Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Substitutional disorder in the substituted nixantphos ligand C₃₉H₃₂Br_{0.27}Cl_{0.73}NOP₂

Thashree Marimuthu, Muhammad D. Bala* and Holger B. Friedrich

School of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa Correspondence e-mail: bala@ukzn.ac.za

Received 12 March 2008; accepted 21 March 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.041; wR factor = 0.097; data-to-parameter ratio = 18.6.

The structure of 10-(3-bromo/chloropropyl)-4,6-bis(diphenylphosphino)-10H-phenoxazine, C₃₉H₃₂Br_{0.27}Cl_{0.73}NOP₂, shows chloro/bromo substitutional disorder in a 3:1 ratio. For application as a ligand in catalysis, the intramolecular $P \cdots P$ distance of 4.263 (2) Å is relevant. The phenoxazine ring system is essentially planar.

Related literature

For related literature see: Osiński et al. (2005); Ricken et al. (2006a,b); (Marimuthu et al., 2008); Deprele & Montchamp (2004); Laungani et al. (2008); van Leeuwen et al. (2002); Norman et al. (2000); Ricken et al. (2006); Rotar et al. (2008); Sandee et al. (1999, 2001); Web et al. (2005).

Experimental

Crystal data

C39H32Br0.27Cl0.73NOP2 $\gamma = 81.453 \ (1)^{\circ}$ $M_r = 639.83$ V = 1545.52 (7) Å³ Triclinic, $P\overline{1}$ Z = 2a = 10.0539 (3) Å Mo $K\alpha$ radiation b = 11.4469 (3) Å $\mu = 0.58 \text{ mm}^{-1}$ c = 14.5299 (3) Å T = 173 (2) K $\alpha = 69.544 \ (1)^{\circ}$ $0.42 \times 0.19 \times 0.17 \text{ mm}$ $\beta = 83.283 (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector 24195 measured reflections 7458 independent reflections diffractometer Absorption correction: integration 5180 reflections with $I > 2\sigma(I)$ (XPREP; Bruker, 2005) $R_{\rm int} = 0.051$ $T_{\min} = 0.792, T_{\max} = 0.908$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	2 restraints
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
7458 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
401 parameters	

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

We thank Dr Manuel Fernandez for the data collection. SASOL, THRIP and the University of KwaZulu-Natal for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2073).

References

- Bruker (2005). APEX2 and SAINT-NT (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
- Deprele, S. & Montchamp, J.-L. (2004). Org. Lett. 6, 3805-3808.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Laungani, A. C., Keller, M. & Breit, B. (2008). Acta Cryst. E64, m24-m25.
- Leeuwen, P. W. N. M. van, Sandee, A. J., Reek, J. N. H. & Kamer, P. C. J. (2002). J. Mol. Catal. A Chem. 182–183. 107–123.
- Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008). Acta Cryst. E64, 0711.
- Norman, N. C., Orpen, A. G., Quayle, M. J. & Robins, E. G. (2000). Acta Cryst. C56, 50-52.
- Osiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, 03115-03116.
- Ricken, S., Osiński, P. W., Eilbracht, P. & Haag, R. (2006). J. Mol. Catal. A Chem. 257, 78-88.
- Ricken, S., Osinski, P. W., Schürmann, M., Preut, H. & Eilbracht, P. (2006a). Acta Cryst. E62, o1807-o1808.
- Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006b). Acta Cryst. E62, 02637-02638.
- Rotar, A., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, m45.
- Sandee, A. J., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2001). J. Am. Chem. Soc. 123, 8468-8476.
- Sandee, A. J., van der Veen, L. A., Reek, J. N. H., Kamer, P. C. J., Lutz, M., Spek, A. L. & van Leeuwen, P. W. N. M. (1999). Angew. Chem. Int. Ed. 38, 3231-3235.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Web, P. B., Kunene, T. E. & Cole-Hamilton, D. J. (2005). Green Chem. 7, 373-379.

