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Abstract 

High-grade serous ovarian cancer (HGSOC) is marked by significant molecular diversity, presenting a major clinical 
challenge due to its aggressive nature and poor prognosis. This study aims to deepen the understanding of HGSOC 
by characterizing mRNA subtypes and examining their immune microenvironment (TIME) and its role in disease pro-
gression. Using transcriptomic data and an advanced computational pipeline, we investigated four mRNA subtypes: 
immunoreactive, differentiated, proliferative, and mesenchymal, each associated with distinct gene expression profiles 
and clinical behaviors. We performed differential expression analysis among mRNA subtypes using DESeq2 and con-
ducted Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules related 
to clinical traits, e.g., age, survival, and subtype classification. Gene Ontology (GO) analysis highlighted key pathways 
involved in tumor progression and immune evasion. Additionally, we utilized TIMER 2.0 to assess immune cell infiltra-
tion across different HGSOC subtypes, providing insights into the interplay between tumor immune microenviron-
ment (TIME). Our findings show that the immunoreactive subtype, particularly the M3 module-associated network, 
was marked by high immune cell infiltration, including M1 (p < 0.0001) and M2 macrophages (p < 0.01), and Th1 cells 
(p < 0.01) along with LAIR-1 expression (p = 1.63e-101). The M18 module exhibited strong B cell signatures (p = 6.24e-
28), along with significant FCRL5 (adj. p = 3.09e-30) and IRF4 (adj. p = 3.09e-30) coexpression. In contrast, the M5 
module was significantly associated with the mesenchymal subtype, along with fibroblasts (p < 0.0001). The prolif-
erative subtype was characterized by M15 module-driven cellular growth and proliferation gene expression signa-
tures, along with significant ovarian stromal cell involvement (p < 0.0001). Our study reveals the complex interplay 
between mRNA subtypes and suggests genes contributing to molecular subtypes, underscoring the important clini-
cal implications of mRNA subtyping in HGSOC.
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Background
High-grade serous ovarian cancer (HGSOC) is a highly 
heterogeneous disease and one of the most lethal gyneco-
logic malignancies worldwide [1]. Ongoing research 
seeks to identify both diagnostic and prognostic bio-
markers to better predict disease progression. Current 
first-line detection methods include transvaginal ultra-
sonography and CA-125 surveillance. Despite wide-
spread use of CA-125 tests, its limitations are notable. 
Indeed, this biomarker is absent in about 20% of ovarian 
cancers and can be elevated in non-cancerous conditions 
like peritonitis, endometriosis, and even during the men-
strual cycle or pregnancy [2, 3].

Molecular heterogeneity is particularly pronounced in 
serous and endometrioid tumors, highlighting the need 
for molecular subtyping to allow for more precise diag-
nosis and targeted treatment approaches [4, 5]. Previous 
studies identified four primary mRNA HGSOC sub-
types, i.e., immunoreactive, differentiated, proliferative, 
and mesenchymal, each of which are associated with 
distinct biological pathways and clinical phenotypes 
[4–6]. Immunoreactive HGSOC subtype tumors show a 
strong immune response with higher numbers of tumor 
infiltrating lymphocytes and are associated with the 
best prognosis. Differentiated HGSOC subtype tumors 
exhibit features of epithelial differentiation, with moder-
ate nuclear atypia and an intermediate prognosis. Pro-
liferative tumors are characterized by rapid cell division 
and high expression of proliferation markers, leading 
to aggressive disease progression. Lastly, mesenchymal 
HCSOC tumors display a loss of epithelial characteris-
tics and gain of mesenchymal features, often associated 
with increased invasion and the worst prognosis. These 
subtypes no doubt differ in their gene expression pro-
files, histological features, and clinical outcomes, high-
lighting the need for personalized treatment approaches 
[5, 7] While these subtypes have improved our under-
standing of HCSOC, the underlying molecular drivers of 
these signatures and their therapeutic implications, are 
not yet fully understood.

Immunotherapy has emerged as a promising treat-
ment for various cancers [8]. Previous work from our 
laboratory was the first to demonstrate that CXCL13-
CXCR5 and CCL25-CCR9 signaling promotes several 
cancer types including ovarian, breast, lung, and pros-
tate cell growth and survival [9–11]. We also showed 
that this signaling pathway activates PI3K, AKT, ERK, 
and Jun, further driving cancer progression [12]. How-
ever, significant gaps remain in understanding how the 
gene networks in HGSOC influence immune cell acti-
vation, infiltration within the tumor microenvironment, 
and attributes of the four molecular subtypes of this 
cancer [13].

To advance our understanding of HGSOC, innovative 
computational methods are being applied to study its 
molecular landscape. Our study aimed to evaluate sub-
types using transcriptomic data, focusing on the immune 
cell composition and its relationship to functional net-
works within the Tumor Immune Microenvironment 
(TIME). We identified 23 modules of co-expressed genes 
and explored their relationships with clinical traits, such 
as age of onset, survival, and mRNA subtype. While 
previous studies have established subtype-specific gene 
expression patterns, our findings reveal novel transcrip-
tional network shifts and highlight specific immune cells 
driving these gene modules, which has important impli-
cations for understanding HGSOC biology.

Notably, the M3 module was strongly correlated with 
the immunoreactive subtype and exhibited heightened 
immune activity, driven primarily by M1 and M2 mac-
rophages and Th1 cells. The differentiated subtype was 
associated with cellular differentiation, particularly 
through the M15 module, where DLK1—a key regula-
tor of organ development and stem cell maintenance—
plays an important role [14, 15]. The proliferative subtype 
showed strong correlation with the M6 module, which 
was associated with gene signatures involved in tumor 
growth and transcriptional regulation. Lastly, the mes-
enchymal subtype was significantly associated with the 
M5 module which displayed tumor invasion and extra-
cellular matrix remodeling as well as cancer-associated 
fibroblasts (CAFs) molecular signatures. These insights 
suggest the potential for developing subtype-specific 
diagnostic and therapeutic markers to improve disease 
monitoring by targeting the unique molecular pathways 
within each HGSOC subtype.

