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Abstract

We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum)

vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Mem-

brane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both

vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial

IgG antibodies in more than 90% of vaccinated koalas. A mucosal immune response was

also observed, with an increase in Chlamydia-specific mucosal IgG and/or IgA antibodies in

some koalas post-vaccination. Both vaccines elicited a cell-mediated immune response as

measured by the production of the cytokines IFN-γ and IL-17 post-vaccination. To deter-

mine the level of protection provided by the vaccines under natural conditions we assessed

C. pecorum infection loads and chlamydial disease status of all vaccinated koalas pre- and

post-vaccination, compared to a non-vaccinated cohort from the same habitat. The MOMP

vaccinated koalas that were infected on the day of vaccination showed significant clearance

of their infection at 6 months post-vaccination. In contrast, the number of new infections in

the PMP vaccine was similar to the control group, with some koalas progressing to disease.

Genotyping of the ompA gene from the C. pecorum strains infecting the vaccinated animals,

identified genetic variants of ompA-F genotype and a new genotype ompA-O. We found that

those animals that were the least well protected became infected with strains of C. pecorum

not covered by the vaccine. In conclusion, a single dose vaccine formulated with either

recombinant PmpG or MOMP can elicit both cell-mediated and humoral (systemic and

mucosal) immune responses, with the MOMP vaccine showing clearance of infection in all

infected koalas. Although the capability of our vaccines to stimulate an adaptive response
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and be protective needs to be fully evaluated, this work illustrates the necessity to combine

epitopes most relevant to a large panel of variable strains with an efficient adjuvant.

Introduction

Disease caused by the obligate intracellular bacterial pathogen, Chlamydia, is a significant

threat to the ongoing survival of the koala. Combined with habitat destruction, motor vehicle

injuries and dog attacks, this threat has driven many koala populations in Australia to the

point of near extinction in some areas [1, 2].

Amongst the 11 species in the genus Chlamydia currently recognised, [3–5], C. pecorum is

an important veterinary pathogen that causes debilitating ocular and urogenital infections in

koalas with clinical signs such as conjunctivitis, kerato-conjunctivitis, rhinitis, cystitis, infertil-

ity and sterility [2]. To date, once a clinical chlamydial infection is detected in a koala, a 4–6

week course of antibiotic such as chloramphenicol is usually administered to clear the infec-

tion. Unfortunately, such practice has negative impacts on koala welfare as each treated animal

needs to be kept in captivity for the length of the treatment. A successful anti-chlamydial vac-

cine would allow better management of the disease in the koala population with minimal

impact on koala welfare.

Developing an efficient chlamydial vaccine has proven challenging in all animal species to

date, as both an efficient delivery system (adjuvant) and specific immunogenic antigen(s) need

to be combined to promote both humoral and cell-mediated immune responses [6–8]. Indeed,

upon invasion of the mucosal lining by chlamydia, the innate immune system is activated, fol-

lowed by induction of the adaptive immunity pathways in order to limit the spread of the

infection and protect against recurrent infections. The immune response to chlamydia thus

includes production of pro-inflammatory cytokines, followed by maturation of T cells into

both CD4 and CD8 T cells (recognizing specific MHC-presented chlamydial antigens) and

activation of B cells that will produce specific anti-chlamydial antibodies [6, 8, 9]. The cytokine

IFN-γ plays a key role in both the innate and the adaptive immune responses against chlamyd-

ial infections by contributing to inhibiting the growth of the bacteria chlamydia and activating

the T-cell immune response to ultimately trigger protection against re-infections [10]. Similar

to IFN-γ, IL-17 appears elevated in koalas with C. pecorum disease, compared to healthy

infected animals, and previous work with C. muridarum suggests that IL-17 might play a role

in clearing the infection by synergistically working with IFN-γ to inhibit chlamydial growth

[11–13]. Finally, murine vaccine studies have suggested that IL-17 is also important for protec-

tion against new infections [14]. Therefore, both cytokines IFN-γ and IL-17 seem to play cru-

cial roles in the initiation and establishment of an anti-chlamydia immune response, which

one would expect to see similarly modulated by a successful anti-chlamydial vaccine.

A major antigen candidate for a chlamydial vaccine is the chlamydial major outer mem-

brane protein (MOMP). MOMP contains four variable hydrophilic domains exposed to the

surface on the outer membrane of chlamydia and allows adhesion to the mannose receptor of

the host cell, during the initial phase of infection [15, 16]. MOMP has been used in several clin-

ical trials, in different animals, with encouraging results [17–20], eliciting a T cell-mediated

response together with IFN-γ production [17, 21–23]. Other antigenic proteins including poly-

morphic membrane proteins (Pmps) have also been evaluated in mice [24]. Pmps are a group

of membrane bound surface-exposed chlamydial proteins [25]. Pmps contain an auto-trans-

porter adhesion domain important for the initial phase of chlamydial infection by contributing
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to attachment to the mucosal cell membranes possibly via the epidermal growth factor recep-

tor [26]. Each chlamydial genome encodes a variable number of Pmp proteins differentially

expressed throughout the chlamydial developmental cycle. For C. trachomatis, PmpG is the

most immunogenic protein in murine vaccine models [27, 28], while PmpD was identified as

very immunogenic for C. abortus and C. psittaci [29, 30]. The C. pecorum genome appears to

encode at least nine PmpG family proteins [31]. PmpG1 and to a lesser extent PmpG 9 were

under positive selection in koala strains, with immune pressure being a likely driver of this

selection in this host [31].

Our previous work in koalas showed that a single dose vaccine formulation with a tri-adju-

vant (TriAdj) combined with a cocktail of three MOMP antigens was safe and triggered both

humoral and cellular immune responses in healthy, Chlamydia-negative, female koalas in cap-

tivity, and a small subset of non-infected wild koalas [17, 23]. In the current study, we extended

this work with the use of the TriAdj vaccine combined to a new C. pecorum antigen, PmpG,

and compared this newly formulated vaccine with the 3MOMP vaccine.

Materials and methods

Cloning, expression and purification of recombinant koala C. pecorum

PmpG protein

The adhesin domain (also referred as GGAI domain in the literature) of koala C. pecorum
PmpG (aa 27 to aa 520 of the PmpG1 gene) was PCR amplified using specific primers, kPmg-F

(5’-AATGAGCTCGAGACTATCCCCATCCCATCTAAAAATTTC-3’)kPmg-R (5’-TTA
GCGGCCGCTTATTTTCTAAGGTGACTTGCTGATTG-3’), to generate a PCR product with

5’Sac1 and 3’Not1 restriction sites (underlined in the sequences). The Sac1/Not1 double

digested PCR product was subsequently cloned into Sac1/Not1 double digested pET28a

expression vector (Invitrogen), in frame with the N-terminal poly-histidine (His) tag to pro-

duce a final protein of 538 aa, including the 504 aa fragment of kPmpG. The pET-His-kPmpG

expression vector was transformed into BL21 (DE3) competent E. coli cells (Bioline) and

grown in LB media with 100 μg/mL ampicillin at 37˚C. His-kPpmG expression and purifica-

tion was conducted as per ‘The Expressionist’ protocol for non-soluble proteins (Qiagen).

