracks of a genome atlas and to remove one or
multiple chromosome tracks from a genome atlas. (F) Examples used in this publication. The buttons of ‘‘Three Mycoplasma (Linear Map)’’ and ‘‘Three
Mycoplasma (Circular Map)’’ can be used to reproduce Figures 2A and 2B. The button of ‘‘E. coli K-12 Circular Map’’ can be used to reproduce Figure 3.
The buttons of ‘‘Signal Analysis of Three Cumulative GC Skews’’ and ‘‘Signal Analysis of Three GC Skews’’ can be used to reproduce Figure 5 and
Figures S1 and S2. By clicking the ‘‘Draw SVG’’ button, the genome atlas of the selected chromosome tracks can be generated in the SVG Genome
Atlas Viewer.
doi:10.1371/journal.pone.0027080.g002
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additional panels were appended to the bottom of SVG Genome

Atlas Viewer (Figures 5D and 5E). The resulting images of discrete

wavelet transformation and autocorrelation for each genomic

property are placed in the first panel. Users can access these

images through hyperlinks named after ‘‘DWT’’ and ‘‘Autocor-

relation’’ (Figure 5D). The resulting images of cross-correlation

between any two mutually distinct entities of selected genomic

properties are put in the second panel as hyperlinks named after

their maximum correlations (Figure 5E). CAGO only calculates

half of the pairwise results of cross-correlation while comparing

selected genomic properties because the results of pairwise cross-

correlation are symmetric. In addition, autocorrelation and cross-

correlation can be used to test whether the wavelet coefficients and

the denoised versions of the selected genomic properties have

periodic patterns and whether they are similar to each other. The

selected genomic properties and the results of discrete wavelet

transformation, autocorrelation, and cross-correlation can be

downloaded for further study through the button next to the

hyperlinks.

Discrete Wavelet Transformation. The DWT results of

the cumulative GC skews of E. coli, A. aeolicus and M. genitalium are

shown in Figure 6. Six images were generated for each genomic

property since the maximum decomposition level used in this

example was four. The first image is the original plot of a

cumulative GC skew, and the second to the fifth images are plots

of wavelet coefficients of a cumulative GC skew from level one to

Figure 3. Screenshot of SVG Genome Atlas Viewer. (A) The operation menu for dynamic exploratory functions (B) The genome atlas of E. coli
with nine chromosome tracks: (1) bacteria-specific core genes of E. coli, (2) forward and (3) reverse strands of CDSs, (4) codon adaptation index, (5)
COGs of CDSs, (6) sequence conservation data downloaded from UCSC archaeal genome browser, (7) GC percentage (window size = 1 kb), (8)
cumulative GC skew (window size = 1 kb) and (9) DNA Curvature. (C) The legends for the nine chromosome tracks.
doi:10.1371/journal.pone.0027080.g003
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four. These wavelet coefficients also indicate the noise parts of a

cumulative GC skew captured by discrete wavelet transformation

at different levels. By reconstructing the highest level of wavelet

coefficients of a cumulative GC skew, a denoised version of the

cumulative GC skew is plotted in the last image.

Wavelet coefficients at each level can be used to describe the

characteristics of a genomic property at different scales of

frequencies. Level-one wavelet coefficients represent the highest

frequencies (noise) of a genomic property; and higher-level wavelet

coefficients (global identity) indicate lower frequencies of a

genomic property. For example, in the wavelet coefficients of

cumulative GC skew of E. coli (Figure 6A), two polarities (above

zero and below zero) became clear when the decomposition level

increases from level one to level four. The two switch points of the

polarity pattern also coincided with an obvious oscillation pattern

of the original E. coli cumulative GC skews, i.e. two vertices (the

highest and the lowest peaks) in the shifted L-shaped curves.

