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The Atomic Partial Charges Arboretum: Trying to See the
Forest for the Trees
Minsik Cho,[a, b] Nitai Sylvetsky,[a] Sarah Eshafi,[a, c] Golokesh Santra,[a] Irena Efremenko,[a] and
Jan M. L. Martin*[a]

Atomic partial charges are among the most commonly used
interpretive tools in quantum chemistry. Dozens of different
‘population analyses’ are in use, which are best seen as proxies
(indirect gauges) rather than measurements of a ‘general
ionicity’. For the GMTKN55 benchmark of nearly 2,500 main-
group molecules, which span a broad swathe of chemical space,
some two dozen different charge distributions were evaluated
at the PBE0 level near the 1-particle basis set limit. The
correlation matrix between the different charge distributions
exhibits a block structure; blocking is, broadly speaking, by
charge distribution class. A principal component analysis on the
entire dataset suggests that nearly all variation can be
accounted for by just two ‘principal components of ionicity’:
one has all the distributions going in sync, while the second

corresponds mainly to Bader QTAIM vs. all others. A weaker
third component corresponds to electrostatic charge models in
opposition to the orbital-based ones. The single charge
distributions that have the greatest statistical similarity to the
first principal component are iterated Hirshfeld (Hirshfeld-I) and
a minimal-basis projected modification of Bickelhaupt charges.
If three individual variables, rather than three principal
components, are to be identified that contain most of the
information in the whole dataset, one representative for each of
the three classes of Corminboeuf et al. is needed: one based on
partitioning of the density (such as QTAIM), a second based on
orbital partitioning (such as NPA), and a third based on the
molecular electrostatic potential (such as HLY or CHELPG).

1. Introduction

Atomic partial charges qA are a central concept in general
chemistry. Unfortunately, they do not correspond to a single,
well-defined, quantum mechanical observable. The very notion
of atomic partial charges, however, does imply that “atoms in
molecules” (in the broad sense of the word, not the narrow one
of Bader/QTAIM[1] charges) are meaningful concepts.

Parr, Ayers, and Nalewajski[2] consider partial charges to be
noumena: The term noumenon, originally coined by Plato from
the Greek word noös (knowledge, cognition), is defined by the
Oxford English Dictionary as “an object knowable by the mind
or intellect, not by the senses; specifically (in Kantian philoso-
phy) an object of purely intellectual intuition”. Frenking and

Krapp[3] speak of “unicorns”: “my[th]ical animal[s] whose appear-
ance is known to everybody although nobody has ever seen
one”.

In reaction, Matta and Bader[4,5] strongly took exception.
They point out that Bader’s QTAIM charges, in particular, can be
seen as expectation values of well-defined operators, namely:
Heaviside “step” functions that are unity within one set of zero-
flux surfaces and zero outside. The fact that QTAIM charges
often are at odds with “chemical intuition” (or at least chemical
received wisdom) leaves the reader even more perplexed, and
more in need of a guide.[6]

Perhaps a third term is more apropos here, namely the
statistical one “proxy variable”. A proxy variable is a (fairly easily)
measurable quantity that acts as an indirect “proxy” for a
deeper concept that eludes direct measurement. Examples
from economics are proxies for the standard of living such as
GDP per capita or PPP (purchasing power parity). Other
examples, from psychology, are IQ scores when used as proxies
for general intelligence, or (relatedly) SAT scores as predictors
for scholastic success. (As a hoary quip goes, the only thing
standardized cognitive tests directly measure is performance on
those tests.) In that sense, partial charges are “proxy variables”
for a deeper chemical concept that Meister and Schwarz[7] have
termed “[molecular] ionicity”.