Methods
Data collection and sample removal
The data used in this study is available at [The Cancer 
Genome Atlas (TCGA) via GDC (Genomic Data Com-
mons)] at [https:// portal. gdc. cancer. gov], last accessed 
on February 27, 2024. Primary tumor samples were col-
lected from patients with ovarian serous cystadenocar-
cinoma. RNA sequencing STAR counts, processed using 
the mRNA pipeline [5], were obtained for 417 tumor 
samples and 60,660 genes. Recurrent tumor samples 
were removed, resulting in 398 primary tumor samples. 
Singleton batch cases were removed (n = 2), due to two 
unique site distributions, explained here (https:// docs. 
gdc. cancer. gov/ Encyc loped ia/ pages/ TCGA_ Barco de/). 
Data that contained ‘NA’ for mRNA subtypes were also 
removed (n = 2). Genes with row sums ≥ 32 normalized 
counts were removed to enhance the power and accuracy 
of differential expression detection resulting in 394 sam-
ples and 22,181 genes being used for DESeq2 analysis. 

https://portal.gdc.cancer.gov
https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
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After variance stabilizing transformation (VST) normali-
zation, samples with a bicor adjacency sample network 
connectivity that exceeded three standard deviations 
above the mean using the WGCNA R package, funda-
mentalNetworkConcepts function [16], in any of five 
rounds of successive outlier removal, were deemed outli-
ers and removed from the cohort (n = 5). The remaining 
389 profiles were used to determine pairwise correlations 
between genes for the WGCNA connectivity network. 
PCA plots were compared for data before and after out-
lier removal steps. This normalized TCGA-OV cohort 
sample-gene transcript matrix was used to perform fur-
ther downstream analysis, diagnostics, and visualization.

Differential expression (DESeq2) analysis
Raw counts from the above-described pipeline were used 
with DESeq2 (v. 1.42.0) in R to determine differential 
expression based on the negative binomial distribution 
method [17]. Filtering criteria were set with the small-
estGroupSize as 50, and subset rows were removed with 
row means > = 32, determined graphically by assessing 
the distribution of the dataset using a histogram. Our 
design formula (design = ~ batch + condition) was used 
to explore gene expression changes of mRNA subtypes 
with batch effects factored as a confounding observation. 
Contrasts were specified using reference level ranking 
(immunoreactive, differentiated, proliferative, mesen-
chymal). The ranking was used to simulate ‘best to worst’ 
clinical survival outcomes [18], with the lowest rank 
(best prognosis) as the base level for comparison. Subse-
quently, we re-leveled the mRNA subtypes while preserv-
ing the original reference level (denominator) as much as 
possible. In this context, the denominator represents the 
baseline mRNA subtype that the other subtypes are com-
pared. This strategy ensured that each mRNA subtype 
was properly accounted for in the denominator, facilitat-
ing the validation of clinical findings and enhancing our 
understanding of differential expression.

We used the Wald test to reveal genes with differen-
tial expression between the conditions with a student’s 
p-value threshold of ≤ 0.05 and an adjusted p-value using 
a weighted Benjamini-Hochberg (BH) adjustment for 
multiple comparisons. Independent Hypothesis Weight-
ing (IHW) weights were considered to control the false 
discovery rate [19]. Traditional methods, such as the BH 
method, assume independence amongst tests, which 
could lead to inflated FDR scores. However, the IHW 
method provides more accuracy for large-scale testing 
with many hypotheses.  Log2 fold-change (LFC) shrinkage 
estimates were determined for the immunoreactive base 
reference level using the apeglm method to improve on 
previous estimators for effect size shrinkage for visualiza-
tion and ranking of genes, with little differences shown 

between standard IHW methods [20]. A LFC threshold 
of > -1 (upregulation) and LFC < -1 (downregulation) was 
set for both methods and all comparisons.

Weighted gene co‑expression network construction 
and module detection
We employed the WGCNA R package v. 1.72–5 [21] 
clustering method to construct gene co-expression net-
works from transcriptomic data obtained from high-
grade serous ovarian adenocarcinoma (HGS-OvCa) 
samples (n = 389). WGCNA distinguishes gene clusters 
by calculating the 1-topology overlap matrix and a gene 
dissimilarity matrix across samples and creates gene clus-
ters with similar expression patterns into modules. We 
performed a biweight mid correlation (bicor) matrix cal-
culation before proceeding to build the network. The cor-
relation matrix was transformed to create an adjacency 
matrix utilizing a soft-threshold power of 8 (at which 
there was a scale-free fit R2of 0.907 and mean connec-
tivity of 153), and the R2 approach towards an asymp-
tote was confirmed graphically. The blockwiseModules 
function of the WGCNA R package further leveraged 
the following parameters: power = 8; deepSplit = 4; 
mergeCutHeight = 0.15; minModuleSize = 100; TOMde-
nom = "mean"; corType = "bicor"; networkType = "signed"; 
pamStage = TRUE; pamRespectsDendro = TRUE; ver-
bose = 3; saveTOMs = FALSE; maxBlockSize = 30,000; 
reassignThresh = 0.05. After adjacency calculation, the 
adjacency matrix is transformed into Topological Over-
lap Matrix (TOM), and then 1-TOM, which represents 
measures of protein pair dissimilarity, upon which hierar-
chical clustering with dynamic tree cutting is performed, 
grouping highly interconnected genes into modules 
(n = 23) with a minimum module size set by the min-
ModuleSize parameter. After dendrogram-based module 
assignments of all gene products are completed, module 
eigengenes (ME) are initially calculated as the first prin-
cipal component of the genes within a module, and then 
bicor correlation of each gene product to each ME (kME) 
is calculated to determine if any gene product should be 
reassigned to a module within which it has significantly 
higher kME are to be merged according to a p value for 
significance of correlation p < 1e-6. After reassignments, 
MEs (Additional Table  1; ME values with module size, 
number and patient statistics for each ME) and kMEs 
were finalized (Additional Table 3), as a record of module 
membership and granular relatedness. There were 7,810 
genes that failed to remain in a module of minimum size 
(n = 100), relegated to the grey module of proteins for 
which ME calculation and kMEs are meaningless.

Following module definition, MEs (hereafter, mod-
ules) were correlated to each trait of interest encoded 
numerically as a continuous or binary variable to gauge 
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the relevance of modules to these traits and vice versa. 
Bicor correlation was used instead of Pearson correlation, 
as defined by [22] to provide robustness to outliers; bicor 
rho and associated Student p values are ideal for deter-
mining robust correlation. Statistical significance mod-
ule correlation to clinical traits (mRNA subtype, age, and 
survival) was determined by Student’s p-value < 0.05.

Functional enrichment analysis and network visualization
We used an open-source R function GOparallel (https:// 
www. github. com/ edamm er/ GOpar allel/) to find ontolo-
gies (among those in the following categories: [1] bio-
logical processes, and [2] molecular functions), which 
were significantly enriched in co-expression module gene 
product lists [23]. Briefly, this function leverages the R 
piano package to perform a one-tailed Fisher’s exact test, 
which we modified to output signed Z score for either 
enrichment or depletion, as well as p value and Benja-
mini–Hochberg FDR for the enrichment significance. 
Further, the function scrapes the website of the Bader lab 
to download the above categories of ontologies which are 
updated on a monthly basis [24] for the species of inter-
est (human).