Briefly, protein expression was induced at OD600 of 0.4–0.6, by adding 1 mM IPTG (Astral

Scientific) for 7 h. Cells were harvested by centrifugation and resuspended in lysis buffer I (50

mM phosphate buffer pH 7.0, 8M urea, 50 μL Bacterial Protease Inhibitor Cocktail (Sigma-

Aldrich)), and 1 mg/mL lysozyme (Sigma-Aldrich). Cells were lysed by sonication on ice and

the clear lysate incubated with TALON affinity resin (Ni-NTA, Qiagen) at RT for 1 h with gen-

tle mixing. After repeated washes (50 mM phosphate buffer pH 7.0, 300 mM NaCl, and 8M

urea) of the resin on a gravity column, the His-kPmpG protein (which will be referred as

PmpG protein from now on) was eluted with 50 mM phosphate buffer pH 7.0, 300 mM NaCl,

150 mM imidazole and 8 M urea, at pH 5.6, then pH 4.5. Protein was visualized by western

blot using anti-His antibody (Life Technologies Australia Pty Ltd) and IRDye1 800CW Don-

key anti mouse (LICOR), purity assessed by SDS-PAGE (Bio-rad), and protein concentrations

determined with Micro BCA Protein Assay Kit (Pierce). A schematic of the PmpG protein

used in the vaccine is provided in S1 Fig.

Expression and purification of C. pecorum MOMP-A, -F and G

recombinant proteins

Koala recombinant proteins from three different serotypes (MOMP-A,—F, and—G) previ-

ously described and genotyped by Kollipara et al. [32] were purified according to the published
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protocol of with modifications as follows: (A) cell lysis were performed by sonication on ice

with addition of lysozyme; (B) after binding of His-MOMP proteins to the Ni-NTA beads

(Qiagen), washes and elution were performed on a gravity column to prevent contamination

of the eluate with affinity beads. A schematic of the MOMP-A,—F, and—G proteins used in

the vaccine is provided in S1 Fig.

Vaccine formulation

Endotoxin content was determined for each purified recombinant protein using the LAL

Chromogenic Endotoxin Quantitation Kit (Pierce) according to the manufacturer’s protocol.

Quantities of endotoxin determined were as follow: 2.63 EU/mL for the 3MOMP proteins,

and 0.54 EU/mL for the PmpG protein.

TRiAdj 3MOMP and PmpG vaccines were prepared according to a previously published

protocol by Garlapati et al. [33]. A final concentration of 150 μg of 3MOMP proteins (50 μg

each MOMP protein) or 150 μg of PmpG protein were co-formulated at a ratio 1:2:1 with

PCEP (250 μg; poly[di(sodium carboxylatoethylphenoxy)]-phosphazene), IDR1002 (500 μg)

and polyI:C (250 μg) in PBS, all provided by VIDO-intervac (University of Saskatchewan, Sas-

katoon, SK, CA). For each vaccine, 500 μl injection doses were then aliquoted in endotoxin-

free sterile glass vials (Thermofisher) surrounded with aluminium foil to protect from the

light, and stored at -20˚C until injection.

Experimental groups of koalas, immunization schedule, sampling

For this study, 63 koalas located in the Moreton bay region, Queensland, Australia (and part of

the Moreton Bay Rail Link project by the Queensland Government Department of Transport

and Main Roads) were selected after thorough veterinary health assessment by experienced

wildlife veterinarians. The koalas were enrolled in the trial according to the following criteria:

koalas were older than 1 year old (breeding age) and showed no clinical signs of chlamydial

disease (chlamydiosis) such as ocular or UGT discharge or severe inflammation, and negative

Clearview1 Chlamydia test. The selected koalas were randomly assigned into three groups:

group ‘3MOMP’ vaccine was vaccinated with the 3MOMP TriAdj vaccine (3MOMP vaccine),

group ‘PmpG’ vaccine was vaccinated with the PmpG TriAdj vaccine (PmpG vaccine) and a

control group was non-vaccinated. All koalas were sampled prior to immunisation (21 animals

in the 3MOMP vaccine cohort, 21 animals in the PmpG vaccine cohort) and then between 5 to

7 months post immunisation (when capture was judged possible and safe–referred to as the”

6-month post-vaccination” time point here). Peripheral blood mononuclear cells (PBMCs)

were purified from blood samples according to Mathew et al (2013; [34]). Serum was separated

from coagulated blood by centrifugation at 1000g for five min at RT and stored at -20˚C for

further analysis. Ocular and UGT swabs were collected for mucosal immunity studies in 1.5

mL eppendorf tubes containing 1 mL PBS plus protease inhibitor (ROCHE) and frozen at

-20˚C. For C. pecorum infection screening, dry ocular and UGT swabs were collected and

stored at -20˚C until genomic DNA extraction.

All procedures were approved by the University of the Sunshine Coast (USC) Animal Ethics

Committee (Animal ethics number AN/A/13/80) and by the Queensland Government (Scien-

tific Purposes Permit, WISP11532912). The trial was performed under the Australian Pesti-

cides and Veterinary Medicines Authority Permit PER 725.

Koala C. pecorum-specific IgG and IgA ELISA

ELISAs were performed according to Carey et al. [35] with modifications. Briefly, 96-well

plates (medium-high binding, SIGMA) were coated overnight at 4˚C with His-MOMP, or
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His-PmpG proteins (1 μg per 50 μl, per well), or 1 μg of semi-purified C pecorum strain G EBs

(purified according to [35]) in carbonate-bicarbonate buffer. After washing and blocking in

0.05% Tween-PBS (PBS-T) with 5% skim milk, all subsequent incubations were carried out at

37˚C for 1 hour separated by 3 washes with PBS-T. Following blocking with milk, 1:3 serially

diluted sera were added to the wells. Initial dilution for all sera was 1:100. All swab (mucosal)

samples were initially diluted 1:2, then, serially diluted 1:2. For IgG ELISAs, the secondary

antibody incubation was performed using sheep anti-koala IgG diluted 1:8000 in PBS-T, fol-

lowed by a final incubation with HRP-conjugated donkey anti-sheep IgG (1:10000, ABCAM).

For IgA ELISAs, the second incubation used a rabbit anti-koala IgA antibody (see IgA Section)

at 1:2000 and the final incubation used HRP-conjugated goat anti-rabbit IgG (1:10000,

ABCAM). TMB substrate in citrate buffer, prepared as per the manufacturer (Sigma-Aldrich),

was added to each well and, after 20 min of incubation at RT, reactions were stopped by adding

the same volume of 1M H2SO4. Optical density was determined at 450nm. All samples were

tested in duplicate.

End point titres (EPT) were calculated as the inverse of the dilution value at which the

tested serum is no longer giving a positive signal using Graph Pad Prism. The cut off values

were calculated as the average of the ‘no sample’ control values added to the standard deviation

multiplied by two. The ‘no sample’ control corresponded to the addition of PBS-T instead of

the first sera or swab sample after milk blocking, all other incubations remaining the same.