Acta Cryst. (2008). E64, o772 [doi:10.1107/S1600536808007848]

Substitutional disorder in the substituted nixantphos ligand C₃₉H₃₂Br_{0.27}Cl_{0.73}NOP₂

T. Marimuthu, M. D. Bala and H. B. Friedrich

Comment

As part of our ongoing investigation of scorpionate-type ligands (Marimuthu *et al.*, 2008) the title ligand, a diphenylphosphine xanthene based compound, (I) has been prepared in our laboratory. The synthesis strategy involved the addition of an alkyl chain to the amine to form a tridentate ligand. Unlike other scorpionate ligands, (I) has a mixed donor arrangement consisting of N, O & P and it has been used as a precursor in the synthesis of modified nixantphos ligands for continuous flow homogenous hydroformylation of alkenes using supercritical fluids (Web *et al.*, 2005). The functionalization of the nitrogen has been reported in the literature, where the subsequent compounds were successfully immobilized on silica (Sandee *et al.*, 1999, 2001; van Leeuwen *et al.*, 2002), polystyrene (Deprele & Montchamp, 2004) and dendritic supports (Ricken *et al.*, 2006).

The structure of (I) contains chloro- and bromo- substituted alkyl chains in 3:1 ratio (Fig. 1) with an essentially planar phenoxazine ring [with maximum deviation of 0.113 (3) Å for O1] joining the two diphenylphosphino groups. The intramolecular P—P distance of 4.263 (2) Å in (I) compares well to 4.255 (2) Å reported for the precursor nixantphos (Marimuthu *et al.*, 2008). The bond lengths for C—O range from 1.380 (2) to 1.384 (2) and for C—N from 1.398 (2) to 1.402 (2) Å. The bond angles involving the P atoms range from 100.52 (7) to 102.11 (8)°.

The substitutional disorder observed in the halide site of (I) was modelled as 3:1 Cl to Br. The source of the disorder is the sodium hydride induced alkylation using 1-bromo-3-chloropropane adapted for this work. The ligand 1-bromo-3-chloropropane is symmetrical with a chloride and a bromide functionality on either side of a propyl chain, hence a competitive substitution reaction between the two leaving groups. The model of the disordered halide site is in agreement with Br as the more basic and better leaving group than Cl. Other cases of halide substitutional disorder have been reported in the literature (Norman *et al.*, 2000; Laungani *et al.*, 2008; Rotar *et al.*, 2008) and it is interesting to note that all contain only Cl/Br disorder in the 3:1 ratio.

Experimental

Synthesis adapted from literature (Web *et al.*, 2005). Yield: 74% of colourless crystals of (I) grown from a solution of dichloromethane/ethanol (1:1) at room temperature, m.p. 493 K (dec.).

Refinement

All hydrogen atoms were located from a difference map then positioned geometrically and allowed to ride on their respective parent atoms (C—H = 0.95 - 0.99 Å) with $U_{iso}(H) = 1.2 U_{eq}(C)$ for aryl H or 1.5 $U_{eq}(C)$ for CH₂. The structure contains substitutional disorder in which Cl1 and Br1 occupy the same position. These were refined with C—Cl and C—Br distances restrained to 1.78 and 1.93 Å and final occupancies for Cl1 and Br1 were 0.734 (2) and 0.266 (2), respectively.

Figures

Fig. 1. Molecular structure of (I) with thermal ellipsoids shown at 50% probability levels.

10-(3-bromo/chloropropyl)-4,6-bis(diphenylphosphino)-10H-phenoxazine

Crystal data	
C ₃₉ H ₃₂ Br _{0.27} Cl _{0.73} NOP ₂	Z = 2
$M_r = 639.83$	$F_{000} = 665.6$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.375 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Melting point: 493(2) K
<i>a</i> = 10.0539 (3) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.4469 (3) Å	Cell parameters from 6264 reflections
c = 14.5299 (3) Å	$\theta = 2.5 - 28.2^{\circ}$
$\alpha = 69.544 \ (1)^{\circ}$	$\mu = 0.58 \text{ mm}^{-1}$
$\beta = 83.283 \ (2)^{\circ}$	T = 173 (2) K
$\gamma = 81.453 \ (1)^{\circ}$	Prism, colourless
V = 1545.52 (7) Å ³	$0.42\times0.19\times0.17~mm$