Intramodular core connectivity was visualized with 
iGraphs using with the open source buildIGraphs func-
tion (https:// www. github. com/ edamm er/ netOps). The 

function further leverages the BioGRID database to high-
light protein–protein interactions as emphasized edges 
among up to the top 100 nodes of a module sorted by 
decreasing intramodular kME. The top 10 genes ranked 
by intramodular kME are placed in the iGraph as central-
ized hub nodes. STRING v12.0 [24] was used to depict 
multiple integrated databases housing information on 
the protein interactions, generalizable coexpression, and 
other connectivities already established between the top 
hubs of selected modules.

TIME cell composition estimation and proportion 
regulation
We used cell estimation methods to estimate levels of 
non-cancerous, tumor immune and associated cell types 
present in the TIME. EPIC, Estimated Proportion of 
Immune Cell (https:// epic. gfell erlab. org) (Reference the 
paper introducing this resource), method was employed 
to estimate cell types present in the bulk sample mRNA 
data (n = 389). Compared to this method, the one-tailed 
Fisher Exact Test was used to determine the possibil-
ity of observing an overlap between genes present in the 
WGCNA modules and genes associated with immune 
cell types, defined by immune cell markers. Our gene list 
consisted of 16 immune cell types, i.e., dendritic cells, 
B cells, M1 and M2 macrophages, fibroblasts, ovarian 

Table 1 Ontology enrichment analysis of WGCNA modules of interest

A Fisher Exact Test (one-tailed) FDC correction was used to detect overlap significance amongst GO lists of gene symbols and module membership for enrichment 
p < 0.05 and 5 genes minimum per ontology

Module ANOVA p Top Biological processes GO‑ Elite FET FDR

Red (M6) 7.53 e -62 Animal Organ Morphogenesis 0.000108

Nervous System Process 0.000119

Action Potential 0.000171

Pink (M8) 5.10 e -46 System Development 3.05e-28

Multicellular Organism Development 2.32e-23

Anatomical Structure Development 3.85e-21

Brown (M3) 2.20 e -77 Immune System Process 2.01e-223

Immune Response 9.80e-210

Defense Response 6.50e-166

Green (M5) 1.88 e -78 Multicellular Organismal Process 7.32e-69

System Development 9.31e-67

Circulatory System Development 2.77e-63

Tan (M12) 8.89 e -20 No significant biological processes were identified NA

Midnight blue (M15) 2.75 e -13 Multicellular Organismal Process 0.00128

Regulation Of Hormone Levels 0.00731

Developmental Process 0.01086

Grey70 (M17) 1.73 e -12 No significant biological processes were identified NA

Light green (M18) 6.24 e -28 Adaptive Immune Response 1.70 e-163

Immune Response 1.04e-121

Immune System Process 4.70 e-107

https://www.github.com/edammer/GOparallel/
https://www.github.com/edammer/GOparallel/
https://www.github.com/edammer/netOps
https://epic.gfellerlab.org
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cancer cells, ovarian stromal cells, endothelial cells, lym-
phatic endothelial cells, and cancer-associated adipocytes 
(Additional Table  5). TIMER 2.0 (http:// timer. cistr ome. 
org) analysis explored the association between mRNA 
expression and immune and stromal cell populations in 
HGSOC for ovarian serous cystadenocarcinoma patients 
(n = 303), based on adapted methods [25].

Results
Many studies have demonstrated a significant impact of 
mRNA subtypes on the clinical prognosis of HGSOC [5, 
26, 27]. Our approach uniquely integrates weighted gene 
co-expression network analysis (WGCNA) and compu-
tational immune cell profiling to uncover the underlying 
network connectivity and immune microenvironment 
dynamics, providing a more comprehensive view of dis-
ease progression and potential therapeutic targets. The 
profiling success and accuracy in the immune profil-
ing methods rely on precise statistical modeling of gene 
expression (TIMER’s deconvolution using linear regres-
sion) and the rigorous association testing of immune cell 
types with HGSOC subtypes (Fisher’s exact test using 
contingency tables and hypergeometric distribution). 
Our findings reveal distinct gene expression patterns 
and immune-driven profiles across subtypes, offering 

potential implications for disease monitoring and thera-
peutic interventions.

Subtype‑specific gene signatures revealed by differential 
expression analysis
We performed DESeq2 analysis on 22,181 genes from 
394 primary tumor samples to identify differentially 
expressed genes across four mRNA subtypes: differenti-
ated (n = 104), immunoreactive (n = 82), mesenchymal 
(i = 95), and proliferative (n = 113). The comparison fol-
lowed a reference rank based on best to worst clinical 
prognosis, i.e., 4–5 years for immunoreactive, 3–4 years 
for differentiated, 2–3 years for proliferative, and ~ 2 years 
mesenchymal overall survival respectively [18]. Compari-
sons were made between the immunoreactive subtype 
and each of the other subtypes (Fig. 1), highlighting log 
fold change (LFC) and significance. Genes with an abso-
lute value log2 fold change greater than 1 and FDR < 0.05 
were marked in red.

We observed 83 genes showed higher expression lev-
els in the differentiated subtype than the immunoreactive 
subtype, while 225 genes were downregulated. The top five 
significant genes in the differentiated subtype included 
SRGAP3-AS2 (upregulated, lfc = 3.60, p.adj = 5.68e-13, 
weight = 1.67) and four downregulated genes, including 

Fig. 1 Volcano Plots of DESEQ2 Comparisons ordered by best to worse clinical prognosis. These are estimates of the log2 fold changes (LFC) 
between conditions, (A) Differentiated vs. Immunoreactive (B) Proliferative vs. Immunoreactive and (C) Mesenchymal vs. Immunoreactive, for each 
gene with the top five genes within the criteria box. The analysis includes a total of 394 samples (Differentiated: n = 104, Immunoreactive: n = 82, 
Mesenchymal: n = 95, Proliferative: n = 113). The volcano plot showed gene expression changes’ magnitude (log2 fold change) and statistical 
significance (-log10 adjusted p-value). Genes that are significantly differentially expressed having a log2 fold change greater than 1 and FDR < 0.05, 
BH corrected colored in red. Genes beyond the log fold change restriction but not FDR significant are in green, and grey genes are not significantly 
changed