Preparation of rabbit anti-koala IgA

Purified recombinant koala IgA heavy chain constant region was produced and purified by

affinity and size exclusion chromatography by Protein Expression Facility (PEF; University of

Queensland, Brisbane, Australia) and subsequently used to immunize rabbits. Following

serum isolation from two independent rabbits, specific polyclonal anti-IgA antibodies were

affinity purified (Mimotopes, The Peptide Company, Victoria, Australia). Purified anti-koala

IgA was tested and validated by ELISA and western blot (data not shown). In this study, anti-

koala IgA was used at 1/2000 dilution in the ELISA.

Koala lymphocyte stimulation assay. RNA extraction, reverse

transcription and qRT-PCR assays

Experiments to assess gene expression of koala IFN-γ, Il-17 and IL-10 were performed as pre-

viously described by Mathew et al. [11, 36] with GAPDH as internal control. As such, purified

peripheral blood mononuclear cells (PBMCs) from 3MOMP or PmpG vaccinated koala blood

samples were diluted to a concentration of 2×106 cells/mL and stimulated for 12 hours with

UV inactivated semi-purified C. pecorum G strain EBs at a final dilution of 1:10. PBMCs were

suspended in 1 mL of Trizol reagent (Invitrogen, Australia), RNA extracted and cDNA synthe-

sized. All reactions were carried out in a final volume of 20 μL, containing 5 μL of cDNA sam-

ple, 1 μL of 10 μM forward and reverse primers and 1X QuantiTect SYBR1 Green PCR mix

(Qiagen) as previously described [11, 36]. All samples were tested in duplicates.

Screening for C. pecorum infection by qPCR

Pre- and post-immunization ocular and urogenital tract (UGT) dry swabs were screened for

the presence of C. pecorum infections by 16S rRNA gene C. pecorum quantitative PCR modi-

fied from Marsh et al. [37]. The C. pecorum 16S 204 bp fragment (RT-Cpec -F: 5'-AGTCGAA
CGGAATAATGGCT-3', RT-Cpec-R: 5'-CCAACAAGCTGATATCCCAC-3'; IDT) was sub-

cloned into pGem-T Easy (Promega) and amplified with M13 universal primers to generate a

M13-Cpec-16S fragment of 465 bp. Serial dilutions of the M13-Cpec-16S fragment were used

MOMP and PmpG vaccines in wild koalas: Immune response, protection, clearance
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to produce a standard curve by mixing 5 μl of diluted fragment with RT-Cpec-F and RT-Cpec-

R primers (1μM final) and 1X QuantiTect SYBR1 Green PCR mix (Qiagen) in a final volume

reaction of 20 μl. Cycling conditions were 95˚C- 15 min, followed by 35 cycles of 94˚C- 15 sec,

57˚C- 15 sec, 72˚C- 30 sec, and a final amplification cycle of 72˚C, 10 min. Diluted C. pecorum
G type strain served as a positive control while dH2O was used as negative control. A detection

level of 100 copies/μL was established and values below this result were reported as ‘Below

Detection Level’ (BDL). All samples were tested in duplicate.

C. pecorum ompA sequencing, alignment and phylogeny

Genetic diversity in the MOMP-encoding ompA gene of C. pecorum strains detected in the

vaccinated koalas was determined by amplifying the near full length ompA gene (1140 bp)

using conventional PCR. Where multiple PCR positive samples were available for a koala,

the sample with the highest qPCR load was selected for ompA gene sequencing. The primers

used in this reaction were ompA-F (50-ATGAAAAAACTCTTAAAATCGG-30) and ompA-R
(50-TTAGAATCTGCATTGAGCAG-30). PCR conditions were a single cycle of initial denatur-

ation at 95˚C for 10 min, 40 cycles of denaturation at 95˚C for 30 s, primer annealing at 57˚C

for 40 s, primer extension at 72˚C for 90 s, followed by a final extension at 72˚C for 7 min. For

koalas presenting a qPCR load less than 3000 16S rDNA copies/μL, a second round of amplifi-

cation was attempted on the purified product from the first PCR. All ompA sequences were

determined by Sanger sequencing of the Forward and Reverse ompA PCR products (AGRF,

Brisbane, Australia).

Phylogenetic analysis on 10 koala C. pecorum ompA sequences identified in this study was

performed with the Geneious 9.1 software (http://www.geneious.com; [38]). Briefly, forward

and reverse chromatograms for each ompA gene were aligned, and a consensus sequence was

obtained and trimmed so that all sequences were of the same length. The obtained ompA

sequences were aligned using ClustalW (as implemented in Geneious 9.1), and also translated

into amino acid sequences and aligned. DnaSp v5.1 [38] was used to analyse sequence poly-

morphisms such as total number of polymorphic sites and haplotypes, as well as the number of

non-synonymous (dn) and synonymous (ds) substitutions per site (Jukes-Cantor corrected). A

mid-point rooted Bayesian phylogenetic tree for the 24 ompA sequences, including the 10

koala C. pecorum ompA sequences generated in this study, and 13 previously described koala

C. pecorum ompA sequences [39], and bovine C. pecorum E58 ompA sequence (accession num-

ber CP002608), was constructed with MrBayes (as implemented in Geneious 9.1). Parameters

included HKY +I+G model with four MCMC chains with 1 000 000 generations, with sub-

sampling frequency of 1 000, and 10 000 trees discarded as burn-in. The bovine C. pecorum
E58 ompA sequence was used as an out-group. The 10 koala C. pecorum ompA sequences (M1,

M11, M8, M14, M17, C11, C12, C13, P4, P8) from this study are available in Genbank under

accession numbers KX388198 (M1), KX388199 (C13), KX388200 (C12), KX388201 (P8),

KX388202 (M11), KX388203 (C11), KX388204 (M8), KX388205 (P4), KX388206 (M14),

KX388207 (M17).

Statistics

All statistical analyses were performed using GraphPad Prism version 5 (GraphPad Software,

LaJolla, CA, USA) and IBM SBSS statistics 22. All IgG ELISA data and cytokine levels pre-

sented include the mean of 21 koalas for each cohort. Statistical significance of these data pre-

and post-vaccination were determined by using Wilcoxon signed rank tests with the p values

set at �p<0.05, ��p<0.01, ���p<0.005, ����p<0.001. To evaluate the contingency between
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decrease in chlamydial load and vaccination, and development of chlamydiosis and vaccina-

tion, we used Fisher’s exact test with the same p value setting as previously stated.

Results

Systemic antibody responses post-vaccination with the vaccines

Antigen-specific antibody responses from animals in both vaccine cohorts (3MOMP and

PmpG) were evaluated by ELISA, using purified recombinant MOMP or PmpG proteins (S1

Fig), and sera collected from koalas at the pre-vaccination and 6 months post-vaccination time

points (MPV; Fig 1). For the 3MOMP vaccine, each MOMP antigen was evaluated separately.