A cumulative GC skew is the sum of GC skew of a window

sliding along a sequence [29]. The plot of wavelet coefficients of a

cumulative GC skew captured by DWT with Haar wavelet filter at

a specific decomposition level is similar to a plot of denoised GC

skew reconstructed from wavelet coefficients of the original GC

skew at the same decomposition level. This phenomenon is caused

by the characteristics of Haar wavelet filter. When using DWT

with Haar wavelet filter to decompose a cumulative signal (e.g.

cumulative GC skew) into wavelet coefficients, the plot of the

wavelet coefficients is similar, but not identical, to a denoised plot

of its reverse cumulative signal (e.g. GC skew) at the same

decomposition level. However other wavelet filters, except FK4

(Fejer-Korovkin) wavelet filter, do not have similar reverse

cumulative function found in the Haar wavelet filter. Detailed

descriptions of different kinds of wavelet filters can be found in

Reference [40]. Thus, the plot of level-one wavelet coefficients of

the cumulative GC skew of E. coli is similar to a plot of denoised

GC skew reconstructed from the level-one wavelet coefficients of

the GC skew of E. coli (r = 0.96, n = 2,048, P,2.2e216, 95% CI

0.96 to 0.97). In addition, the plot of level-four wavelet coefficients

of cumulative GC skew of E. coli is similar to a plot of denoised GC

skew reconstructed from the level-four wavelet coefficients of the

GC skew (r = 0.97, n = 2,048, P,2.2e216, 95% CI 0.97 to 0.98;

see Figure S1A). The same observations also apply to the plots of

wavelet coefficients of the cumulative GC skew of A. aeolicus

(Figure 6B and Figure S1B) and to the plots of wavelet coefficients

of the cumulative GC skew of M. genitalium (Figure 6C and Figure

S1C). With DWT analysis, the essence of the three cumulative GC

skews can be extracted as wavelet coefficients at different scales;

and denoised versions of these genomic properties can be

reconstructed. There is no significant difference between the

original versions and the denoised versions of the plot of

cumulative GC skews of E. coli. The original and the denoised

versions of the plot of cumulative GC skew of M. genitalium are

similar to each other. This is because their cumulative GC skew

Figure 4. Demonstrations of dynamic exploratory functions for visual comparison. Figures 4A and 4B are the original genome atlases of
the linear and circular chromosome tracks for the forward and reverse strands of CDSs, GC skews (window size = 1 kb) and cumulative GC skews
(window size = 1 kb) of the chromosomes of M. gallisepticum, M. genitalium, and M. pneumonia. The results after applying the track manipulation
procedures on the chromosome tracks in Figures 4A and 4B are shown in Figures 4C and 4D, respectively.
doi:10.1371/journal.pone.0027080.g004
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curves are not noisy. However, differences can be found between

the plots of the original and the denoised versions of the

cumulative GC skew of A. aeolicus after the noise parts are

removed from the cumulative GC skew by discrete wavelet

transformation.

Autocorrelation. The results of autocorrelation of three

cumulative GC skews are shown in Figure 7. From the results of

the original cumulative GC skews of E. coli and M. genitalium, the

highest correlation peaks are at 2,319.8 kb (20.50) and 255.2 kb

(20.51), respectively. In other words, periodic patterns in

mirroring phase can be found in the cumulative GC skew of E.

coli for every 2319.8 kb and in M. genitalium for 255.2 kb (The first

images of Figures 7A and 7C). In addition, in the denoised

cumulative GC skews of E. coli and M. genitalium, the highest

correlation peaks (20.5) are at the same positions of the output

(The last images of Figures 7A and 7C). The positions of the

highest correlation peaks in the autocorrelation results are about

half of the whole length of chromosomes of E. coli and M.