Corminboeuf and coworkers[8] as well as Cramer and
Truhlar[9] have attempted taxonomies of breeds within this
particular species of “chemical unicorn”. Corminboeuf et al.
distinguish three broad classes of computed partial charges:
(1) fitting to an observable quantity such as the molecular

electrostatic potential on the van der Waals surface, such as
done in CHELP[10] (charges from electrostatic potentials),
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CHELPG[11] (ditto using a grid), Merz-Kollman,[12] and HLY[13]

(Hu� Lu-Yang) charges;
(2) partitioning in terms of atomic orbitals, such as done in

Mulliken charges[14] and their variants, Natural Population
Analysis (NPA),[15] and Intrinsic Bond Orbitals,[16] (IBO, also
known[17] as Quasi-Atomic Natural Bond Orbitals[18]);

(3) atoms-in-molecules partitioning of the electron density,
either into disjoint QTAIM[1] or Voronoi[19] cells, or into
overlapping “stockholder domains” (such as the original
Hirshfeld population analysis[20,21] and its manifold offspring,
e.g.,[20–26])1.
In a separate category they place “experimental” charges,

which are measured (or rather, for which trends are inferred)
from NMR or EXAFS chemical shifts, dipole moments, and the
like.

Cramer and Truhlar[9] proposed a slightly different taxonomy
which, with variations, we will adhere to in the present work.
* Class I charges are derived from experimentally measurable

properties, e.g., from observed deformation densities (as in
the work of the late Philip Coppens[27,28]), from the electro-
negativity equalization principle, or from, e.g., dipole mo-
ments of diatomic and small (usually highly symmetric)
polyatomic molecules.

* Class II charges are extracted from the molecular orbitals
(Mulliken, NPA,…) or the electron density (Bader QTAIM,
Hirshfeld,…).

* Class III charges are extracted from the wave function or
electron density by fitting a physical observable (e.g., the
electrostatic potential) derived from it.

* Class IV charges, such as the CM5 model introduced by
Truhlar and coworkers,[29] are based on semiempirical adjust-
ment of a well-defined Class II or Class III model to better
reproduce one or more physical observables (e.g. the dipole
moment).
(We note in passing that the legal fiction known as “formal

charges” might be termed Class 0.)
A number of review articles have been devoted to partial

charges, such as Wiberg and Rablen,[30,31] Bachrach,[32] Cramer
and Truhlar,[9] and most recently Ayers and coworkers[26] (which
focuses principally on Hirshfeld-type approaches from an
information theoretical point of view).

Normally, “observability” in the quantum mechanical sense
of the word implies the existence of an operator for which one
can obtain an expectation value. Cioslowski and Surjan[33]

propose a weaker, more general definition where a uniquely
defined computational protocol that extracts uniquely defined
numerical values from the wave function, which have well-
defined infinite basis set limits, is said to satisfy a “generalized
observability criterion”. (It should be pointed out that the hoary
Mulliken population analysis,[14] for instance, does not satisfy
said criterion on account of its pathological basis set depend-
ence – nor do modified Mulliken analyses like Löwdin,[34] Ros-
Schuit,[35] or Bickelhaupt.[36] However, minimal basis set
projections[37] – denoted here as MBS-Mulliken,[14,37] MBS-Bick-

elhaupt (Ref. [36] and vide infra), etc. – do satisfy the
Cioslowski-Surjan criterion.[36])

So, there are now several dozen charge distributions “on
the market”. But how distinct are they really? How different a
picture do they really paint? Answers to this question might be
found in feature reduction techniques – most notably from the
best-known such technique, PCA (principal component analy-
sis).

Investigating this question requires a dataset of molecules
large and chemically diverse enough that any conclusions
reached cannot (easily) be dismissed as sample selection
artefacts. The almost 2,500 unique species in the GMTKN55
benchmark[38] (general main-group thermochemistry, kinetics,
and noncovalent interactions, 55 problem subsets) for density
functional methods are one useful starting point. (See Refs.[38–42]

for example applications to DFT.)
We shall show that there is indeed a “method in the

madness” and that almost all of the data variation can be
represented by two to three principal components.

Computational Methods

Population Analyses Considered

We considered the following population analyses as representatives
of the different classes in the Cramer and Truhlar[9] taxonomy
(where we shall introduce some subclasses below):

(1) for Class I charges, the EEQ (electronegativity equalization
principle) charges as implemented in the DFTD4 program of the
Grimme group (Section II.A of Ref. [43]);

(2) Class II is subdivided here into:

*Class IIa: from partitioning orbitals. (NB: this effectively
corresponds to Corminboeuf’s Class 2.) We can subdivide
further into:

– IIa1: Mulliken[14] and variants (Löwdin,[34] Bickelhaupt,[36]…)
applied in the full basis set. We considered these but
discarded them on account of their pathological basis set
dependence.