The 3MOMP vaccine showed a significant increase in IgG end-point titre (EPT) for both

MOMP-G (P = 0.009) and MOMP-F (P = 0.0016) antigens (Fig 1A and 1C). However, we

detected low EPT values and no significant difference in serum IgG for anti-MOMP-A anti-

bodies pre- and post-vaccination. All three recombinant MOMP proteins were produced

and purified using a similar protocol. When examined individually, koalas vaccinated with

3MOMP showed a wide range of antibody response, with 57% koalas (12/21) exhibiting a

modest 2-fold increase in EPT 6 months post-vaccination for MOMP-G and 67% koalas (14/

21) exhibiting a 10-fold increase in EPT for MOMP–F (Fig 1D). Interestingly, 47% of koalas

(10/21) showed an increased EPT for both MOMP-F and–G (see koala M1 and M19 for exam-

ple), while 38% only seroconverted for one of the antigens. PmpG vaccinated koalas also

showed a significant increase in EPT 6 months post-vaccination (Fig 1E; p<0.0001), with 57%

Fig 1. Systemic antibody responses post-vaccination with the 3MOMP and Pmp vaccines. End point titre (EPT) of anti-MOMP and anti-PmpG

IgGs in sera from pre-vaccination and 6 months post-vaccination koalas determined by ELISA. IgG titres against purified recombinant MOMP-F and

MOMP-G proteins are shown for the 3MOMP vaccine for the whole cohort (panels A and C). For PmpG vaccine, recombinant purified PmpG protein

was tested (panels E and F) with sera from PmpG vaccine koalas. Panels A, C, and E show a representation of the results as Log EPT for the whole

3MOMP vaccine or PmpG vaccine cohorts, pre- and 6 months post-vaccination (mean values are indicated). Panels B, D, F show the EPT values

obtained for each koala in each vaccine cohort. MPV stands for Months Post-Vaccination. P values were calculated using Wilcoxon matched-pairs

signed rank t-test are documented in the results section.

https://doi.org/10.1371/journal.pone.0178786.g001
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of koalas (12/21) giving a 10-fold increase in EPT (Fig 1F). Together, the data show that both

3MOMP and PmpG vaccines elicited an antibody response in a total of 19 koalas out of 21

(90.5%) or 21 koalas out of 21 (100%) respectively, with PmpG vaccine exhibiting the highest

EPT values overall.

Reactivity of 3MOMP and PmpG immunized koala sera to whole inactivated C. pecorum
G EBs was also assessed using ELISA (Fig 2). Both vaccine cohorts developed a significant

increase in IgG titre to C. pecorum, 6 months post-vaccination (Fig 2A and 2C; 3MOMP vac-

cine: p = 0.019; PmpG vaccine: p<0.0001). In the 3MOMP vaccinated cohort, 33% koalas (7/

21) developed a 2-fold or higher increase in EPT post-vaccination (Fig 2B). The PmpG vaccine

cohort showed a higher ratio with 91.9% koalas (13/21) exhibiting a 10-fold or more increase

in EPT values after vaccination (Fig 2D). Altogether, these results demonstrated that both

3MOMP and PmpG vaccines can trigger a humoral immune response in more than 90% of

Fig 2. Systemic IgG antibody responses to C. pecorum EBs post-vaccination with the 3MOMP and Pmp vaccines. Specific IgG antibody

response to whole Chlamydia pecorum serovar G elementary bodies (EBs) in sera following immunization with 3MOMP and PmpG vaccines. Serums

from vaccination day or 6 months post-vaccination were assayed for antigen-specific IgG responses by ELISA using whole EBs. (A) and (C) represent

EPT and statistics for 3MOMP and PmpG vaccinated cohorts respectively. (B) and (D) show the EPT obtained for each koala in each cohort. MPV

stands for Months Post-Vaccination. P values (Significance was analysed using Wilcoxon matched-pairs signed rank t-test) are documented in the

results section.

https://doi.org/10.1371/journal.pone.0178786.g002
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vaccinated koalas and that the IgG antibodies produced as a result of both vaccinations can

recognize native epitopes present on intact C. pecorum EBs.

Mucosal immune responses in vaccinated koalas

To assess the induction of mucosal immunity by both 3MOMP and PmpG vaccines, we mea-

sured the IgG and IgA antibody titres in ocular and urogenital (UGT) swabs, pre- and post-

immunization, using ELISA assays with recombinant MOMP and PmpG purified proteins

(Fig 3). Despite large variations of EPT values amongst koalas within both cohorts, a mucosal

immune response was observed with both vaccines in a sub-group of the vaccinated koalas.

Indeed, the 3MOMP vaccine increased the EPT titre for anti-MOMP IgA by 10 to 100-fold, at

both ocular (5/10 koalas, p = 0.0625) and UGT sites (4/10 koalas; p = 0.125; Fig 3A). Similarly,

the PmpG vaccine triggered a 10 to 100-fold increase in EPT values for IgA antibodies at the

UGT (4/10 koalas; p = 0.25) or the ocular sites (5/10 koalas; p = 0.0625) post-vaccination (Fig

3B). Evaluation of an IgG response at the mucosal sites of koalas vaccinated with the 3MOMP

vaccine showed a more modest but significant 2-fold increase or higher in mucosal anti-

MOMP IgG in both ocular (57.1%; 12/21) and UGT samples (50%; 5/10) 6 months post-vacci-

nation (Fig 3C, P = 0.009 and P = 0.0195 respectively). In 10 koalas where both ocular and

UGT samples were measured, 50% presented an increase at both sites (data not shown). For

the PmpG vaccine, although statistically non-significant, 42% (8/19) and 63% (7/11) of koalas

showed a 2-fold or higher increase in either ocular or UGT mucosal IgG recognising recombi-

nant PmpG 6 months post-vaccination (Fig 3D; P = 0.0681 and P = 0.0781 respectively).

Overall, our data demonstrated that both 3MOMP and PmpG vaccines did elicit a mucosal

response in some koalas by triggering production of 3MOMP and PmpG-specific IgG and IgA

antibodies at ocular and UGT sites.

Cytokine expression in vaccinated animals

Previous research suggests that the host defence mechanisms to chlamydial infections involves

secretion of IFN-γ and IL-17 [9]. We therefore measured the chlamydia-specific response of

these two cytokines pre- and post-vaccination with 3MOMP and PmpG vaccines using RT-

qPCR on purified circulating PBMCs, after in vitro stimulation with UV inactivated EBs (Fig

4). Both 3MOMP and PmpG vaccines elicited a significant increase in IFN-γ and IL-17 in EB-

stimulated PBMCs (Fig 3A and 3B respectively). For koalas vaccinated with 3MOMP, 57.1%

(8/14) showed an increase in IFN-γ P = 0.0495) and 78.6% (11/14) showed an increase in IL-

17 (p = 0.017) post-vaccination (Fig 4A, panel right and left respectively). A total of 8 koalas

out of 14 exhibited a 2-fold or more increase in IFN-γ gene expression post-vaccination, while

IL-17 gene expression increased more than 2-fold in 9/14 koalas post-vaccination. Overall,

50% of 3MOMP vaccinated koalas displayed a 2-fold or more increase in both IL17 and IFN-γ.