genitalium, which also coincide with the distances from the

minimum to the maximum cumulative GC skews. This indicates

that the autocorrelation function can detect the 1 Hz periodic

patterns of the plots of the shifted L-shaped and L-shaped

cumulative GC skews of E. coli and M. genitalium. In A. aeolicus,

although the highest correlation peaks are at the lags of 713.6 kb

in the original and the denoised cumulative GC skews, the

maximum correlations are not strong (20.32) (the first and the last

images of Figure 7B). On the other hand, by applying

autocorrelation analysis to wavelet coefficients, we can estimate

if the noise parts of a genomic property have periodic patterns. For

example, in the level-four wavelet coefficients of cumulative GC

skew of A. aeolicus, the highest correlation peak is at the lag of 93 kb

(Figure 7B). The plot of level-four wavelet coefficients of the

cumulative GC skew of A. aeolicus is similar to a plot of denoised

GC skew reconstructed from the level-four wavelet coefficients of

the GC skew of A. aeolicus (Figure S2B). Therefore a correlation

peak at the position of 93 kb can be identified in the denoised

version of the GC skew of A. aeolicus but the correlation is not

strong (20.21). In the autocorrelation output of the original GC

skew of A. aeolicus, no significant autocorrelation peak was

identified, which means that the original GC skew might be a

random signal (Figure S2B). However, the finding of the 93 kb

autocorrelation peak in the level-four wavelet coefficients of

cumulative GC skew of A. aeolicus (Figure 7B) indicates that the

reconstructed GC skew has a stable, although weak (low

correlation coefficient) structure. Although A. aeolicus has no GC

skew polarity, the stable periodic pattern might suggest that, in

addition to the strategies used to stabilize DNA,

hyperthermophiles may use different nucleotide compositions in

their chromosomes to maintain the chromosome stability in

extreme thermal environments [39].

Cross-correlation. The outputs of cross-correlation analysis

of three pairs of cumulative GC skews are shown in Figure 8. The

maximum correlations between E. coli and A. aeolicus (Figure 8A),

E. coli and M. genitalium (Figure 8B), and A. aeolicus and M. genitalium

(Figure 8C) are 20.65, 20.76, and 0.56, respectively. For the pair

of E. coli and A. aeolicus, the position of maximum correlation is

close to phase zero [1.13 kb (E. coli) and 20.38 kb (A. aeolicus)],

which means while comparing the two genomic properties without

changing the shifting phase the maximum correlation of 20.65

can be obtained. To obtain a maximum correlation between the

Figure 5. A screenshot of signal analysis results for the cumulative GC skews (window size = 1 kb) of the chromosomes of E. coli, A.
aeolicus and M. genitalium. (A) The operation menu for dynamic exploratory functions. (B) The genome atlas of the cumulative GC skews (window
size = 1 kb) of the chromosomes of (1) E. coli, (2) A. aeolicus, and (3) M. genitalium. (C) The legends for the three chromosome tracks. (D) Results of
discrete wavelet transformation and autocorrelation for the three cumulative GC skews. (E) Results of pair-wise cross-correlation for the three
cumulative GC skews.
doi:10.1371/journal.pone.0027080.g005
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pair of E. coli and M. genitalium, the phase of the plot of the

chromosome of M. genitalium has to move rightward 172.68 kb; or

the phase of the plot of the chromosome of E. coli has to move

leftward 1381.14 kb. Thus, in the pair of A. aeolicus and M.

genitalium, the maximum correlation occurred at the shifting phases

of 2261.78 kb and 97.88 kb. The reason of using cross-

correlation to estimate the similarity between two genomic

properties is that the beginning positions of two chromosomes

might not be defined with the same criterion. Some genomes use

the upstream non-coding regions of dnaA genes as the first base of

chromosome sequences, but others do not use this rule. With

cross-correlation, two genomic properties can be compared

without concerning whether the definition of the first base of

each chromosome is the same or not.

The correlation between E. coli and A. aeolicus (20.65) is similar

to that between E. coli and M. genitalium (20.76). However, if we

visually compare the similarity between the plots of the cumulative

GC skews of E. coli and A. aeolicus with the similarity between the

plots of E. coli and M. genitalium, the similarity between the plot of

E. coli and the plot of A. aeolicus is worse than the similarity between

Figure 6. Results of discrete wavelet transformation for the cumulative GC skews of the chromosomes of E. coli, A. aeolicus and M.
genitalium. Figure 6 shows the plots of original cumulative GC skews, the plots of level-1 to level-4 wavelet coefficients, and the plots of denoised
versions of the cumulative GC skews of the chromosomes of (A) E. coli, (B) A. aeolicus and (C) M. genitalium, respectively. The X-axis represents the
sequence positions of each organism. The Y-axis represents the values of a cumulative GC skew or the values of wavelet coefficients.
doi:10.1371/journal.pone.0027080.g006
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the plot of E. coli and the plot of M. genitalium. By averaging the