– IIa1 M: projection of the MOs onto a minimal basis set[37]

followed by the above techniques. This eliminates the
basis set hypersensitivity and leads to values that satisfy
the extended Cioslowski-Surjan observability criterion.[33]

We here consider MBS-Mulliken[37] and (by straightforward
extension) MBS-Bickelhaupt. The latter differs from MBS-
Mulliken in that off-diagonal overlap populations are
taken into account by diagonal-overlap weighted average
instead of simple average:

Q
0

ii;Bickelhaupt ¼ qii þ
P

i6¼j
qii

qiiþqjj

� �
qij þ qji
� �

Q
0

ii;Mulliken ¼ qii þ
1
2

P
i6¼j qij þ qji
� �

– IIa2: techniques based on some form of natural or intrinsic
atomic orbital: here we consider Weinhold’s NPA (natural
population analysis[15]) and the IAO (intrinsic atomic
orbitals) of Knizia,[16] which are functionally equivalent[17]

to Ruedenberg’s QUAOs (quasi-atomic orbitals[18,44]).

*Class IIb: from partitioning the electron density into atomic
domains & integrating over those. (This effectively corresponds1F. L. Hirshfeld himself used the term “stockholder population analysis” for

what is today commonly known by his last name.
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to Class 3 in Corminboeuf’s taxonomy.) We can further
distinguish between fuzzy and discrete domains.

– IIb1: fuzzy domains: we primarily focus on variants of the
“stockholder” population analysis of Hirshfeld,[20,21] specifi-
cally:

*his original method (in which the deformation density is
partitioned based on the promolecular density);

*the iterated Hirshfeld[22] (Hirshfeld-I) method, where the
proatom densities that define the promolecular density are
iteratively interpolated between ionization states;

*the Iterative Stockholder Approach[23] (ISA) in which proatoms
are avoided through angular integration around an atom;

*MBIS (minimal basis iterative stockholder[25]), which mitigates
certain issues with proatoms that are unbound in vacuo (e.g.,
N–, N2–, N3–);

*Finally, the DDEC6 (density derived electrostatic and chemical
approach, version 6) of Manz[24](a-f) which is designed for
computational resilience in problematic systems and contains
many adjustments to ensure proper behavior in solids2. This
approach has been further developed for additional properties
(e.g., bond orders, [24](c) dispersion coefficients[24](e)) that are
beyond the scope of the present paper.

Stockholder-type charges have been rationalized based on informa-
tion theory[2,45] and were the subject of a recent review.[26] (We
considered Salvador’s topological fuzzy Voronoi charges[46] for a
representative sample consisting of the W4-17 benchmark,[47] and
found said charges to be very similar in practice to Bader QTAIM
charges, R2=0.97.)

– IIb2: disjoint/discrete domains: the most important repre-
sentative of this are QTAIM (quantum theory of atoms in
molecules[1]), a.k.a. “Bader charges”, in which zero-flux
surfaces are used to partition the electron density into
atomic cells within which numerical integration takes
place.

Maslen and Spackman[48,49] proposed an modification inspired by
Hirshfeld charges: while zero-flux surfaces are determined as in
QTAIM, the integration is performed instead on the deformation
density (i. e. 1molecule – 1promolecule). This mitigates the tendency of
QTAIM to amplify charges: zero-flux surfaces tend to run far from
high electronegative atoms like O and F, at the expense of less
electronegative atoms.

The Voronoi Deformation Densities (VDD) of Fonseca-Guerra
et al.,[19] go one step further, in that they partition the deformation
density through simple Voronoi tessellation: any point in space
closer to a given atom than to the others is assigned to that atom.

(3) Class III can be further subdivided into:

*Class IIIa: based on the electrostatic potential. (This corre-
sponds to Class 1 in Corminboeuf’s taxonomy.) The original
CHELP of Chirlian and Francl[10] was modified by Breneman
and Wiberg (CHELPG)[11] to improve rotational invariance.
Merz-Kollman (a.k.a. Merz-Singh-Kollman[12,50]), Hu� Lu-Yang
(HLY[13]), and RESP (restrained electrostatic potential[51]) all have
the same physical basis but merely represent different
integration grid specifics for the ESP. As HLY appears to be the
most stable numerically and is available for all elements
represented in our dataset, we have focused primarily on HLY.