Similarly, 86.6% (13/15; p = 0.015) of the PmpG vaccinated koalas exhibited an increase in

IFN-γ and 100% (15/15, p = 0.0015) in IL-17, post-vaccination (Fig 4B, panels left and right

respectively). IFN-γ expression increased by more than 2-fold in 66.7% of koalas post-vaccina-

tion while IL-17 expression increased by 2-fold or more in 80% of the vaccinated koalas. Simi-

lar to 3MOMP vaccinated koalas, 50% of PmpG vaccinated koalas displayed a 2-fold or more

increase in both IFN-γ and IL-17 expression post-vaccination.

Interestingly, for both 3MOMP and PmpG vaccines, we did not observe any correlation

between the antibody response and cytokine production, as some koalas exhibiting a strong

humoral response showed a poor cell-mediated response and vice versa (data not shown).

However, post-vaccination expression levels of IFN-γ and IL -17 were significantly higher in

some of the PmpG vaccinated koalas compared to the 3MOMP vaccinated cohort. Indeed,

MOMP and PmpG vaccines in wild koalas: Immune response, protection, clearance

PLOS ONE | https://doi.org/10.1371/journal.pone.0178786 June 2, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0178786


Fig 3. Mucosal specific IgG and IgA antibody response to MOMP and PmpG vaccines. Mucosal specific

IgG and IgA antibody response to MOMP and PmpG antigens in ocular and UGT swabs samples following

immunization with 3MOMP and PmpG vaccines. Swabs from vaccination day or 6 months post-vaccination

(ocular and UGT) were assayed for antigen-specific IgG responses by ELISA using purified recombinant

proteins MOMP and PmpG. Right and left panels represent the EPT values and statistics obtained for MOMP-

specific IgAs at the ocular and UGT sites respectively, for the 3MOMP vaccinated cohort. Fig 3 B represents
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with the PmpG vaccine, 33% koalas had a 200-fold or more increase in IL-17 and 33% koalas

had a 90-fold or more increase in IFN-γ, and only one koala showed such a strong increase in

both cytokines. Although biological variation amongst koalas was observed, these results

showed that both 3MOMP and PmpG vaccines induce production of both host defence IFN-γ
and IL-17 cytokines, with the PmpG vaccine triggering a more robust increase in expression of

both cytokines compared to the 3MOMP vaccine.

the EPT values and statistics obtained for PmpG-specific IgAs at the ocular or UGT sites for the PmpG

vaccinated cohort. Panels (C) and (D) show the IgG EPT obtained at either mucosal site (ocular and UGT, left

and right panels respectively) in 3MOMP or PmpG vaccine cohort respectively. MPV stands for Months Post-

Vaccination. P values obtained using Wilcoxon matched-pairs signed rank t-test are documented in the

results section.

https://doi.org/10.1371/journal.pone.0178786.g003

Fig 4. IFN-γ and IL-17 expression in vaccinated koalas. Gene expression of IFN-γ and IL-17 cytokines pre and post immunization. Gene expression of

cytokines IFN-γ and IL17 were quantified using RT-qPCR assays on PBMCs from vaccinated koalas, stimulated with C. pecorum EBs. Data represent the

mean-fold change expression of either 3MOMP (panel A) or PmpG (panel B) vaccinated koalas relative to house-keeping gene GAPDH, for IFN-γ and

IL17 respectively. Significance was analysed using Wilcoxon matched-pairs signed rank t-test.

https://doi.org/10.1371/journal.pone.0178786.g004
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Chlamydia infectious loads in koalas, pre- and post-vaccination

Although all of the koalas in our study group were clinically healthy at the time of vaccination,

we assessed the presence of C. pecorum in ocular and UGT swabs for each koala pre- and post-

vaccination using qPCR (Table 1). The qPCR loads were compared with a control group of 21

koalas from the same geographical area, which received no vaccination. At the time of vaccina-

tion, both non-vaccinated (Table 1) and 3MOMP (Table 2) vaccinated cohorts had koalas with

a chlamydial infection but no sign of clinical disease: 9.5% non-vaccinated koalas (2/21; C5,

C12), and 28.6% of 3MOMP koalas (6/21; M2, M8, M10, M11, M14 ad M17). The PmpG

(Table 3) cohort had no koala (0/21) presenting a chlamydial infection at the time of vaccina-

tion. We then determined the chlamydial infection load at the 6-month time point in all

cohorts. For the non-vaccinated group, four koalas out of 21 (19%) had a load that increased at

the 6-month time point compared to the time point 0 [2/21 koalas increased at both ocular

and UGT sites (C11 and C13), and three new infections (C6, C11 and C13; qPCR load were

below detection level (BDL) at time point 0)]. During the 6-month trial time, koala C12 pro-

gressed to chlamydiosis and was treated with antibiotics, clearing the chlamydial infection as

shown by a below detection level qPCR result at the 6-month time point (Table 1). Koalas C11

and C13 developed chlamydiosis by the 6-month time point, accompanied by a high qPCR

Table 1. Chlamydia infection in the non-vaccinated cohort.

Non -Vaccinated

Ocular Loads UGT Loads Chlamydiosis during the 6-month trial Chlamydiosis post the 6-month trial

Months post-vaccine Months post-vaccine

0 6 0 6

C1 BDL BDL BDL BDL N N

C2 BDL BDL BDL BDL N Y

C3 BDL BDL BDL BDL N N

C4 BDL BDL BDL BDL N N

C5 BDL BDL 176 242 N N

C6 BDL 518 BDL BDL N N

C7 BDL BDL BDL BDL N N

C8 BDL BDL BDL BDL N N

C9 BDL BDL BDL BDL N N

C10 BDL BDL BDL BDL N N

C11 BDL 1212 BDL 10800 Y N

C12 BDL BDL 439 BDL Y N

C13 BDL 25964 BDL 2552 Y N

C14 BDL BDL BDL BDL N N

C15 BDL BDL BDL BDL N N

C16 BDL BDL BDL BDL N N

C17 BDL BDL BDL BDL N N

C18 BDL BDL BDL BDL N N

C19 BDL BDL BDL BDL N Y

C20 BDL BDL BDL BDL N N

C21 BDL BDL BDL BDL N N

Infection with C. pecorum was assessed in the non-vaccinated control cohort using our C. pecorum 16S qPCR assay. Loads obtained are indicated for each

koala in copies/μL of sample, pre and post-vaccination. BDL stands for Below Detection Level, and corresponds to <100 copies/ μL. Clinical disease status

were recorded for each koala whether it occurred during the trial or during the 3 months past the trial period.

https://doi.org/10.1371/journal.pone.0178786.t001
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load at both sampling sites (Table 1). In the 3MOMP vaccine cohort, while 6 koalas had a posi-

tive load at the time of vaccination, all loads were decreased 6 months post-vaccination (6/21

koalas; 4 ocular sites, 4 UGT sites). This was significantly different to the non-vaccinated

group where no decrease in chlamydial load was observed in infected koalas (p = 0.048).