maximum correlations of the wavelet coefficients at all levels and

the maximum correlation between the denoised versions of two

genomic properties, we can conclude that the similarity between

the plot of E. coli and the plot of M. genitalium (0.42) is greater than

that between the plot of E. coli and the plot of A. aeolicus (0.21). To

assist the visual comparison, users are advised to combine the

results of cross-correlation analyzed from wavelet coefficients of

two genomic properties at all levels with the results of cross-

correlation calculated from the denoised versions of the two

genomic properties.

Influence of the parameters used in signal analysis
Three parameters can affect the output of signal analysis. They

are vector size, wavelet filter, and maximum decomposition level.

The vector size of a genomic property directly affects the signal

resolution and the computational performance. When condensing

a genomic property into a vector to be analyzed by signal analysis,

Figure 7. Results of autocorrelation analysis for the cumulative GC skews of the chromosomes of E. coli, M. genitalium and A. aeolicus.
Figure 7 shows the results of autocorrelation analysis for the original cumulative GC skews, the level-1 to level-4 wavelet coefficients and the
denoised versions for the cumulative GC skews of the chromosomes of (A) E. coli, (B) A. aeolicus and (C) M. genitalium. The X-axis represents the
shifting lags (sequence positions) of each organism. The Y-axis represents the degrees of autocorrelation coefficients at different lags. The two
horizontal blue lines are the 99.9% of confidence interval (0.073).
doi:10.1371/journal.pone.0027080.g007

CAGO - Comparative Analysis of Genome Organization

PLoS ONE | www.plosone.org 9 November 2011 | Volume 6 | Issue 11 | e27080



the larger the size of the vector is the better the signal details can

be retained. The cost of using a large vector size is time and

memory consumption. However, if the vector size of a signal is too

small, the condensed vector may lose too many signal details. The

balance between computational performance and signal fidelity

depends on users’ research design. If users are searching for

genome-scale patterns from a genomic property, a smaller vector

size can be used to ignore minor details of the signal. If users are

looking for local-scale patterns, the size of condensed vector should

be large enough to represent the details of the original signal. In

Figure 8. Results of cross-correlation analysis for the three cumulative GC skews of the chromosomes of E. coli, M. genitalium and A.
aeolicus. Figure 8 shows the results of pairwise cross-correlation for the cumulative GC skews of the chromosomes of (A) E. coli and A. aeolicus, (B) E.
coli and M. genitalium, and (C) A. aeolicus and M. genitalium. In order to estimate all possible conditions of cross-correlation between two genomic
properties, the lags used in this example are ranged from maximum negative lag to maximum positive lag. Lags may indicate different positions of
two genomic properties because cross-correlation compares two independent genomic properties that may have different sequence lengths.
Therefore, two X-axes are used to label the shifting lags (sequence positions) of two genomic properties. The top X-axis represents the sequence
positions of a phase-fixed genomic property; the bottom X-axis represents the sequence positions of a phase-shifted version of genomic property.
The Y-axis represents the degrees of cross-correlation coefficients at different lags. A vertical solid gray line is used to point out the position of the
maximum correlation of two genomic properties. The two horizontal blue lines are the 99.9% of confidence interval (0.073).
doi:10.1371/journal.pone.0027080.g008
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DWT analysis, the default Haar wavelet filter is one of the simplest

wavelet filter, which also has the advantages of less computational

and memory usage comparing to other wavelet filters like

Daubechies wavelet and Mexican Hat wavelet. In addition, the

wavelet coefficients produced by DWT with Haar or FK4 wavelet

filter have a property of reversing accumulation procedures of a

cumulative signal, which can help users to estimate whether a

signal is cumulated from other signals. However, the resolution of

the denoised signal processed by Haar wavelet filter is not as good

as that of a denoised signal processed by other filters. The Haar

wavelet filter should be applied in most cases. If users require

denoised genomic properties with higher resolutions, other wavelet

filters should be used. An introductory text regarding the

differences among wavelet filters and how to choose a wavelet

filter for a signal to be analyzed can be found in Reference [40].