Data collection

Bruker APEXII CCD area-detector diffractometer	7458 independent reflections
Radiation source: fine-focus sealed tube	5180 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 173(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: integration (XPREP; Bruker, 2005)	$h = -13 \rightarrow 12$
$T_{\min} = 0.792, T_{\max} = 0.908$	$k = -15 \rightarrow 15$
24195 measured reflections	$l = -17 \rightarrow 19$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier mapLeast-squares matrix: fullHydrogen site location: inferred from neighbouring
sites $R[F^2 > 2\sigma(F^2)] = 0.041$ H-atom parameters constrained
 $wR(F^2) = 0.097$ $w = 1/[\sigma^2(F_0^2) + (0.0499P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.94	$(\Delta/\sigma)_{\rm max} = 0.006$
7458 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
401 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direc methods

Special details

Experimental. Spectroscopic analysis: ¹H NMR (400 MHz,CDCl₃, δ , p.p.m.) = 2.13(m, 2H; CH), 2.16(m, 2H; CH), 3.52(m, 2H; CH), 3.69(m, 2H; CH), 6.0(d, 2H; J(H,H) = 7.5 Hz,), 6.34(bd, 2H; J(H,H) = 7.5 Hz,), 6.65(t, 2H J(H,H) = 7.8 Hz), 7.18 – 7.21(bs, 20H); ¹³C NMR (400 MHz, CDCl₃, δ , p.p.m.); = 27.5(ClCH₂), 30.8(BrCH₂), 41.8(NCH₂), 42.6(NCH₂), 42.6(NCH₂), 111.6(CH), 123.7(CH), 125.5 (C), 128.1(CH), 132.8(CN), 133.8(C),136.8(C),147.0(CO) ³¹P NMR (600 MHz,CDCl₃, δ , p.p.m.) = -19.0; FTIR: cm⁻¹ = 1552(*s*), 1462(*s*), 1433(*s*), 1418(*s*), 1380(*s*), 1274(*s* CN), 1257(*m*),1206(*m*), 1092(*m*), 765(*m*), 747(*m*), 722(*m*), 697(*s*).516(*s*), 496(*s*), 433(*s*), 400(*s*); Calculated for C₃₉H₃₂Br_{0.27}Cl_{0.73}NOP₂: C=72.03; H= 4.96; N= 2.15; Found C=71.55; H= 4.95; N= 2.26.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.12106 (16)	0.58921 (15)	0.41860 (12)	0.0285 (4)	
C2	0.06839 (17)	0.70497 (16)	0.42572 (13)	0.0337 (4)	
H2	0.0852	0.7255	0.4809	0.040*	
C3	-0.00868 (18)	0.79126 (17)	0.35303 (13)	0.0360 (4)	
Н3	-0.0466	0.8690	0.3601	0.043*	
C4	-0.03072 (17)	0.76542 (16)	0.27087 (13)	0.0326 (4)	
H4	-0.0819	0.8261	0.2210	0.039*	
C5	0.02184 (16)	0.65037 (15)	0.26046 (12)	0.0275 (4)	
C6	0.09436 (16)	0.56450 (15)	0.33551 (12)	0.0285 (4)	
C7	0.22129 (16)	0.36362 (15)	0.39245 (11)	0.0278 (4)	
C8	0.26881 (17)	0.25469 (15)	0.37271 (12)	0.0283 (4)	
С9	0.35333 (18)	0.16430 (16)	0.43904 (12)	0.0349 (4)	
Н9	0.3863	0.0875	0.4285	0.042*	
C10	0.38889 (19)	0.18641 (17)	0.51980 (13)	0.0376 (4)	
H10	0.4471	0.1249	0.5642	0.045*	
C11	0.34067 (17)	0.29726 (16)	0.53695 (12)	0.0322 (4)	
H11	0.3677	0.3119	0.5921	0.039*	
C12	0.25368 (16)	0.38670 (15)	0.47466 (12)	0.0284 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0 22202 (18)	0 52225 (17)	0.57999 (12)	0.0249 (4)
H13A	0.22292 (18)	0.32223(17) 0.4414	0.57888 (12)	0.0348 (4)
H13R	0.1411	0.5677	0.6012	0.042*
C14	0.33988 (17)	0.59931 (17)	0.56022 (12)	0.042 0.0348 (4)
H14A	0.4163	0.5629	0.5255	0.0348 (4)
H14R	0.3124	0.502)	0.5168	0.042*
C15	0.38590 (18)	0.60363 (13)	0.65430 (13)	0.0417(5)
H15A	0.3061	0.6182	0.6975	0.050*
H15R	0.4399	0.6746	0.6385	0.050*
C21	-0.10597 (16)	0.74294 (16)	0.0303 0.08074 (12)	0.030 0.0288(4)
C22	-0.24546(18)	0.75239 (18)	0.00071(12) 0.09281(14)	0.0200(1) 0.0403(4)
H22	-0.2878	0.6862	0.1412	0.048*
C23	-0.32390(19)	0.8556(2)	0.03611(15)	0.0451 (5)
H23	-0.4193	0.8604	0.0467	0.054*
C24	-0.26619(19)	0.95128 (18)	-0.03519(13)	0.0409 (5)
H24	-0.3207	1 0222	-0.0746	0.049*
C25	-0.1281(2)	0.9435 (2)	-0.04912(14)	0.0481(5)
H25	-0.0867	1 0091	-0.0988	0.0401 (3)
C26	-0.04918(19)	0.84080 (18)	0.00873 (13)	0.030
H26	0.0462	0.8374	-0.0012	0.0420 (3)
C31	0.0102 0.15173 (17)	0.60609 (16)	0.0012 0.08889 (12)	0.030
C32	0.13173(17) 0.24948(19)	0.6776(2)	0.09138 (15)	0.0327(1) 0.0489(5)
H32	0.2373	0.7233	0.1357	0.059*
C33	0.3658 (2)	0.6825 (2)	0.02890 (18)	0.0614 (6)
Н33	0.4328	0.7318	0.0307	0.074*
C34	0.3846(2)	0.6171 (2)	-0.03508(16)	0.0588(6)
H34	0.4641	0.6218	-0.0780	0.071*
C35	0.2896 (2)	0.5453(2)	-0.03736(16)	0.0567 (6)
H35	0.3026	0 4997	-0.0818	0.068*
C36	0.1751 (2)	0.53893 (18)	0 02441 (14)	0.000
H36	0.1102	0.4873	0.0231	0.052*
C41	0 32148 (18)	0.09367 (15)	0.26043 (11)	0.0299 (4)
C42	0 45411 (19)	0.09954 (17)	0.22056 (13)	0.0374 (4)
H42	0.4897	0.1779	0.1972	0.045*
C43	0.53459 (19)	-0.00586(19)	0.21437 (14)	0.0418 (5)
H43	0.6251	0.0000	0.1874	0.050*
C44	0.48400 (19)	-0.12036(17)	0.24733 (13)	0.0380 (4)
H44	0.5392	-0.1932	0.2425	0.046*
C45	0.35297 (19)	-0.12821 (17)	0.28719 (12)	0.0370 (4)
H45	0.3178	-0.2068	0.3102	0.044*
C46	0.27231 (18)	-0.02186(15)	0.29384 (12)	0.0318 (4)
H46	0.1822	-0.0282	0.3216	0.038*
C51	0.05273 (18)	0.19766 (15)	0.29170 (13)	0.0322 (4)
C52	-0.0264 (2)	0.21254 (18)	0.21515 (14)	0.0445 (5)
H52	0.0075	0.2503	0.1491	0.053*
C53	-0.1533 (2)	0.1735 (2)	0.23338 (17)	0.0534 (6)
Н53	-0.2046	0.1821	0.1800	0.064*
C54	-0.2052 (2)	0.12224 (19)	0.32848 (17)	0.0494 (5)
H54	-0.2922	0.0946	0.3411	0.059*