Importantly, we observed no occurrence of new infections in the 3MOMP vaccine cohort as

opposed to the non-vaccinated group that showed three new infections (Table 2). In the

PmpG vaccine cohort, 3 koalas (P8, P9 and P11) showed an increase in Chlamydia load post-

vaccination (3/21 koalas; 2 ocular sites, 2 UGT sites), corresponding to 3 new infections

(Table 3). The incidence of new infections in the PmpG vaccine cohort was similar to the non-

vaccinated cohort (3/21 koalas newly infected in each cohort). During the 6-months of our

trial, no koala in the vaccinated cohorts were reported with chlamydial disease.

However, while our main assessment period for the vaccine was 6 months post-vaccination,

we were able to make additional clinical observations up to 9 months post-vaccination (Tables

1–3, right column in table). At that time, an additional number of koalas developed chlamy-

diosis (UGT site) in each cohort: two koalas from the non-vaccinated group, three koalas from

the 3MOMP vaccine group and two koalas from the PmpG vaccine group. None of these

koalas had shown a positive C. pecorum qPCR load previously.

Table 2. Chlamydia infection in the 3MOMP vaccine cohort.

3MOMP Vaccine

Ocular Loads UGT Loads Chlamydiosis during the 6-month trial Chlamydiosis post the 6-month trial

Months post-vaccine Months post-vaccine

0 6 0 6

M1 BDL BDL BDL BDL N Y

M2 224 BDL BDL BDL N N

M3 BDL BDL BDL BDL N N

M4 BDL BDL BDL BDL N N

M5 BDL BDL BDL BDL N N

M6 BDL BDL BDL BDL N N

M7 BDL BDL BDL BDL N N

M8 BDL BDL 337 278 N N

M9 BDL BDL BDL BDL N N

M10 BDL BDL 228 BDL N N

M11 590 BDL 186 BDL N N

M12 BDL BDL BDL BDL N Y

M13 BDL BDL BDL BDL N N

M14 219 BDL 284 BDL N N

M15 BDL BDL BDL BDL N N

M16 BDL BDL BDL BDL N N

M17 193 BDL BDL BDL N N

M18 BDL BDL BDL BDL N Y

M19 BDL BDL BDL BDL N N

M20 BDL BDL BDL BDL N N

M21 BDL BDL BDL BDL N N

Infection with C. pecorum was assessed in the 3MOMP vaccine cohort using our C. pecorum 16S qPCR assay. Loads obtained are indicated for each koala

in copies/μL of sample, pre and post-vaccination. BDL stands for Below Detection Level, and corresponds to <100 copies/ μL. Clinical disease status were

recorded for each koala whether it occurred during the trial or during the 3 months past the trial period.

https://doi.org/10.1371/journal.pone.0178786.t002
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Altogether, our data showed that the 3MOMP and PmpG vaccines have different outcomes

regarding protection and clearance of chlamydial infections. New infections were observed in

both non-vaccinated and PmpG cohorts at both ocular and UGT sites, suggesting that the

PmpG vaccine failed to provide adequate protection against new infections in two animals. In

contrast, the 3MOMP vaccine seemed to be responsible for the clearing of six existing infec-

tions, and the absence of new infections. This vaccine might be efficient in clearing and possi-

bly protection against chlamydia infections. However, two koalas in the non-vaccinated group

and PmpG vaccine group, and three in the 3MOMP vaccine group developed new infections

leading to chlamydiosis between the 7th and 9th months post-vaccination suggesting that the

immune response triggered by the 3MOMP vaccine is short lasting.

Chlamydial clearance, mucosal IgA, Genotyping of C. pecorum strains

infecting koalas in the trial

Although we observed that vaccination with both 3MOMP and PmpG vaccines elicited a

humoral and cell-mediated immune response, the outcomes of chlamydial clearance and pro-

tection against new infections differed between the vaccines. We hypothesized that such differ-

ences might be due to (a) koala variations in the immune response to vaccination, or (b) that

Table 3. Chlamydia infection in the PmpG vaccine cohort.

PmpG Vaccine

Ocular Loads UGT Loads Chlamydiosis during the 6-month trial Chlamydiosis post the 6-month trial

Months post-vaccine Months post-vaccine

0 6 0 6

P1 BDL BDL BDL BDL N N

P2 BDL BDL BDL BDL N N

P3 BDL BDL BDL BDL N N

P4 BDL BDL BDL BDL N Y

P5 BDL BDL BDL BDL N N

P6 BDL BDL BDL BDL N N

P7 BDL BDL BDL BDL N N

P8 BDL 1292 BDL 2290 N N

P9 BDL BDL BDL 230 N N

P10 BDL BDL BDL BDL N N

P11 BDL 167 BDL 346 N N

P12 BDL BDL BDL BDL N Y

P13 BDL BDL BDL BDL N N

P14 BDL BDL BDL BDL N N

P15 BDL BDL BDL BDL N N

P16 BDL BDL BDL BDL N N

P17 BDL BDL BDL BDL N N

P18 BDL BDL BDL BDL N N

P19 BDL BDL BDL BDL N N

P20 BDL BDL BDL BDL N N

P21 BDL BDL BDL BDL N N

Infection with C. pecorum was assessed in the PmpG vaccine cohort using our C. pecorum 16S qPCR assay. Loads obtained are indicated for each koala in

copies/μL of sample, pre and post-vaccination. BDL stands for Below Detection Level, and corresponds to <100 copies/μL. Clinical disease status were

recorded for each koala whether it occurred during the trial or during the 3 months past the trial period.

https://doi.org/10.1371/journal.pone.0178786.t003
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C. pecorum strains with genetically variable MOMP and PmpG proteins to those included in

the vaccines might be circulating in our wild koala population. We first compared the immu-

nologic characteristics of each infected and diseased koala (data not shown). Regarding the

IgG or cell-mediated factors, we could not identify any consistent pattern that the presence or

absence of one or more immune factor could be responsible for the lack of protection in the

vaccinated koalas or koalas that developed chlamydial disease 9 months post-vaccination.

However, when the chlamydia levels and disease status post-vaccination were compared with

the mucosal IgA production in each koala, we identified that all koalas with a decreased C.

pecorum load post-vaccination also produced IgA with EPT values between 8<EPT<153 (Fig

5A). The koalas that had an increased C. pecorum load or were found diseased post-vaccination

showed no sign of IgA production in response to vaccination, except for one koala (P11) with

a high level of anti PmpG-IgA pre- and post-vaccination. Therefore, this data suggests that

production of anti-chlamydial IgA in response to 3MOMP vaccination might be associated

with a decrease in C. pecorum load in infected animals, although further studies would be

required.