On the other hand, the value of maximum decomposition level

used in DWT directly affects the numbers of wavelet coefficients

generated by DWT and the reconstruction of a denoised signal. If

the value is too small, the noise parts of a genomic property cannot

be removed. If the value is too large, the details of the denoised

signal may be lost. In the discrete wavelet transformation, the

value must be less than or equal to log2 (vector size), but there is

no gold standard for choosing the value of maximum decompo-

sition level of DWT analysis. Thus, users are encouraged to test

different configurations before they stop signal analysis of genomic

properties.

The examples discussed in the Results section, and other more

complex examples and demonstrations, are available at the

CAGO website. Users can load genome atlas configurations of

any examples into Geniter with buttons placed above the list of

‘‘Selected Chromosome Tracks’’ (Figure 2F).

Methods

System overview of CAGO
CAGO comprises an automatic pipeline, a file-based data

repository, a SVG converter, and three web interfaces. The

pipeline and the SVG converter are implemented in Java. The

three web-based interfaces are implemented in Java Servlet and

JavaServe Pages (JSP).

The pipeline uses Biojava [41] to read the GenBank flat file and

the protein table of a genome to extract the genomic features like

CDSs, COG functional categories of genes, transfer RNA (tRNA)

genes, and ribosomal RNA (rRNA) genes. The genomic properties

such as base compositions, skews, DNA conformation and

thermodynamic properties [42] are calculated from the sequence

extracted from the GenBank flat file. This pipeline also uses other

bioinformatics tools to produce other genomic features and

genomic properties, for instance, genomic islands [43,44] and

codon adaptation index [22]. Pre-computed genomic features and

genomic properties are stored in a file-based repository to avoid

database dependency.

The SVG converter is responsible for extracting genomic

features and genomic properties of genomes selected by users from

the repository; and then the converter converts the features and

the properties into an SVG-based genome atlas and displays the

atlas in the SVG Genome Atlas Viewer. If the signal analysis

function is turned on, the converter also converts the genomic

properties into vectors and then performs the signal analysis on the

vectors.

Dynamic exploratory functions for visual comparison
The genome atlas generated by CAGO is written in SVG

format [45], and the dynamic manipulation functions are

implemented in JavaScript to modify the image attributes of

SVG elements. Most of the internet browsers embed a SVG

viewer and can display a SVG document just like they can display

common image file formats, such as JPG and GIF. According to

the Document Object Model (DOM) standard [46], objects of a

SVG document are considered as HTML objects. Therefore the

viewer can respond to users’ actions when a mouse or keyboard

event is triggered. With the client-side manipulation capability of

SVG, users can directly use the mouse cursor to control

chromosome tracks. The dynamic exploratory functions of SVG

Genome Atlas Viewer are as follows:

1. Move: to reposition a track horizontally or vertically.

2. Rotate: to rotate a circular track clockwise or counterclockwise.

3. Size: to change the size of a track.

4. Opacity: to change color opacity of a track

5. Track width: to change the width of a track wider or narrower

6. Flip: to flip a track vertically or horizontally

To simplify the presentation of a genome atlas, CAGO does not

use ribbons to connect related regions (e.g., conserved sequence

regions) between different tracks. In addition, when comparing a

genomic feature track with a genomic property track of a genome,

users can easily observe and compare the relationship between the

positional annotations of the genomic feature and the magnitudes

of the genomic property by overlapping the two tracks together

instead of connecting them with ribbons.

The caterpillar function is implemented with an SVG tag called

,USE.. With the element, a chromosome track can be

duplicated twice and then put the two replicas on the leftmost

and the rightmost flanks of the original chromosome track. With

the caterpillar function, a circular chromosome can be displayed in

a linear fashion and retain the circular rotation effect.