C55	-0.13087 (19)	0.11098 (18)	0.40537 (15)	0.0423 (5)	
H55	-0.1678	0.0782	0.4713	0.051*	
C56	-0.00240 (18)	0.14728 (16)	0.38703 (13)	0.0347 (4)	
H56	0.0488	0.1375	0.4407	0.042*	
N1	0.19570 (15)	0.49747 (13)	0.49120 (10)	0.0332 (3)	
O1	0.13571 (13)	0.44822 (11)	0.32597 (9)	0.0371 (3)	
P1	-0.01140 (4)	0.60026 (4)	0.15924 (3)	0.02944 (12)	
P2	0.22335 (5)	0.24299 (4)	0.25806 (3)	0.03152 (12)	
C11	0.4842 (12)	0.4617 (8)	0.7179 (10)	0.0488 (6)	0.7338 (16)
Br1	0.4972 (14)	0.4545 (9)	0.7259 (12)	0.0488 (6)	0.2662 (16)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0291 (9)	0.0290 (9)	0.0308 (9)	-0.0055 (7)	-0.0015 (7)	-0.0135 (7)
C2	0.0349 (10)	0.0347 (10)	0.0387 (10)	-0.0040 (8)	-0.0022 (8)	-0.0215 (8)
C3	0.0360 (10)	0.0317 (10)	0.0461 (11)	-0.0001 (8)	-0.0033 (8)	-0.0218 (8)
C4	0.0333 (9)	0.0284 (9)	0.0370 (9)	-0.0020 (8)	-0.0033 (7)	-0.0125 (8)
C5	0.0294 (9)	0.0250 (9)	0.0293 (8)	-0.0063 (7)	-0.0010 (7)	-0.0096 (7)
C6	0.0309 (9)	0.0251 (9)	0.0332 (9)	-0.0056 (7)	-0.0009 (7)	-0.0139 (7)
C7	0.0318 (9)	0.0251 (9)	0.0271 (8)	-0.0061 (7)	-0.0048 (7)	-0.0076 (7)
C8	0.0349 (9)	0.0243 (9)	0.0277 (8)	-0.0056 (7)	-0.0045 (7)	-0.0097 (7)
C9	0.0475 (11)	0.0240 (9)	0.0343 (9)	-0.0010 (8)	-0.0101 (8)	-0.0102 (7)
C10	0.0457 (11)	0.0325 (10)	0.0342 (10)	-0.0007 (8)	-0.0143 (8)	-0.0089 (8)
C11	0.0397 (10)	0.0321 (10)	0.0277 (9)	-0.0049 (8)	-0.0082 (7)	-0.0116 (7)
C12	0.0328 (9)	0.0281 (9)	0.0274 (8)	-0.0082 (7)	-0.0016 (7)	-0.0115 (7)
C13	0.0417 (10)	0.0361 (10)	0.0306 (9)	-0.0086 (8)	-0.0008 (8)	-0.0151 (8)
C14	0.0375 (10)	0.0350 (10)	0.0325 (9)	-0.0063 (8)	-0.0014 (8)	-0.0117 (8)
C15	0.0490 (12)	0.0382 (11)	0.0431 (11)	-0.0037 (9)	-0.0135 (9)	-0.0175 (9)
C21	0.0313 (9)	0.0306 (9)	0.0284 (9)	-0.0019 (7)	-0.0044 (7)	-0.0146 (7)
C22	0.0340 (10)	0.0389 (11)	0.0462 (11)	-0.0041 (9)	-0.0019 (8)	-0.0125 (9)
C23	0.0313 (10)	0.0525 (13)	0.0550 (12)	0.0018 (9)	-0.0081 (9)	-0.0236 (10)
C24	0.0470 (12)	0.0409 (11)	0.0354 (10)	0.0077 (9)	-0.0160 (9)	-0.0148 (9)
C25	0.0473 (12)	0.0459 (12)	0.0393 (11)	-0.0031 (10)	-0.0063 (9)	0.0004 (9)
C26	0.0334 (10)	0.0459 (12)	0.0394 (10)	-0.0040 (9)	-0.0043 (8)	-0.0050 (9)
C31	0.0317 (9)	0.0314 (10)	0.0314 (9)	0.0029 (8)	-0.0066 (7)	-0.0073 (8)
C32	0.0375 (11)	0.0573 (14)	0.0555 (13)	-0.0081 (10)	-0.0035 (9)	-0.0223 (11)
C33	0.0393 (12)	0.0654 (16)	0.0711 (16)	-0.0138 (11)	-0.0013 (11)	-0.0104 (13)
C34	0.0501 (14)	0.0506 (14)	0.0515 (13)	0.0140 (11)	0.0096 (10)	0.0004 (11)
C35	0.0631 (15)	0.0510 (14)	0.0477 (13)	0.0068 (12)	0.0093 (11)	-0.0159 (11)
C36	0.0486 (12)	0.0397 (11)	0.0410 (11)	0.0024 (9)	-0.0024 (9)	-0.0164 (9)
C41	0.0419 (10)	0.0256 (9)	0.0243 (8)	-0.0011 (8)	-0.0082 (7)	-0.0104 (7)
C42	0.0447 (11)	0.0349 (10)	0.0362 (10)	-0.0095 (9)	-0.0031 (8)	-0.0145 (8)
C43	0.0369 (10)	0.0507 (13)	0.0406 (11)	-0.0016 (9)	-0.0034 (8)	-0.0201 (9)
C44	0.0480 (11)	0.0346 (10)	0.0310 (9)	0.0104 (9)	-0.0113 (8)	-0.0140 (8)
C45	0.0548 (12)	0.0267 (9)	0.0287 (9)	-0.0029 (9)	-0.0051 (8)	-0.0082 (7)
C46	0.0409 (10)	0.0268 (9)	0.0278 (9)	-0.0024 (8)	-0.0019 (7)	-0.0100 (7)
C51	0.0421 (10)	0.0230 (9)	0.0366 (10)	0.0056 (8)	-0.0128 (8)	-0.0169 (7)