*Class IIIb: based on other electrostatic properties. Here we
consider Cioslowski’s APT (atomic polar tensor[52]) charges,
based on the trace of the dipole moment derivatives.

(4) under Class IV we consider CM5 (charge model 5),[29] an
empirical adjustment of Hirshfeld to better reproduce molecular
dipole moments, and ADCH:[53] (atomic dipole corrected Hirshfeld),
an adjustment to ensure reproduction of molecular dipole moment
obtained at the same calculation level.

In addition, we consider ACP, atomic charge partitioning[54] and
especially its iterative variant i-ACP,[55] which arguably can be
pigeonholed both under Class IV (on account of their adjustment
for better electrical properties) and under IIb1 (as they bear an
obvious kinship to MBIS in representing proatoms by Slater-type
functions).

Other Computational Details

All electronic structure calculations were carried out using the
PBE0 functional[56,57] with the def2-TZVPP basis set[58] using the
Gaussian,[59] MOLPRO,[60] and Q-CHEM[61] electronic structure
program systems. SG-3[62] or equivalent integration grids (e.g.
Grid=UltraFine in Gaussian) were employed.

The reference geometries were obtained from the online
supporting information to the GMTKN55 paper and used
without further optimization. Species with trivial charge distri-
butions (e.g. atoms, homonuclear diatomics, tetrahedral P4,…)
were removed from the dataset, as were the handful of
duplicate species, which left 2,125 unique molecules. Details of
the electronic structure and postprocessing software used to
generate each specific set of partial charges are given in
Table 1. The various aspects of this process were automated
using a collection of scripts developed in-house. For easy data
manipulation, Python scripts using numpy and pandas libraries
were written. Duplicates were identified from the input geo-
metries (by comparison of the rotational constants). Holes in
the data were generally from technical limitations dealing with
molecules that contain heavy elements for which some
parameter was lacking in the available implementation.

Principal component analysis was initially performed upon
25 different population analysis methods. Our initial analysis
identified some near-redundancies (see below), leading to some
winnowing.

Upon completing the analysis, its statistical stability was
tested by adding elements that were randomly chosen from the
dataset to provide noise. The structure of principal components
along with the explained variance values was compared
between the untouched and adulterated data to assess how
robust the implied structure markers within the data are.

2. Results and Discussion

The full correlation matrix of all variables, as well as the full
partial charges dataset, are given in Microsoft Excel format in
the Supporting Information.

One thing becomes immediately clear if the matrix is
blocked by charge distribution type: blocks with very high

2Among many other things, proatom densities are evaluated in the presence
of compensating background charges.
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correlation coefficients within them emerge. Keeping all of
these around in the principal component analysis leads to a
large number of near-zero eigenvalues.

By way of illustration, we show here the block between the
four electrostatic charge variants:

Its eigenvalues and eigenvectors (i. e. the principal compo-
nents of the correlation matrix) are:

Note that the eigenvalues of a correlation matrix add up to
its dimension, in casu, four. The largest eigenvector (effectively
the arithmetic mean of all four variables) has eigenvalue 3.93,
the next largest (corresponding to CHELPG vs. HLY) having
eigenvalue 0.055. One naive variable selection technique,
discussed by Jolliffe[69] in Section 9.3 of his textbook on Principal
Component Analysis, is to eliminate the variables that have the
largest coefficient in the eigenvectors with the lowest eigenval-
ues. This ‘backward elimination’ (BE) strategy leads to Merz-
Kollman and RESP being eliminated, leaving just CHELPG and
HLY. The eigenvectors for the remaining 2×2 correlation matrix
are just (CHELPG�HLY)/

p
2. Whether one chooses to retain

CHELPG or HLY for further analysis is basically arbitrary: CHELPG
is available in a larger number of codes, while HLY is
implemented (in Gaussian) for all elements in the Periodic
Table. In the present paper, we have elected to retain HLY.

Between the four iterative Class IIb1 methods, we have the
following correlation matrix:

Its largest two eigenvalues are 3.934 and 0.045, the former
corresponding to all charges moving in tandem and the latter
to ISA pulling in the opposite direction from the three others.
Within the lower 3-variable block, the top eigenvalue is 2.977,
showing that these three charge types on the whole contain
very similar information.