Besides, to aid in the discovery and comparison of scale-

independent genomic signals, CAGO can also proportionally

expand smaller genomes and draw chromosome tracks of different

sequence lengths from different organisms with as having same

lengths.

Signal analysis of genomic properties
To implement the signal analysis of genomic properties, the

SVG converter uses the statistical software R [47] to perform

wavelet transformation, autocorrelation and cross-correlation.

Given that CAGO is a web-based application, Rserve package

[48] and AJAX technology are used to handle multiple requests

from different users simultaneously.

To apply wavelet transformation to a genomic property, the

discrete wavelet transformation function called modwt of the

Waveslim package [49,50] is used. DWT is much more efficient

compare with continuous wavelet transformation, because DWT

uses powers of two as the number of scales and the number of

positions while calculating wavelet coefficients of a genomic

property [1]. The first step of decomposing a genomic property is

to condense the values of a genomic property into a vector with

size of 2m. In CAGO, m is ranged from 10 to 15. The number of

scale J is ranged from one to the maximum level of log2(2m).

According to the calculated J, DWT can produce J groups of

wavelet coefficients that decomposed from an original genomic

property. All genomic properties are condensed into vectors with

the same size of 2m because cross-correlation requires vectors to be

compared in the same sizes.

Autocorrelation can be used to estimate the correlation of a

genomic property with a phase-shifted version of itself to detect
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whether the genomic property contains rhythmic patterns [51].

Autocorrelation calculates the correlation coefficients of all lags. A

lag represents the amount of the phase shifted, and the lag starts

from zero to 2m -1). The output of autocorrelation is a series of

correlation coefficients with size of 2m. Similar to autocorrelation,

cross-correlation is used to calculate the similarity between two

genomic properties by comparing a genomic property with

another phase-shifted genomic property [52]. To calculate the

correlation at all positions of two genomic properties, the lags of

cross-correlation are ranged from -(2m -1) to (2m -1). A high

correlation peak in the resulting cross-correlation series of two

genomic properties indicates that the two properties are correlated

at the corresponding lag. To apply autocorrelation and cross-

correlation to analyze genomic properties, two functions called acf

and ccf from the stats package of R [47] are adopted in CAGO.

To test the significance of a result of autocorrelation or cross-

correlation, we adopted the following equation to determine the

confidence interval (CI) [47]:

CI~+
Zp
ffiffiffiffiffi

N
p

The number N is the vector size of a genomic property. Zp is the

number that represents the area under the standard normal

distribution curve between - Zp to Zp is equal to p for a confidence

level p. For example, Z0.95, Z0.99, and Z0.999 are 1.96, 2.58, and

3.29 respectively. A correlation coefficient of autocorrelation or

cross-correlation that exceeds a confidence interval (CI) is therefore

considered significant. The CI is plotted as two blue dashed lines in

the resulting images of autocorrelation and cross-correlation

analysis, adopted from the build-in function of acf or ccf [47].

Conclusion
CAGO is developed to improve the functionality of conven-

tional genome atlas viewer by adding the abilities of rapid

generation of genome atlas, dynamic exploration of visual

comparison and signal analysis of genomic properties. In addition,

an automatic pipeline is used to generate genomic features and

genomic properties from genome sequences. Several signal

analysis examples were used to demonstrate the application of

autocorrelation and cross-correlation to identify rhythmic patterns

of a genomic property and to estimate the degree of correlation

between two genomic properties. Given the ability of chromosome

track manipulation and signal analysis of genometric properties,

CAGO can assist users to generate and to test their hypotheses

regarding genomic research at the global scale.

GenBank records used in this paper
NC_000908.2: Mycoplasma genitalium G-37

NC_000912.1: Mycoplasma pneumoniae M129

NC_000913.2: Escherichia coli str. K-12 substr. MG1655

NC_000918.1: Aquifex aeolicus VF5

NC_003888.3: Streptomyces coelicolor A3 (2)

NC_004829.2: Mycoplasma gallisepticum R

NC_010572.1: Streptomyces griseus subsp. griseus NBRC 13350
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