http://timer.cistrome.org
http://timer.cistrome.org
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IGLV1-47 (lfc = -4.99, p.adj = 1.28e-18, weight = 0.263) and 
LINC02864 (lfc = -5.88, p.adj = 3.49e-16, weight = 2.46). 
The differentiated subtype demonstrated fewer immune-
related activities than the immunoreactive subtype. The 
immunoreactive subtype was marked by significant 
upregulation of immune activation, particularly of immu-
noglobulin genes (Additional Table  2). There were 455 
upregulated and 661 downregulated genes observed 
in the proliferative subtype, as compared to the immu-
noreactive subtype. Notably, the proliferative subtype 
showed the most significant gene dysregulation. FGF17 
(lfc = 5.93, p.adj = 6.67e-53, weight = 1.60) and DLK1 
(lfc = 6.93, p.adj = 1.00e-28, weight = 0.77) were among the 
top upregulated genes, highlighting the proliferative sub-
type’s emphasis on maintaining an undifferentiated state 
with the capacity for rapid tumor expansion. We observed 
245 upregulated and 18 downregulated genes in the mes-
enchymal subtype, when compared to the immunoreac-
tive subtype. Top upregulated genes included IGDCC3 
(lfc = 3.52, p.adj = 4.68e-11, weight = 1.44) and AEBP1 
(lfc = 2.15, p.adj = 2.59e-8, weight = 0.37), Downregu-
lated genes included OVGP1 (lfc = -4.06, p.adj = 9.53e-11, 
weight = 0.58).

In comparison to other studies that have investigated 
differentially expressed genes (DEGs) in HGSOC, several 
of the genes that were highlighted in our analysis –such 
as FGF17, DLK1 and SRGAP3-AS2–have been previ-
ously reported, validating their role in HGSOC progres-
sion and immune evasion [28]. However, LINC02864 
(lfc = -5.88, p.adj = 3.49e-16, weight = 2.46) stands out as 
a novel finding, not previously associated with HGSOC 
mRNA subtypes, showcasing a unique role in the biology 
of the differentiated subtype. These results provide both 
confirmation of established DEGs and offer new insights 
into molecular signatures that could influence future tar-
geted strategies.

Co‑expression network analysis reveals modules 
associated with mRNA subtypes
We employed WGCNA to evaluate highly correlated 
gene clusters across clinical conditions in a signed bicor 
network. This analysis identified 23 distinct modules 

(p < 0.05), associated with different mRNA subtypes. 
The eigengene network highlights distinct module-
trait correlations (Fig.  2). The M3 module  was strongly 
positively correlated with the immunoreactive subtype 
(p = 1e-28) and negatively correlated with the prolifera-
tive subtype (p = 2e-54), indicating a highly coordinated 
gene expression profile distinct from other subtypes. Hub 
genes in the M3 module—such as  LCP2  (kME = 0.965)
,  CD53  (kME = 0.956), and  LAIR1 (0.945)—were signifi-
cantly enriched for immune response pathways, includ-
ing “Immune System Process” and “Immune Response” 
shown in Table 1 (GO:0002376, GO:0006955).

Interestingly, M18 module followed a similar immune-
related expression signature as M3, illustrated by the 
close node branching (Fig.  2). However, the differenti-
ated subtype displayed negative co-expression within 
M18 (p = 4e-08), suggesting subtype-specific gene regu-
lation. GO analysis of M18 revealed enrichment in path-
ways such as “Adaptive Immune Response” and “Immune 
Response” (GO:0002250, GO:0006955), further empha-
sizing its immune-related nature. The differentiated sub-
type  (p = 1e-07) was positively correlated with the  M17 
module, which had the strongest association with diag-
nostic age in women aged 45–55 (n = 108) and moderate 
correlation in women under 45 (n = 32).

The M6 module was strongly correlated with the pro-
liferative subtype (p = 2e-56) and included hub genes 
SALL2  (kME = 0.729) and  TCF7L1  (kME = 0.700), both 
of which regulate cell growth and proliferation. GO 
analysis of M6 identified significant enrichment in “Wnt 
signaling” and “cell cycle regulation” (GO:0016055, 
GO:0007049), supporting its role in driving the prolif-
erative subtype’s tumorigenic potential. Notably, upregu-
lated genes such as FGF17, IGDCC3, and ELAVL3 in the 
proliferative vs. immunoreactive subtype comparison 
also exhibited membership in M6, contributing to the 
proliferative HCSOC subtype. The M6 module was also 
positively associated with age at diagnosis (> 55  years, 
p = 0.002), suggesting an age-related influence on this 
gene network. M15 was also noteworthy, exhibiting a 
moderate but significant co-expression with the pro-
liferative subtype (p = 3e-11). GO analysis implicated 

Fig. 2 Co-expression network of module eigengenes and clinical traits within TCGA-OV cohort. Twenty-three network coexpression module 
eigengenes (MEs) (ranking from largest number of module members to smallest) were identified: M1 to M23 for 389 patient samples. A Module Trait 
Relationships Heatmap; The correlation between the summary of gene expression profiles, module eigengenes (rows) and clinical traits (columns) 
is shown. The cells in the heatmap contain the bicor correlation coefficient with red denoting a positive correlation and blue a negative correlation. 
Strength of association is measured in color intensity. P values relate to significance of correlation between module eigengenes and clinical traits. 
B Hierarchical clustering of module eigengenes depicts branches within the dendrogram, grouping eigengenes with positive correlations. Row 
and columns are paired within the heatmap, correlating to one module eigengene labeled by color. The blue represents low adjacency, vindictive 
of a negative correlation, while the red shows high adjacency or a positive correlation. The meta-modules are depicted through squares of red color 
placed diagonally

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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processes related to multicellular organismal processes 
and regulation of hormone levels.

The  M5 module, highly associated with the mesen-
chymal subtype (p = 5e-72), includes hub genes criti-
cal for extracellular matrix (ECM) dynamics, such 
as  FBN1  (kME = 0.942),  COL3A1  (kME = 0.938), 
and COL1A1 (kME = 0.928). GO analysis of M5 revealed 
significant enrichment in pathways related to “Multicel-
lular Organismal Process” and “System Development” 
(GO:0032501, GO:0048731). This reflects the role of 
the mesenchymal subtype in promoting tumor inva-
sion and metastasis through ECM remodeling. Further-
more, AEBP1,  TIMP3, and  OMD, previously identified 
as upregulated in the mesenchymal vs. immunoreactive 
comparison, are key contributors to this ECM-rich mod-
ule (Fig. 3). Similarly, the M8 module positively correlates 
with the proliferative subtype, further reinforcing the 
distinct gene expression patterns associated with these 
subtypes. GO analysis for M8 indicated enrichment in 
"System Development" (GO:0048731) and "Multicellular 
Organism Development" (GO:0032501), suggesting its 
involvement in tumor growth and self-renewal. Overall, 
our analysis highlights distinct molecular landscapes of 
the four mRNA subtypes and reveals key biological path-
ways and gene functions driving the molecular differ-
ences between subtype expression profiles.