C52	0.0585 (13)	0.0376 (11)	0.0401 (11)	-0.0005 (10)	-0.0214 (9)	-0.0132 (9)
C53	0.0552 (13)	0.0475 (13)	0.0629 (14)	0.0005 (11)	-0.0333 (11)	-0.0189 (11)
C54	0.0403 (11)	0.0394 (12)	0.0740 (15)	0.0032 (9)	-0.0180 (11)	-0.0245 (11)
C55	0.0416 (11)	0.0380 (11)	0.0513 (12)	0.0013 (9)	-0.0038 (9)	-0.0222 (9)
C56	0.0386 (10)	0.0333 (10)	0.0382 (10)	0.0034 (8)	-0.0103 (8)	-0.0201 (8)
N1	0.0436 (9)	0.0305 (8)	0.0312 (8)	-0.0019 (7)	-0.0088 (7)	-0.0167 (6)
01	0.0524 (8)	0.0265 (6)	0.0376 (7)	0.0075 (6)	-0.0200 (6)	-0.0169 (5)
P1	0.0326 (2)	0.0276 (2)	0.0302 (2)	-0.00380 (19)	-0.00480 (18)	-0.01137 (19)
P2	0.0463 (3)	0.0230 (2)	0.0269 (2)	-0.0012 (2)	-0.0079 (2)	-0.00993 (18)
Cl1	0.0433 (17)	0.0434 (7)	0.0459 (17)	-0.0032 (4)	-0.0128 (10)	0.0046 (7)
Br1	0.0433 (17)	0.0434 (7)	0.0459 (17)	-0.0032 (4)	-0.0128 (10)	0.0046 (7)