We then determined which C. pecorum strains were present in the koalas in this trial popu-

lation by sequencing the near-full length ompA gene for each infected koala. Previous work

suggested that the dominant ompA genotypes carried by strains circulating in South East

Queensland are C. pecorum F and G [39]. Our vaccine contained recombinant protein made

from the three C.pecorum strains, A, F and G. We attempted to perform PCR-amplification

and sequencing of the ompA gene for each positive koala sample (previously shown in Table 1)

but were only able to obtain a PCR product and reliable sequence data for 10/21 koala samples.

Fig 5. Comparison of chlamydia and disease status with mucosal IgA, alignment and phylogenetic analysis of the new ompA genotypes in

infected koalas. (A) Infection and disease status was assessed and compared with mucosal IgA in koalas pre- and post-vaccination. (B) Alignment of the

new MOMP variants from strains infecting the koalas in the present vaccine trial including the previously described ompA F and F’ subtypes. (C) Bayesian

phylogenetic analysis of the 24 ompA sequences, including the 10 koala C. pecorum ompA sequences generated in this study, and 13 previously

described koala C. pecorum ompA genotypes. The C. pecorum E58 ompA sequence was used as an out-group. Posterior probabilities are displayed in

the tree nodes.

https://doi.org/10.1371/journal.pone.0178786.g005
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The sequenced 900bp ompA fragments were compared with all other ompA genes from all

strain types and subtypes previously identified in koalas, and also ompA from a reference strain

of C. pecorum identified in Australian livestock, E58. Out of the 10 ompA sequences analysed

from koalas in our study population, we identified 8 different ompA types. When translated

into the corresponding MOMP proteins, alignment with MOMP-F and -F’ clearly showed a

majority of non-synonymous mutations in the variable domain 4 (VD4) of the MOMP pro-

teins (Fig 5B). Surprisingly, the ompA sequence from two koalas (M14 and M17) showed a sig-

nificant diversity compared to the ompA sequences from the other koalas, suggesting that they

were infected with a different chlamydial strain. Phylogenetic analysis revealed that the C.

pecorum koala strains from this population segregated in two distinct, well-supported clades

(Fig 5C). Both koalas, M17 and M14, had a C. pecorum strain distinct from the strains detected

in other koalas, which clustered in a clade together with the livestock C. pecorum E58 strain

(Clade 1). M17 and M14 C. pecorum strains had one synonymous SNP, with M14 identical to

the E58 strain. The rest of the isolates all segregated to form Clade 2 together with C. pecorum
F strain and F’ subtype. A difference of 12 nucleotides (nt) in the ompA gene (1% of the gene)

has been proposed to define a new strain (39). As the differences in these ompA genes fluctu-

ated from 8 to 10 nt, we concluded that the koalas in our population were infected with vari-

ants of the F chlamydial strain. However, the difference between each koala ompA sequences

previously reported and the M17 and M14 ompA sequences varied from 84 to 175 nt, repre-

senting more than 7% divergence. We thus propose that M17 and M14 constitute a new koala

ompA genotype O (ompA-O), based on the current naming system [31, 40].

Discussion

In this study, we analysed the immune responses and protective effects of two different anti-

chlamydial vaccines delivered as a single dose in a wild population of koalas at 6 months post-

vaccination. We first demonstrated that both vaccines elicited a humoral response by inducing

the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated koalas. This

systemic response to vaccination coincided with a mucosal response observed in some koalas

that showed an increase in IgG and/or IgA post-vaccination at ocular and UGT sites. Second,

both vaccines were capable of eliciting a cell-mediated immune response via increased produc-

tion of the two key cytokines, IFN-γ and IL-17. However, both vaccines displayed some differ-

ences in their ability to trigger the expected immune response: 3MOMP was a better stimulant

of the mucosal immune response, while PmpG resulted in the production of a higher level of

cytokines. Third, we assessed the chlamydial loads of all vaccinated koalas pre- and post-

vaccination, compared to a non-vaccinated cohort from the same geographical region. The

3MOMP vaccinated koalas that were infected on the day of vaccination showed a clearance of

their infection by 6 months post-vaccination, compared to the non-vaccinated infected koalas

that did not clear their infection and some of which also progressed to disease. Finally, we

identified genetic variants of C. pecorum in the geographical region of this koala population.

These strains had non-synonymous mutations in the immunogenic domains of MOMP.

These genetic variations might explain differential outcome of the vaccines on protection and

clearing of the disease, as they were different to the variants used in our vaccines.

We used two different antigens, MOMP and PmpG, and found no major differences in the

resulting immune responses observed between both vaccinated cohorts. Interestingly, some

animals showed a high anti-Chlamydia IgG titre prior to vaccination which did not correlate

with a current infectious chlamydia load, as determined by PCR, suggesting that these animals

had been previously naturally infected with Chlamydia and still contained residual anti-chla-

mydial antibodies. The presence of these antibodies did not appear to prevent either vaccine
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from triggering an immune response in vaccinated koalas. However, the vaccines showed a

difference in their outcome regarding clearing of existing infections and protection against

new ones. While the effect of our PmpG vaccine on clearance is still unknown, as we had no

infected koalas at the time of vaccination in that cohort, it failed to prevent new infections by 6

and 9 months post-vaccination (5 koalas out of 21 developing a new infection). This suggests

that, unfortunately, although immunogenic, the PmpG vaccine did not elicit the correct type

or strength of response required for ongoing protection from new infections under natural

conditions. This result is a little surprising as, in other chlamydial species, Pmp proteins have

been described as dominant antigenic targets for T-cell immune responses, and have been

reported to be immunogenic and protective against chlamydial reinfections in mice [14, 27,

28, 41, 42]. The selection of only one type of PmpG protein from one C. pecorum strain

included in the vaccine might be an explanation. Indeed, the PmpG genes that are under posi-

tive selection in a specific strain are the most likely to encode proteins with antigenic regions

capable of eliciting an immune response to a broader range of strains when included in a vac-

cine [43]. We previously identified nine PmpG genes in the C. pecorum genome [44, 45].

Amongst these nine PmpG genes, PmpG1 and 9 are under positive selection with pmpG1 hav-

ing the highest polymorphism [31]. Although we chose PmpG1 for this vaccine, it is possible

that PmpG9 or a combination of both would have been more potent in protecting against new

infections. Importantly, recent vaccine trials have combined several Pmps of variable polymor-

phism to give rise to efficient vaccines [27, 28, 42]. This suggests that selecting and including

several immunodominant C. pecorum PmpG proteins could be an option to provide a range of

epitopes for both T cell recognition and antigen presentation in our koala population with var-

iable MHC backgrounds, and further allow development of an adaptive immune response.

The 3MOMP vaccine clearly demonstrated a level of protection against current infection

and also some protection initially, at least, against new infections as evidenced by the observa-

tion of no new infections in the first 6 months post-vaccination compared to the non-vacci-

nated control group. However, two koalas developed new infections between 6 and 9 months

post-vaccination. This suggests that the adaptive immune response induced by the 3MOMP

vaccine is not long lasting or might be too specific for some C. pecorum strains. This suggests a

need to introduce more divergence in the vaccine epitopes in the future by selecting a larger

number of MOMP proteins with multiple strain variations.