Immune cell profiling and association with HGSOC gene 
modules
We used the Fisher Exact Test (FET) to investigate the 
overlap between gene modules and specific immune cell 
types, aiming to elucidate the relationship between gene 
co-expression networks and immune cell infiltration. Ini-
tially, we categorized genes into modules using WGCNA, 
which organized the genes based on co-expression pat-
terns across samples. We identified immune cell marker 
genes associated with various immune cell types (Fig. 4), 
sourced from literature and databases. To evaluate the 
association between gene modules and immune cells, we 
constructed a contingency table that cross-tabulated gene 
assignments to modules against the presence or absence 
of each immune cell type, based on the expression levels 

of their marker genes. Given the shared nature of some 
marker genes across cell types, duplicates were permitted.

Fisher’s exact test was used to determine if the distri-
bution of genes across modules significantly differed 
between samples with and without each immune cell 
type. Significant p-values indicated non-random asso-
ciations between module assignments and immune cell 
presence, suggesting potential interactions or regula-
tory relationships. Multiple testing was adjusted using 
the Benjamini–Hochberg method. The null hypothesis 
posited no significant association between modules and 
immune cell markers.

We failed to reject the null hypothesis for the follow-
ing modules: Brown (M3), Green (M5), Midnight Blue 
(M15), and Light Green (M18). However, the heatmap 
shows the Brown (M3) module exhibited a strong asso-
ciation with M1 macrophages (p < 0.0001) and addi-
tional correlations with M2 macrophages and Th1 cells 
(p < 0.05). The Green (M5) module showed the highest 
immune marker significance with fibroblasts (p < 0.0001), 
while the Midnight Blue module (M15) was significantly 
associated with ovarian stromal cells (p < 0.0001) and the 
Light Green module (M18) was significantly associated 
with B cells (p < 0.001).

Immune cell fraction analysis and Estimated Proportions 
of Immune Cells (EPIC) in Bulk mRNA
To further investigate the immune landscape, EPIC anal-
ysis focused on cellFractions, representing the possible 
proportions of different cell types given in the sample. 
This approach offers an accurate comparison against bulk 
sample proportions, reflecting the fraction of each cell 
type present. Seven cell types were quantified: B Cells, 
CD4 + T Cells, CD8 + T cells, NK cells, macrophages, 
endothelial cells, and other (uncharacterized) cells [29]. 
Uncharacterized cells exhibited the highest fraction 
across the dataset. However, the subtype-specific analy-
sis revealed the mesenchymal subtype had the highest 
proportion of cancer-associated fibroblasts (CAFs), sup-
porting previous findings in FET analysis. These find-
ings suggest a distinctive cellular composition in the 

(See figure on next page.)
Fig. 3 iGRAPH Module Network and STRING Analysis of Hub Genes in HGSOC Molecular Subtypes. A, C, E iGraph network plots displaying the hub 
genes from three immune-mediated co-expression modules (M3, M5, M18) in HGSOC for 389 patient samples. The size of each node represents 
the top 10% of hub genes based on kME values, and edge thickness reflects the strength of co-expression between genes. The network highlights 
central genes driving each module’s function, revealing distinct molecular signatures across subtypes. B, D, F STRING analysis of each module’s top 
10 hub genes illustrates predicted protein–protein interactions. The nodes represent individual proteins, while the edges reflect the confidence 
of interactions (line thickness indicates interaction confidence). Enrichment analysis within STRING revealed key pathways related to immune 
response, cellular differentiation, and extracellular matrix remodeling, which are linked to immunoreactive and mesenchymal subtypes
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mesenchymal subtype, potentially contributing to its 
more aggressive clinical behavior.

TIMER 2.0 analysis
To further assess the association between gene expres-
sion and immune infiltration levels of relevant cell types 
for each module identified by our FET analysis, we 
benchmarked alternative immune cell deconvolution 
methods using the TIMER 2.0 platform. We focused on 
the top hub genes, which are defined as the most cen-
tral module hubs in each WGCNA module. A func-
tional heatmap was generated to show the association 
between gene expression and immune infiltration level of 
a given cell type, estimated by several algorithms, includ-
ing  EPIC,  CIBERSORT, TIMER, QUANTISEQ, XCELL, 
and TIDE [30].

The correlation of gene expression, tumor purity and 
infiltration level of specific cell types is depicted in the 
heatmap generated using TIMER 2.0, adjusted p-values 
were used to account for multiple comparisons, while 
the scatterplot reports raw p-values for the correlation 
between gene expression and immune infiltration (Fig. 5). 
The full list of correlations between gene expression 
profiles and different cell types across multiple decon-
volution methods (Additional Table  6). The presence of 
macrophages and T helper cells in bulk samples were 
correlated with the most central hub genes of the Brown 
(M3) module. The most significant hub gene, LAIR-1, 
exhibited a robust positive correlation with macrophage/
monocyte infiltration levels (ρ = 0.920, adjusted p = 1.63e-
101), as estimated by MCPCOUNTER. Tumor purity, 
defined as the proportion of cancer cells in the sample, 
showed a significant negative correlation with LAIR-1 
expression levels (ρ = -0.658), adjusted p = 1.96e-32).

The significant association of the Green (M5) mod-
ule with fibroblasts, as indicated by our Fisher Exact 
Test (FET) analysis, prompted us to investigate the 
presence of CAFs in relation to the expression of cen-
tralized hub genes from the M5 module. There were 
strong positive correlations between collagen-produc-
ing genes—COL1A1, COL1A2, COL3A1, COL5A1, 
and COL5A2—and CAF infiltration levels across the 
EPIC, MCP-COUNTER, and TIDE algorithms (ρ > 0.9). 

Additionally, COL3A1 demonstrated a robust positive 
correlation with CAF infiltration (ρ = 0.973, adjusted 
p = 8.38E-158), while tumor purity showed a significant 
negative correlation with COL3A1 expression (ρ = -0.541, 
adjusted p = 1.91e-20). These findings suggest a potential 
role for COL3A1 in CAF activation.

Central hub genes in the Light Green module (M18) 
showed a significant association with B cells (p < 0.001), 
with two hub genes available for TIMER 2.0 analy-
sis. FCRL5 (ρ = 0.667, adjusted p = 1.44e-32) and IRF4 
(ρ = 0.649, adjusted p = 3.09e-30) exhibited moderate sig-
nificant positive correlations with B cell infiltration lev-
els estimated by EPIC. Additionally, tumor purity values 
correlated negatively with FCRL5 (ρ = -0.507, adjusted 
p = 1.05e-17) and IRF4 (ρ = -0.542, adjusted p = 1.7e-20) 
gene expression adjusted, suggesting that both genes may 
be expressed by B cells infiltrating the tumor and could 
serve as biomarkers for immune infiltration.