The squared correlation matrix for 18 variables has been
given in Table 2, reordered to maximize blocking. Some com-
ments concerning it are in order here:
(a) Note the high correlation (R2=0.96) between VDD and

ordinary/original Hirshfeld. Both are based on partitioning
the same promolecular density: the key difference is of
course that Hirshfeld uses fuzzy boundaries derived from
1proatom/1promolecule, while VDD employs discrete Voronoi
tesselation. Apparently, the impact of this difference on the
statistical similarity of the variables is smaller than one
might naively expect.

(b) In contrast, squared correlations between ordinary Hirshfeld
and the various iterative Class IIb1 methods are surprisingly
small, around 0.80 except for DDEC6 (R2=0.85). Indeed, ISA
has a greater correlation with HLY electrostatic charges
(R2=0.87), as does MBIS (R2=0.84); DDEC6’s R2 with HLY is
similar to its correlation with ordinary Hirshfeld.

(c) The iterative Class IIb1 methods emerge as a block, out of
which ISA “only” has R2=0.92–0.94 with the others, but the
remaining three have no R2 below 0.97 between them. ACP
and i-ACP can be seen as peripheral members of the block:
in light of the conceptual similarity between MBIS and i-
ACP, the relatively low R2[MBIS, i-ACP]= 0.86 is somewhat
surprising. Rather more surprisingly, this latter sub-block of
DDEC6, MBIS, and Hirshfeld-I has R2=0.94–0.95 with
MBSBickelhaupt, that is, Bickelhaupt’s modified Mulliken
after minimal basis set projection. (While R2[DDEC6,MBIS]=
0.99 and R2[DDEC6,Hirshfeld-I]=0.98 suggest great similar-
ity, these coefficients of determination would likely have

Table 1. Details of software used for various population analyses.

Software Atomic Partial Charges

Multiwfn[63] Atomic Dipole Corrected Hirshfeld (ADCH),[53] Voronoi Deformation Density(VDD),[19] Becke,[64]

Ros-Schuit,[35] CHelpG (CHarges from ELectrostatic Potentials on a Grid),[11] Merz-Kollman,[12]

Stout-Politzer,[65] Restrained Electrostatic Potential (RESP),[51] Bickelhaupt,[36]

Bader Quantum Theory of Atoms in Molecules (QTAIM)[1]

Gaussian 16[59] Mulliken,[14] Hirshfeld,[20,21] Iterative Hirshfeld,[22] HLY (Hu� Lu-Yang),[13] Minimal Basis
Set Mulliken,[37] Natural Population Analysis (NPA),[15] Charge Model 5 (CM5),[29] Atomic Polar
Tensor Charges (APT)[52]

MOLPRO 2019[60] Intrinsic Bond Orbitals (IBO)[16]

Horton 3[66] Iterative Stockholder Analysis (ISA),[23] Minimal Basis Set Iterative Stockholder Analysis (MBIS)[25]

ACP[67] and I-ACP[67] Adjusted Charge Partitioning (ACP),[54] Iterative Adjusted Charge Partitioning (I-ACP)[55]

DFTD4[43] Electronegativity Equilibration Charges (EEQ)[68]

DDEC6[24] DDEC6 (density derived electrostatic and chemical approach, version 6)[24]

IBOView[16] Fuzzy Voronoi[46] (graphical user interface only)
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been lower for a more solid state/materials science oriented
sample, where DDEC6 should be more resilient.)

(d) MBSMulliken, NPA, and IBO form a block with all R2�0.96,
and indeed R2 between NPA and MBSMulliken reaches 0.98.
Of these three, NPA has the largest cross-correlations with
iterative Class IIb1 methods (other than ISA), and IBO the
smallest. MBSBickelhaupt correlates slightly less well with
NPA and IBO, but better with the iterative Class IIb1
methods.

(e) CM5 and EEQ exhibit a surprisingly large R2=0.97 between
them; this might be ascribed to the design of CM5 as an
empirical correction to Hirshfeld for better electrostatics.
However, the correlation between either method and HLY,
for instance, is fairly low (R2=0.70 for EEQ, 0.73 for CM5)
while rather better correlations are found with some of the
iterative Hirshfeld variants, and particularly with ACP. Some-
what surprisingly, since ADCH like CM5 was designed as a
correction to Hirshfeld for better properties, ADCH corre-
lates less well with CM5 than one might expect (R2=0.81).