Geometric parameters (Å, °)

C1—C2	1.386 (2)	C24—C25	1.373 (3)
C1—C6	1.395 (2)	C24—H24	0.9500
C1—N1	1.398 (2)	C25—C26	1.380 (3)
C2—C3	1.388 (2)	С25—Н25	0.9500
С2—Н2	0.9500	С26—Н26	0.9500
C3—C4	1.375 (2)	C31—C32	1.380 (3)
С3—Н3	0.9500	C31—C36	1.386 (3)
C4—C5	1.396 (2)	C31—P1	1.8253 (18)
C4—H4	0.9500	C32—C33	1.389 (3)
C5—C6	1.382 (2)	С32—Н32	0.9500
C5—P1	1.8345 (16)	C33—C34	1.365 (3)
C6—O1	1.3837 (19)	С33—Н33	0.9500
C7—O1	1.3799 (19)	C34—C35	1.360 (3)
С7—С8	1.381 (2)	С34—Н34	0.9500
C7—C12	1.393 (2)	C35—C36	1.368 (3)
C8—C9	1.398 (2)	С35—Н35	0.9500
C8—P2	1.8313 (16)	С36—Н36	0.9500
C9—C10	1.379 (2)	C41—C46	1.385 (2)
С9—Н9	0.9500	C41—C42	1.392 (2)
C10—C11	1.385 (2)	C41—P2	1.8335 (17)
C10—H10	0.9500	C42—C43	1.374 (3)
C11—C12	1.380 (2)	C42—H42	0.9500
C11—H11	0.9500	C43—C44	1.381 (3)
C12—N1	1.402 (2)	C43—H43	0.9500
C13—N1	1.461 (2)	C44—C45	1.378 (3)
C13—C14	1.517 (2)	C44—H44	0.9500
C13—H13A	0.9900	C45—C46	1.385 (2)
С13—Н13В	0.9900	C45—H45	0.9500
C14—C15	1.512 (2)	C46—H46	0.9500
C14—H14A	0.9900	C51—C56	1.384 (2)
C14—H14B	0.9900	C51—C52	1.390 (2)
C15—Cl1	1.7770 (18)	C51—P2	1.8281 (18)
C15—Br1	1.9266 (19)	C52—C53	1.380 (3)
C15—H15A	0.9900	С52—Н52	0.9500
C15—H15B	0.9900	C53—C54	1.372 (3)