Discussion
This study presents an integrative analysis of immune cell 
infiltration and gene co-expression networks in HGSOC, 
revealing distinct cellular landscapes and their potential 
impact on tumor biology. By using differential expres-
sion among mRNA subtypes, applying WGCNA to iden-
tify key modules, and leveraging multiple deconvolution 
methods to estimate immune cell proportions in bulk 
mRNA samples, we discovered specific immune cell frac-
tions—particularly macrophages, Th1 cells, B cells, ovar-
ian stromal cells, and CAFs are closely associated with 
distinct gene networks. These findings highlight the sig-
nificant role of immune infiltration in modulating gene 
expression within the tumor microenvironment, thereby 
influencing tumor progression.

Identifying hub genes from WGCNA provided insights 
into the functional roles of gene clusters in HSCOC sub-
types. Hub genes, identified through high kME scores, 
are central to the biological processes represented by 
module eigengenes and often drive the module’s behav-
ior [21]. Notably, the M3 module is influenced by M1 
and M2 macrophages and Th1 cells, suggesting potential 
therapeutic targets within this immune-driven network. 
This module highlights the interplay between immune 

Fig. 4 Immune Cell Enrichment and Composition in HGSOC. A Heatmap depicting the enrichment of immune cell markers across HGSOC 
subtypes (n = 389; additional details in Additional File 5). Rows represent module membership, and columns represent specific immune cell 
types. Colors indicate the significance of the relative enrichment scores present on the scale, with purple denoting higher enrichment and yellow 
indicating lower enrichment. Box plots representing the fractions of eight different immune cell types across HGSOC subtypes within the bulk 
tumor expression (B) across the whole dataset and (C) subtype-specific, as calculated by EPIC. Each box plot shows each cell fraction’s median, 
interquartile range, and outliers for each cell fraction. Statistical significance is indicated by asterisks using the following scale (*p < 0.05, **p < 0.01, 
***p < 0.001)

(See figure on next page.)
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cell activity and gene regulation in the tumor microenvi-
ronment, emphasizing its relevance for future therapeu-
tic strategies.

Macrophages play a crucial role in maintaining homeo-
stasis and are implicated in both autoimmune diseases 
and malignancies [31, 32]. M1 macrophages exhibit a 
pro-inflammatory phenotype and are essential for anti-
infectious, anti-viral, and anti-tumor immunity [32]. In 
contrast, M2 macrophages are characterized by anti-
inflammatory functions and primarily involved in tissue 
repair mechanisms, wound healing, and promoting angi-
ogenesis [33, 34]. As a result, M2 macrophages are often 
associated with poor cancer outcomes [35]. Tumor-asso-
ciated macrophages (TAMs) are present in significantly 
greater numbers in HGSOC, than compared to low grade 
serous ovarian tumors [36]. Of the HGSOC TAM infil-
trates, significantly more M2 macrophages have been 
observed than compared to M1 macrophages. However, 
our study shows a higher level of M1 (p < 0.0001) than 
compared to M2 (p < 0.02) macrophage molecular signa-
tures, which suggest M1 macrophages play a greater role 
in the M3 module gene-network than M2 macrophages 
and a significant association with the immunoreactive 
subtype. Higher M1/M2 macrophages have been linked 
to better clinical outcomes in HGSOC [36, 37]. Conse-
quently, the immunoreactive subtype has been found to 
have the best clinical prognosis [27]. Future studies could 
explore the underlying mechanism present in the M3 
gene network and the immunoreactive HGSOC subtype, 
focusing on M2 / M1 repolarization and its impact on 
outcomes.

Notably, LAIR-1 or leukocyte-associated immuno-
globulin-like receptor 1 gene expression was positively 
correlated with both M1 and M2 macrophages across 
several deconvolution methods. The only negative cor-
relation observed was with the M2 macrophage estimate 
derived from the TIDE method (ρ = -0.603, adjusted 
p = 1.33e-25). TIDE focuses specifically on immune eva-
sion and predicting immunotherapy response by measur-
ing a tumor’s potential of evading an immune checkpoint 
blockade [38]. While this negative correlation could 
reflect minor differences in the underlying algorithmic 

approaches of TIDE’s method, it may also have biological 
implications. LAIR-1, an immune inhibitory receptor in 
various immune cell types, has been implicated in mac-
rophage polarization [39].

Our results for tumor purity suggest that LAIR-1 is 
likely influencing M2 macrophages infiltrating the tumor. 
Tumor purity refers to the proportion of cancer cells 
present in a tumor, thus, a negative correlation, or low 
tumor purity, suggests that there is a higher infiltration 
of immune cells [30, 40]. Therefore, the observed nega-
tive correlation between LAIR-1 and M2 macrophage 
infiltration, in the context of low tumor purity, suggests 
that LAIR-1 may influence the balance between M1 and 
M2 macrophage states, potentially driving M3 expression 
and promoting immune suppression and tissue remod-
eling functions within the TIME.

Recent studies have demonstrated that LAIR-1 is 
expressed by macrophages and regulates cancer cell 
recruitment [41], as well as downregulates immune acti-
vation [42]. It has also been implicated in epithelial ovar-
ian cancer, correlating with tumor grade [43], and in oral 
squamous cell carcinoma, where it mediates immune 
suppression [44]. Furthermore, LAIR-1 has been shown 
to suppress cell growth through the PI3K-AKT-mTOR 
mediated pathway present in various ovarian cancer cell 
lines [45]. Given LAIR-1’s role in immune regulation and 
expression in macrophages, it may significantly contrib-
ute to tumor-promoting functions within the TIME.

TAMs work with other tumor-infiltrating lymphocytes 
(TILs) to modulate tumor responses [46]. In the con-
text of  HGSOC, TILs are known to influence survival 
and enhance T cell immune surveillance. However, TILs 
are also associated with expressing multiple inhibitory-
mediated receptors, such as LAG-3, PD-1, and TIM-3 
[47], indicative of a partially exhausted state [48]. The 
complex interplay between LAIR-1 expression, its influ-
ence on the TIME, and the presence of exhausted TILs 
may contribute to the lack of immunotherapy options 
in HGSOC. The transition from M1/M2 macrophage- 
and Th1-related genes in M3 to B cell-related genes in 
M18 indicates a shift in the TIME. Central hub genes in 
M18, FCRL5 (Fc Receptor-Like 5) and IRF4 (Interferon 