(f) QTAIM has relatively high R2= {0.86,0.84} with {APT,i-ACP},
but much smaller ones with the “Hirshfeld” and “NPA”
blocks, or with the electrostatic blocks.

(g) i-ACP acts as a kind of ‘bridge’ to the various iterative
Hirshfeld flavors, with R2=0.85-0.89. The older ACP, on the
other hand, correlates less well with the Hirshfeld family
but rather better, R2=0.89 and 0.91, with EEQ and CM5,
respectively.
Principal component analysis (PCA) on the correlation

matrix reveals that the first two principal components, with
eigenvalues 15.93 and 0.82, respectively, account for most of
the variation in the dataset. Let us now switch to PCA on the
covariance matrix.(Table 3)

Normalizing the eigenvalues by the number of variables, we
find that the first three eigenvectors (i. e., the first three
principal components) contain as much variation as 20 out of
the total 21 primitive variables.

The first eigenvector, PC1, has all charges pulling in the
same direction with different strengths: PC1 can thus be said to
correspond to Schwarz and Meister’s[7] ‘principal component of
ionicity’. The different coefficients correspond roughly to how
pronounced charge differences are: e.g., for the original
Hirshfeld we see 0.08, for iterative Hirshfeld 0.26, for DDEC6
0.21, and for QTAIM 0.38.

PC2 is another matter: it pits QTAIM, APT, and i-ACP with
same signs against every other distribution with opposite sign.
PC2 can hence be seen as a secondary “principal component of
ionicity”. Why APT, despite its different physical principles,
marches in comparative lockstep with QTAIM is somewhat
opaque to the authors.

PC3, which may still be of marginal statistical significance,
pits the electrostatic charges and ISA against the orbital-based
charges.

In order to verify how well determined PC2 and PC3 are,
about 10% random numbers were added to the sample and
the analysis repeated. The eigenvalue for PC2 clearly stays in
well-defined territory, but PC3 appears to be in danger of
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‘drowning in the noise’. We therefore caution against over-
interpreting PC3.

What happens if we retain just one representative of each
“physical” group? This leads to the following:

Principal component analysis is one way to address the
feature selection problem. PCs still require calculating or
measuring all the variables, however: hence, in data science and
machine learning, some attention has been devoted to the
variable selection problem, i. e.: to extracting the subset of
original variables that contains most of the information in the
dataset. A simplistic way is ‘hunting’ for the variables with the
largest coefficients in the PCs, but Jolliffe’s textbook on PCA[69]

cautions against this. Ref. [70] discusses more sophisticated
approaches and their implementation in the subselect module
of the R statistical software system.[71]

“Subselect” works through simulated annealing to optimize
a choice of objective functions.[70] We ended up using the GCD
(generalized coefficient of determination) criterion, that is, the
overlap between the subspace spanned by variable subset size
n and that spanned by first n principal components. (The
analysis was run using R version 3.6.1 on the senior author’s
Macbook Pro.)

However, if we apply subselect to the covariance matrix of
the various population types, we find that the objective
function goes through a maximum for 3 variables, and that
these are MBSMulliken, QTAIM, and HLY. (Solutions using
another electrostatic potential charge instead of HLY, or NPA
instead of MBSMulliken, are essentially of the same quality.) For
a single variable, we get Hirshfeld-I as the optimum; for two

variables, MBSMulliken and QTAIM. Expanding to four and five
variables successively adds EEQ and APT, respectively.

If one forces inclusion of Hirshfeld-I, then successive
additions lead to (again, using the GCD criterion):

2 variables: Hirshfeld-I+QTAIM

3 variables: Hirshfeld-I+QTAIM+ ISA

4 variables: Hirshfeld-I+QTAIM+ ISA+EEQ

Beyond which the “mold is broken”:

5 variables: Hirshfeld-I+QTAIM+EEQ+HLY+APT
However, multiple regression in terms of (MBSMulliken, HLY,

QTAIM) reveals that Hirshfeld-I can be reproduced at R2=0.961
by 0.252 HLY+0.432 MBSMulliken+0.205 QTAIM. In other
words, if those other three variables are present then Hirshfeld-I
is effectively redundant.