Systemic and mucosal B and T cell-mediated immunity have been shown to be necessary to

elicit the adaptive immune response and provide protection against C. trachomatis infections

particularly in the mouse model [46–49]. In line with these findings, in addition to inducing a

C. pecorum-specific systemic immunity, vaccination of wild koalas with 3MOMP and PmpG

vaccines triggered mucosal immunity. However, the EPT values for anti-chlamydial IgA and

IgG were quite low in both UGT and ocular samples, for both vaccines. If such an immune

response was sufficient to clear C. pecorum infections such as in the 3MOMP vaccine, they

appear insufficient in the case of the PmpG vaccine. The route of immunization can determine

tissue-tropism of the immune cells and generate immune responses in various tissues (48).

Combined routes of immunization via intramuscular and intranasal delivery can further

induce systemic and mucosal immunity in minipigs infected with C. trachomatis [49]. The

adjuvant used in our study has been shown to be effective in intranasal delivery [50]. There-

fore, a double immunization of koalas via muscular and mucosal routes (nasal or genital)

might be the solution to boost the vaccine effect we already observed at the mucosal site by

eliciting a stronger, and potentially longer lasting, immune response and triggering mucosal

resident B and T cell-mediated immune responses.

All 3MOMP vaccinated koalas infected with C. pecorum at the time of vaccination cleared

their infection by 6 months post-vaccination. In contrast, none of the non-vaccinated infected
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koalas naturally cleared their infection, with some koalas even further progressing to disease. It

appears that this multi-epitope vaccine could be suitable to trigger the adaptive immune sys-

tem and provide cross-protection against antigenic variants required to clear C. pecorum infec-

tions in our wild population. Our data analysis suggested that production of IgA might be

associated with clearance of natural infections. The role of IgA in chlamydial infections

remains controversial. Indeed, while the absence of IgA in IgA-deficient mice seems to have

no effect on clearance of primary or secondary infections, other studies have reported the

effect of anti-MOMP IgA (from either vaccination with a MOMP vaccine or adoptive transfer)

on reducing chlamydial infections in mice [46, 47, 51]. Thus, although our data supported a

role for IgA in lowering chlamydial burden in koalas, further experiments are required to fully

elucidate the role of mucosal immunity in chlamydial infections.

Alongside humoral immunity, cell-mediated immunity is essential to fight chlamydial

infection. The importance in IFN-γ produced by CD4 T cells for protective immunity against

chlamydial infection has been demonstrated previously for C. trachomatis and C. muridarum
[7]. In C. pecorum, previous experiments showed a strong expression of IFN-y in koalas with

chlamydial infections, suggesting the same cytokine mechanisms as other chlamydial species

[36]. In addition, the Th17 cells contribute to host protective immunity against bacterial path-

ogens and IL-17 secreted from Th17 cells was associated with protection against C. muridarum
[52, 53]. Both 3MOMP and PmpG vaccines elicited a significantly increased expression of

both IFN-γ and IL-17, post-vaccination.

Mechanisms of protection against chlamydia infections after vaccination have been investi-

gated in other members of the genus. Indeed, recent experiments highlighting the role of cell-

mediated immunity and IFN-γ production on protecting against chlamydial infection post-

vaccinations. Although the role of IFN-γ has been well studied for C. trachomatis, and three

mechanisms proposed including the up-regulation of nitric oxide synthase, the down regula-

tion of the transferrin receptors for iron transport, or the inhibition of indoleamine 2,3-dioxy-

genase, these mechanisms have not yet been analysed in for animal C. pecorum infections [54].

Similarly, recent work on mice immunized with a vaccine containing a MOMP chimeric pro-

tein exhibiting selected T-cell and B-cell epitopes reduced shedding and immunopathology

associated with production of IFN-γ, IL-17 and IL-13 [42]. Production of TNF-α has also been

shown to participate in the clearance of chlamydial infection, potentially via up regulation of

IFN-β, NK cells or neutrophils [55]. Our results here with C.pecorum infection in koalas con-

firms that production of IFN-γ plays a role in clearance and protection. In addition, IgA has

also been suggested to be involved in protection against chlamydia. It has recently been

reported that vaccinated minipigs produced a strong genital secretory IgA response and this

correlated with protection against a live challenge in this model [49]. Again, our data here for

the koala model suggest that mucosal IgA levels do correlate with protection. At this stage, we

are unsure of the relative importance of these two immune mechanisms for protection in the

koala / C.pecorum natural situation.

In our koala cohorts, we identified eight C. pecorum ompA haplotypes from 10 C. pecorum
samples from infected koalas. Among these eight haplotypes, six were phylogenetically related

to genotype F’ and two were identical to C. pecorum strains previously identified in sheep, cat-

tle and koalas [31, 40]. Importantly, all the variant strains exhibited mutations resulting in

non-synonymous amino acid changes located mostly in the variable domain 4 (VD4) of the

resulting MOMP protein. As the VD4 domain is considered the most immunogenic domain

in the MOMP protein [39, 56], we hypothesize that non-synonymous changes in the amino-

acid content of this domain would lead to modifications of the overall structure of the MOMP

protein, inducing changes in the structural epitopes. As a consequence, the repertoire of anti-

bodies established with the 3MOMP vaccine might have a limited recognition of the variants
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of MOMP proteins expressed on C. pecorum naturally infecting strains in our koala popula-

tion, ultimately reducing the protective effects of the vaccine.

In conclusion, we have shown that recombinant PmpG protein is immunogenic, similar

to recombinant MOMP, and can elicit systemic and mucosal humoral and cell-mediated

immune responses with production of specific anti-chlamydial IgG and IgA antibodies. In

addition, the 3MOMP vaccine showed clearance of infection in six koalas suggesting that an

appropriate and adequate immune response can be elicited by vaccination. However, we also

identified a few koalas (2/21) that developed chlamydial disease in the 3MOMP and PmpG

vaccine cohorts, similar to the non-vaccinated group, after longer time periods (Refer to

Table 1, right columns, for chlamydiosis status of each koala in the trial). This suggests that

the vaccines were potentially short lasting. Analysis of the C. pecorum strains by ompA geno-

typing revealed a large genetic diversity of the ompA strains amongst infected koalas in our

trial. This might account for the reduced efficiency of the vaccine as all strains exhibited non-

synonymous mutations in the VD4 domain of ompA, known to contain T and B cell epitopes.

Although the capability of both vaccines to stimulate an adaptive response and be protective

needs to be fully evaluated, this work illustrates the necessity to combine epitopes most rele-

vant to a large panel of variable strains with an efficient adjuvant.

Supporting information

S1 Fig. Schematic of the MOMP-A, MOMP-F, MOMP-G and PMpG proteins included in

the 3MOMP and PmpG vaccines. Numbering indicates the amino acid number in the full

length protein. His corresponds to the hexa-histidine tag that consists of 6 histidine residues

located at the N-terminus of the recombinant MOMP and PmpG proteins.
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