(See figure on next page.)
Fig. 5 Immune Cell Infiltration Analysis in High-Grade Serous Ovarian Cancer (HGSOC) using TIMER 2.0. This figure illustrates the immune cell 
infiltration profiles for three cell types —Macrophages, B cells, and Cancer-Associated Fibroblasts (CAFs)—using multiple deconvolution methods 
in TIMER 2.0, with n = 303 (A, C, E). Heatmaps illustrating expression intensity of Macrophages (A), B cells (C), and CAFs (E) across different HGSOC 
samples based on several deconvolution methods: EPIC, TIMER, CIBERSORT, MCPCOUNTER, TIDE, QUANTISEQ and xCell. The color gradient found 
in the heatmap represents Spearman correlation values, with red indicating positive correlations and blue representing negative ones. Statistically 
significant correlations (p < 0.05) are marked. Significant variations in infiltration profiles are seen across samples and methods. B, D, F Scatter plots 
of gene expression levels (LAIR-1, COL3A1, COL1A1, FCRL5 and IRF4) vs. tumor purity and infiltration levels for each of the three immune cell types. 
Tumor purity is negatively correlated with immune infiltration, and these panels visualize the relationship between gene expression and estimated 
cell infiltration
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Regulatory Factor 4), play significant roles in regulat-
ing B cell responses, potentially contributing to immune 
suppression and tolerance within the tumor. In essence, 
FCRL5 might act as a regulator of B cell function by 
modulating the effects of IRF4’s transcriptional control.

The modules that were identified in WGCNA reflect 
the distinct associations of the three mRNA subtypes 
of HGSOC (i.e., immunoreactive, proliferative, mesen-
chymal), showcasing subtype-specific gene networks. 
The differentiated subtype, exhibiting overlapping gene 
expression profiles across modules, suggests a media-
tory role between subtypes, potentially acting as a 
microenvironment stabilizing subtype. Genes such as 
GATA4, FOXL2, and MYOCD indicate prioritization 
of differentiation and structural integrity prioritization, 
distinguishing it from the proliferative subtype. This 
suggests that while the differentiated HGSOC subtype 
shares some common features with other subtypes, its 
overall gene expression signature prioritizes cell differ-
entiation and structural integrity, as shown in previous 
studies [7, 27, 49].

Interestingly, LINC02864, a long non-coding RNA 
(lncRNA), was identified in our differential expression 
analysis as one of the top five downregulated genes in the 
differentiated subtype, while being significantly upregu-
lated in the immunoreactive subtype. Moreover, this 
contrasting pattern of expression suggests LINC02864 
plays a role in immune regulation, since its elevated 
levels in the immunoreactive subtype further correlate 
with better clinical outcomes [18]. lncRNAs regulate 
cellular function by modulating transcriptional activ-
ity and biological signaling [50], with some also influ-
encing tumor suppression [51]. Previous studies have 
shown that LINC02864 is prevalent in head and neck 
cancers and gastric cancers and interacts with several 
miRNAs (miR-3155a, miR-3678-3p, miR-875-3p, miR-
758-3p, miR-3155b, miR-3612, miR-6873-5p, miR-4443, 
miR-484) [52]. However, it’s direct mechanism is largely 
unknown. To this end, miR-875-3p has been implicated 
in immune suppression in gastric cancer [53] potentially 
linking LINC02864 activity in the immunoreactive sub-
type. Though LINC02864 is part of the grey module in 
WGCNA, which often contains genes that are not clus-
tered in functional networks, its differential expression 
remains noteworthy.

The M6 module, focusing on transcriptional and cell 
cycle signaling, shows a positive correlation with the 
proliferative subtype, implicating cell cycle progres-
sion in tumor development. SALL2  and  TCF7L1  play 
critical roles in regulating cell growth and prolifera-
tion, with SALL2 more focused on stress responses and 
apoptosis [54], and TCF7L1 involved in Wnt signaling 
and stem cell maintenance [55]. However, there was a 

negative correlation with the differentiated subtype for 
the M6 module which may influence cell growth, affect-
ing tumor development or cancer stem cell maintenance 
in HGSOC.

Although our differential expression analysis showed 
that DLK1 was upregulated in the proliferative versus 
immunoreactive HGSOC subtypes, it belongs to the M17 
module, which is positively correlated with the differenti-
ated subtype and negatively correlated with the prolifera-
tive subtype. This discrepancy suggests DLK1 plays a dual 
role, promoting differentiation in certain contexts while 
being elevated in proliferative environments. Interest-
ingly, IGDCC3 was found to be upregulated in both pro-
liferative and mesenchymal HGSOC subtypes. IGDCC3 
(Immunoglobulin Superfamily DCC Subclass Member 3), 
known for its role in nervous system development, con-
tributes to cell adhesion and migration involved in tumor 
progression [56]; however, more research is needed to 
confirm this theory. Thus, the additional hub genes pre-
sented in the modulated subtypes with either cell growth 
(proliferative) or division or tissue remodeling and inva-
sion (mesenchymal), highlighting the plasticity present 
in the HGSOC TIME. This suggests the shared upregu-
lation of a gene across different subtypes may trigger 
distinct molecular switches in each subtype due to the 
unique gene networks that influence pathway activation.

GO analysis of the M15 module revealed significant 
enrichment in processes related to hormone regulation 
(GO: 0010817), suggesting a strong stromal influence on 
tumor biology, particularly in connection with the prolif-
erative subtype. This finding aligns with previous studies, 
highlighting the stroma as a key modulator of the TIME 
[57, 58]. The proliferative subtype, associated with more 
aggressive clinical outcomes, exhibited the highest degree 
of gene dysregulation in our differential analysis. Hence, 
the M15 module, driven by ovarian stromal cells, under-
scores the critical role of the tumor stroma in HGSOC 
progression.

The mesenchymal subtype is linked to the most aggres-
sive disease and poorest prognosis. Differential expres-
sion analysis between mesenchymal and immunoreactive 
subtypes revealed upregulation of TIMP3 (Tissue Inhibi-
tor of Metalloproteinases 3), OMD (Osteomodulin), and 
AEBP1 (Adipocyte Enhancer-Binding Protein 1). These 
hub genes were also observed in the mesenchymal-domi-
nant M5 module. AEBP1, a key transcriptional repressor, 
plays a crucial role in collagen synthesis, contributing to 
tumor stiffness and fibrosis, which promotes tumor pro-
gression [59]. Several studies have shown that several col-
lagen-related genes such as AEBP1, COL5A1 and TIMP3 
are associated with poorer survival in HGSOC [60]. 
Others have shown COL1A1 is elevated in ascites from 
patients with epithelial ovarian cancer, confirming that 
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it has mainly originated from fibroblasts [61]. COL1A1 
promotes metastatic disease by activating the ITGB1/
AKT pathway, highlighting a potential target for disease 
progression.