Intriguingly, said three variables correspond to one repre-
sentative each of the three Corminboeuf classes.

Let us consider the eigenvalues and eigenvectors of the
covariance matrix for this 3-variable subset:

Table 3. First six principal components found after PCA on the covariance matrix.

Eigenvalues 2.145 0.157 0.072 0.022 0.017 0.010

VDD � 0.08 0.00 � 0.01 0.15 0.22 � 0.26
Hirshfeld � 0.08 0.02 � 0.02 0.12 0.18 � 0.27
CHELPG � 0.21 0.01 0.37 0.04 � 0.03 � 0.03
MK � 0.21 0.11 0.39 � 0.08 � 0.11 � 0.08
RESP � 0.21 0.10 0.37 � 0.05 � 0.09 � 0.11
HLY � 0.22 0.20 0.38 � 0.16 � 0.28 � 0.14
ISA � 0.23 0.03 0.21 � 0.07 0.14 0.12
DDEC6 � 0.21 0.09 � 0.01 � 0.09 0.10 0.10
MBIS � 0.26 0.11 � 0.02 � 0.13 0.02 0.32
Hirshfeld-I � 0.26 0.03 � 0.08 � 0.23 0.06 0.22
MBSBickelhaupt � 0.26 0.02 -0.14 0.12 � 0.08 0.25
NPA � 0.28 0.20 � 0.35 � 0.22 � 0.05 0.01
IBO � 0.21 0.17 � 0.23 � 0.16 0.16 � 0.35
MBSMulliken � 0.28 0.29 � 0.37 � 0.15 � 0.07 � 0.08
i-ACP � 0.20 � 0.13 0.07 0.28 0.09 0.32
ACP � 0.14 0.06 � 0.02 0.31 0.01 0.21
CM5 � 0.14 0.13 � 0.05 0.43 0.01 0.10
EEQ � 0.14 0.11 � 0.06 0.46 � 0.02 0.09
QTAIM � 0.38 � 0.72 � 0.18 0.05 � 0.47 � 0.24
APT � 0.24 � 0.40 0.09 � 0.14 0.71 � 0.02
ADCH � 0.13 0.20 � 0.02 0.37 0.12 � 0.49
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The structure here is very clear: (1) Principal ionicity; (2)
QTAIM in opposition to the others; (3) Electrostatic versus
orbital.

Another angle on the issue is afforded by considering the
squared Pearson correlations R2 for least-squares fits of the
individual charges in terms of the first few principal compo-
nents. The result is shown in Table 4.

We note that the first principal component has the
strongest correlation with Hirshfeld-I (R2=0.9752) and with
MBSBickelhaupt (R2=0.9765), while MBIS and DDEC6 (both
iterative Hirshfeld variants) come quite close at R2=0.963 and
0.964, respectively. The effect of adding the second principal
component is essentially negligible for Hirshfeld-I and MBSBick-
elhaupt (both of which have small loadings in PC2) but QTAIM
is now the winner at R2=0.9842, albeit closely followed by the
iterative Class IIb1 methods other than ISA. If we consider the
largest increases in R2 from one to two PCs, then QTAIM
followed by APT seems to be most associated with PC2. The
corresponding increase from adding PC3 is by far the largest for
HLY, which jumps from 0.84 to 0.95. To reach 0.99 territory, HLY
requires adding in PC5 and PC6: its loading in PC4 is too small
to be useful. CM5 and EEQ would benefit from a 4th PC.

From the converse point of view, we may consider how well
the three first PCs would be expressed as linear combinations
of the three variables (MBSMulliken or NPA, QTAIM, HLY). The R2

for these fits are 0.990 for PC1, 0.977 for PC2, and 0.843 for PC3.
Increasing the latter number further (as well as good fits for
PC4 and PC5) can be achieved by adding EEQ and APT.

3. Conclusions

From a principal component analysis of about two dozen
different charge distributions for a sample of over 2,000 main-
group molecules, we can establish the following.

1. There are two very well-defined “principal components of
ionicity” PCq1 and PCq2, and a more weakly defined third
component PCq3.

2. The trio of individual charge distributions that best describes
the space covered by PCq1, PCq2, and PCq3 is QTAIM with
MBSMulliken (or NPA) and HLY (or another electrostatic
potential charge) — in other words, one representative each
of the three classes of Corminboeuf et al. If we omit PCq3,
then HLY (or other electrostatic charge) can be omitted.