C21—C26	1.381 (2)	С53—Н53	0.9500
C21—C22	1.386 (2)	C54—C55	1.374 (3)
C21—P1	1.8338 (17)	С54—Н54	0.9500
C22—C23	1.375 (3)	C55—C56	1.383 (2)
C22—H22	0.9500	С55—Н55	0.9500
C23—C24	1.365 (3)	С56—Н56	0.9500
С23—Н23	0.9500		
C2—C1—C6	117.26 (15)	C24—C25—H25	119.8
C2—C1—N1	122.98 (15)	C26—C25—H25	119.8
C6—C1—N1	119.74 (15)	C25—C26—C21	121.39 (18)
C1—C2—C3	120.70 (16)	C25—C26—H26	119.3
C1—C2—H2	119.7	C21—C26—H26	119.3
С3—С2—Н2	119.7	C32—C31—C36	118.05 (18)
C4—C3—C2	120.72 (17)	C32—C31—P1	124.77 (15)
С4—С3—Н3	119.6	C36—C31—P1	117.08 (14)
С2—С3—Н3	119.6	C31—C32—C33	119.9 (2)
C3—C4—C5	120.29 (17)	C31—C32—H32	120.1
С3—С4—Н4	119.9	С33—С32—Н32	120.1
С5—С4—Н4	119.9	C34—C33—C32	120.7 (2)
C6—C5—C4	117.78 (15)	C34—C33—H33	119.7
C6—C5—P1	117.69 (12)	C32—C33—H33	119.7
C4—C5—P1	124.31 (13)	C35—C34—C33	119.9 (2)
C5—C6—O1	115.95 (14)	C35—C34—H34	120.0
C5—C6—C1	123.20 (15)	C33—C34—H34	120.0
01 - 6 - 61	120.80 (15)	C34-C35-C36	119.9 (2)
01 - 07 - 08	115 32 (14)	C34-C35-H35	120.0
01 - 07 - 01	121 59 (15)	C_{36} C_{35} H_{35}	120.0
C8 - C7 - C12	123.07 (15)	$C_{35} - C_{36} - C_{31}$	120.0 121.5(2)
C7—C8—C9	117 72 (15)	C35—C36—H36	119.2
C7—C8—P2	117.39(12)	C_{31} $-C_{36}$ $-H_{36}$	119.2
C9 - C8 - P2	124 82 (13)	$C_{46}^{46} - C_{41}^{42} - C_{42}^{42}$	119.2
C10-C9-C8	120.13(16)	C46-C41-P2	125 35 (14)
С10—С9—Н9	119.9	C42-C41-P2	116 47 (13)
C8-C9-H9	119.9	C_{43} C_{42} C_{41}	121 27 (17)
C_{9} C_{10} C_{11}	120.73 (17)	C43 - C42 - H42	119.4
C9-C10-H10	119.6	C41 - C42 - H42	119.4
$C_{11} - C_{10} - H_{10}$	119.6	C42 - C43 - C44	120.04 (18)
C_{12} C_{11} C_{10}	120.61 (15)	C42 - C43 - H43	120.0
C12_C11_H11	110 7	C42 C43 H43	120.0
C10_C11_H11	119.7	C45 - C44 - C43	119 59 (17)
$C_{11} - C_{12} - C_{7}$	117.69 (16)	C45 - C44 - H44	120.2
C11_C12_N1	123 19 (14)	C43 - C44 - H44	120.2
C7-C12-N1	119 11 (15)	C44 - C45 - C46	120.2 120.22(17)
N1_C13_C14	112 39 (14)	C44_C45_H45	110 0
N1_C13_H13A	109.1	$C_{46} C_{45} H_{45}$	119.9
C14_C13_H13A	109.1	C41 - C46 - C45	119.9
N1_C13_H13R	109.1	C41 - C46 - H46	120.76 (17)
C14_C13_H13B	100.1	C45-C46-H46	110.6
H13A_C13_H13R	107.9	$C_{75} - C_{70} - 11_{10}$	117.0
	101.7	000 001 002	11/.0/(1/)