The downregulation of OVGP1 in the mesenchymal 
subtype and role in reproductive support and ECM regu-
lation, suggest its loss of expression may diminish normal 
cellular functions and increase tumorigenesis. However, 
as OVGP1 was assigned to the grey module in our anal-
ysis, further investigation is needed to clarify its role in 
this context. Studies have shown that OVGP1 is more 
apparent in earliest-stage serous carcinomas and tumors 
defined as borderline and mucinous-associated carcino-
mas [62], suggesting it is an important modulator for ear-
lier and less aggressive serous phenotypes.

Therapeutic targets identified in our analysis include 
several key genes associated with distinct modules. For 
instance, LAIR-1, found in the M3 module was charac-
terized by immunoreactive and M1/M2/Th1 cell inter-
actions, is a target for therapeutic intervention in acute 
myeloid leukemia (AML) [63]. Additionally, COL3A1 
and COL1A1 were part of the M5 module and associ-
ated with mesenchymal and fibroblast characteristics. 
COL3A1 serves as a target for Ehlers-Danlos syndrome 
[64], while COL1A1 is prognostic for breast cancer out-
comes [65]. Moreover, FCRL5 and IRF4, located within 
the M18 module and link to B cells, represent promising 
targets in hematological malignancies. Indeed, alvocidib, 
an IRF4 inhibitor, has shown potential in treating adult 
T-cell leukemia/lymphoma [66], whereas CAR-T cells 

Fig. 6 mRNA Subtypes and Immune Cell Interactions in the Tumor Immune Microenvironment (TIME) present in HGSOC. This schematic represents 
the interactions between distinct mRNA subtypes (proliferative, mesenchymal, and immunoreactive) and the immune microenvironment in HGSOC 
tumors. Key immune cell populations, including B cells, macrophages, Th1 cells, and Cancer-Associated Fibroblasts (CAFs), are depicted in relation 
to their transcriptional signatures and subtype-specific gene expression. The proliferative subtype shows elevated expression of genes involved 
in cell cycle regulation, driving tumor growth. CAFs and macrophages in this subtype promote extracellular matrix remodeling and tumor invasion, 
with proliferative gene signatures influencing immune suppression within the TIME. The mesenchymal subtype is characterized by high infiltration 
of CAFs and M2 macrophages, supporting aggressive invasion and matrix remodeling. This subtype is linked to poor prognosis, with CAF-driven 
pathways enhancing immune evasion. The immunoreactive subtype features high levels of B and Th1 cells, correlating with immune activation. 
M1 macrophages, present in this subtype, promote tumor immune responses, which are reflected in the strong immune-related gene expression 
signature. This figure showcases the complex immune dynamics and transcriptional networks in the TIME. BioRe nder. com/ q00f5 36 

https://BioRender.com/q00f536
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that are FCRL5-directed show promise in treating multi-
ple myeloma [67].

Our findings contribute to the complex interplay 
between tumor cells and the immune microenviron-
ment. By demonstrating how immune cell infiltra-
tion shapes gene expression networks, we deepened 
our knowledge of tumor biology and the potential for 
developing immunotherapies targeting this interaction. 
Talhouk et  al. [68] developed a gene expression-based 
predictor, PrOTYPE, that classifies subtypes of high-
grade serous ovarian carcinoma, further emphasizing 
the importance of such gene expression analyses. Stud-
ies like INOVate (Individualized Ovarian Cancer Treat-
ment Through Integration of Genomic Pathology into 
Multidisciplinary Care) [68] highlight efforts to refine 
patient classification based on tumor genomic profiling 
and histological subtyping underscores the relevance 
of the current study and its potential application in 
patient care.

Limitations
While our study provides valuable insights into the regu-
lation and landscape of HGSOC TIME, we acknowledge 
several limitations. The reliance on bulk RNA-seq data 
may mask important cellular heterogeneity and our sam-
ple size limits the statistical power of our analyses. Future 
studies should incorporate single-cell RNA sequence 
analysis to better elucidate specific contributions of 
various immune cell could improve precision medicine 
approaches by offering a more comprehensive view of 
how the factors influencing subtype-specific immune 
responses impact patient outcomes. Davidson et al. [69] 
demonstrated that while the prevalence of HGSOC var-
ied across self-identified racial groups (i.e., Black, White, 
Japanese), subtype-specific expression patterns were 
similar for survival, showcasing the potential for subtype-
specific prognostic outcomes. However, further investi-
gation is needed to understand the deeper role of genetic 
ancestry. While our analysis had limited power for the 
under-45 age group, prospective analyses could further 
examine how age may influence subtype prevalence, 
offering valuable insights into which gene networks are 
particularly relevant at different life stages. An additional 
key next step involves exploring potential therapeu-
tic targets, particularly related to immune modulation, 
among the hub genes identified. Future studies are also 
needed to validate our computational findings for clini-
cal implications, using immunostaining for the most cen-
tralized hub genes as candidate biomarkers. Additionally, 
RT-PCR could also be adapted to assess expression levels 
and prognostic persistence.

Conclusion
Our results pave the way for future investigations into 
the mechanistic roles of specific hub genes in TIME 
modulation in HGSOC and highlight distinct gene 
expression profiles across mRNA subtype groups in 
HGSOC patients (Fig.  6). Differential expression of 
genes involved in immune response and cell prolifera-
tion suggests potential differences in TIME and biologi-
cal characteristics among subtype groups. Our study 
suggests that specific immune cell profiles, particularly 
the presence of M1 macrophages, could serve as bio-
markers for patient stratification as well as LAIR-1 and 
IRF4 as therapeutic targets in HGSOC. Taken together, 
our findings provide valuable insights into the molecular 
mechanisms underlying HGSOC subtype-specific differ-
ences, which have implications for prognosis and thera-
peutic strategies.
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It includes the adjusted p-values (p-adj) for differential gene expres-
sion across all mRNA subtype comparisons, using different subtypes as 
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tive, differentiated, proliferative, and mesenchymal. The table captures all 
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of significant gene expression changes and allowing for cross-subtype 
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ing subtype-specific gene expression patterns and their potential clinical 
relevance. 

Additional file 2: Table 2. ME values with module size, number and ANOVA 
p value statistics. This table contains all the WGCNA module eigengene 
(ME) assignments including module size, color and ANOVA p values for 
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threshold of 8, a merge height of 0.15, and PAM stage assignments set to 
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modules identified in the WGCNA analysis. The GO terms used a multiple 
testing method known as the FDR (False Discovery Rate) with Benjamini-
Hochberg (BH) adjustment.
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Entrez Gene IDs, PMIDs, and citations to the relevant publications.
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cancer (OV) samples (n=303). It includes adjustedp-values (padj) for 
selected hub genes, providing insights into immune cell infiltration and 
tumor purity correlations.
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