3. For the single charge distribution that most closely
resembles PCq1, Hirshfeld-I and MBS-Bickelhaupt are effec-
tively tied, both with R2>0.975. If QTAIM, MBSMulliken, and
HLY are included, however, Hirshfeld-I can be represented as
their linear combination with R2>0.96: Hirshfeld-I �0.252
HLY+0.432 MBSMulliken+0.205 QTAIM.

4. The “first principal component of ionicity” PCq1 corresponds
to the one posited by Schwarz and Meister: all charges move
in concert at different amplitudes.

5. The “second principal component of ionicity” PCq2 corre-
sponds to the difference between QTAIM-type charges and
other charge types, except that (intriguingly, in view of the
different physics) APT somewhat resembles QTAIM.

6. The more weakly defined PCq3 corresponds to the opposi-
tion between electrostatic and orbital-based charges, leaving
QTAIM nearly unaffected. Further components are statisti-
cally too weakly defined.

7. Most types of partial charges can be fitted quite well as
linear combinations of PCq1, PCq2, and PCq3, though some
require a fourth of fifth principal component for a good fit.
Intriguingly, original Hirshfeld is the most resistant to
expansion in principal components, requiring as many as
ten of them.

8. Behavior of IBO (intrinsic bond orbital) charges is statistically
very similar to NPA (natural population analysis) as well as
MBSMulliken, that is, Mulliken population analysis after
minimal basis set projection.

Table 4. R2 for least-squares fits of the individual charges as linear combinations of the first few principal components.

C(PC1) C(PC2) C(PC3) R2(PC1) R2(PC1, 2) R2(PC1,2,3)

Hirshfeld 0.085 0.027 0.017 0.8092 0.8158 0.8164[e]

CM5 0.151 0.145 0.019 0.8348 0.8981 0.8983[c]

Hirshfeld-I 0.278 0.052 0.007 0.9752 0.9780 0.9780
NPA 0.304 0.253 � 0.342 0.9160 0.9680 0.9921
HLY 0.229 0.193 0.601 0.7959 0.8419 0.9552[a]

ISA 0.252 0.032 0.404 0.9362 0.9338 0.9835
MBIS 0.277 0.137 0.111 0.9629 0.9821 0.9853
DDEC6 0.227 0.108 0.104 0.9638 0.9818 0.9860
MBSMulliken 0.301 0.340 � 0.365 0.8766 0.9677 0.9943
EEQ 0.155 0.122 � 0.003 0.8297 0.8718 0.8718[d]

QTAIM 0.419 � 0.699 � 0.274 0.8022 0.9842 0.9913
IBO 0.226 0.201 � 0.216 0.8913 0.9492 0.9661
ACP 0.155 0.075 0.069 0.9007 0.9180 0.9216
i-ACP 0.213 � 0.121 0.185 0.9207 0.9450 0.9594
APT 0.258 � 0.401 0.187 0.7774 0.9303 0.9387[b]

MBSBickelhaupt 0.281 0.047 � 0.075 0.9765 0.9787 0.9801

[a] R2=0.9972 with 6 components: C(PC4)= � 0.080, C(PC5)= � 0.470,C(PC6)= +0.470. [b] R2 =0.9938 with 5 components: C(PC4)= � 0.328, C(PC5)=0.666.
[c] R2=0.9801 with 4 components: C(PC4)=0.455. [d] R2=0.9681 with 4 components: C(PC4)=0.509. [e] R2 =0.9324 with 7 components, R2=0.9927 with 10
components.
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Somewhat surprisingly, discrete vs. fuzzy partitioning of the
deformation density (i. e., Voronoi Deformation Densities vs.
original Hirshfeld charges) causes a much smaller difference
than iterating the pro-atomic charges that make up the
promolecular density.

We also define a minimal basis set-projected variant of
Bickelhaupt charges, which should be easy to implement in any
electronic structure system, or postprocessing code for same,
for which one has source code available.

In all, no single charge distribution tells the whole story, but
a trio of well-defined ones – i.e., one representative each of the
three major classes of Corminboeuf and coworkers – should be
able to cover most aspects of it.
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