C15—C14—C13	112.46 (15)	C56—C51—P2	125.18 (13)
C15—C14—H14A	109.1	C52—C51—P2	117.13 (14)
C13—C14—H14A	109.1	C53—C52—C51	121.25 (19)
C15—C14—H14B	109.1	С53—С52—Н52	119.4
C13—C14—H14B	109.1	С51—С52—Н52	119.4
H14A—C14—H14B	107.8	C54—C53—C52	120.04 (18)
C14—C15—Cl1	111.5 (5)	С54—С53—Н53	120.0
C14—C15—Br1	114.0 (6)	С52—С53—Н53	120.0
C14—C15—H15A	109.3	C53—C54—C55	119.73 (19)
Cl1—C15—H15A	109.3	С53—С54—Н54	120.1
Br1—C15—H15A	109.2	С55—С54—Н54	120.1
C14—C15—H15B	109.3	C54—C55—C56	120.16 (19)
Cl1—C15—H15B	109.3	С54—С55—Н55	119.9
Br1—C15—H15B	106.8	С56—С55—Н55	119.9
H15A—C15—H15B	108.0	C55—C56—C51	121.07 (17)
C26—C21—C22	117.21 (17)	С55—С56—Н56	119.5
C26—C21—P1	125.12 (13)	С51—С56—Н56	119.5
C22—C21—P1	117.65 (13)	C1—N1—C12	119.14 (13)
C23—C22—C21	121.32 (17)	C1—N1—C13	120.04 (14)
С23—С22—Н22	119.3	C12—N1—C13	120.59 (14)
C21—C22—H22	119.3	C7—O1—C6	118.58 (12)
C24—C23—C22	120.74 (18)	C31—P1—C21	100.52 (7)
C24—C23—H23	119.6	C31—P1—C5	102.11 (8)
С22—С23—Н23	119.6	C21—P1—C5	101.24 (7)
C23—C24—C25	118.97 (18)	С51—Р2—С8	102.00 (8)
C23—C24—H24	120.5	C51—P2—C41	101.66 (8)
C25—C24—H24	120.5	C8—P2—C41	100.58 (7)
C24—C25—C26	120.35 (18)		
C6—C1—C2—C3	0.6 (2)	C43—C44—C45—C46	0.2 (3)
N1—C1—C2—C3	-177.93 (15)	C42—C41—C46—C45	-0.3 (2)
C1—C2—C3—C4	-2.2 (3)	P2-C41-C46-C45	176.23 (13)
C2—C3—C4—C5	1.4 (3)	C44—C45—C46—C41	0.2 (3)
C3—C4—C5—C6	0.7 (2)	C56-C51-C52-C53	-2.7 (3)
C3—C4—C5—P1	175.10 (13)	P2-C51-C52-C53	175.83 (15)
C4—C5—C6—O1	175.16 (14)	C51—C52—C53—C54	1.9 (3)
P1—C5—C6—O1	0.4 (2)	C52—C53—C54—C55	0.6 (3)
C4—C5—C6—C1	-2.3 (2)	C53—C54—C55—C56	-2.2 (3)
P1C5C1	-177.06 (13)	C54—C55—C56—C51	1.3 (3)
C2—C1—C6—C5	1.6 (2)	C52—C51—C56—C55	1.1 (3)
N1—C1—C6—C5	-179.76 (15)	P2-C51-C56-C55	-177.33 (14)
C2—C1—C6—O1	-175.72 (15)	C2—C1—N1—C12	-175.29 (15)
N1-C1-C6-01	2.9 (2)	C6—C1—N1—C12	6.2 (2)
O1—C7—C8—C9	-178.47 (14)	C2-C1-N1-C13	-0.9 (2)
C12—C7—C8—C9	0.0 (2)	C6—C1—N1—C13	-179.40 (14)
O1—C7—C8—P2	4.6 (2)	C11—C12—N1—C1	172.78 (15)
C12—C7—C8—P2	-176.93 (12)	C7—C12—N1—C1	-8.2 (2)
C7—C8—C9—C10	-1.3 (2)	C11—C12—N1—C13	-1.6 (2)
P2-C8-C9-C10	175.33 (14)	C7—C12—N1—C13	177.40 (14)
C8—C9—C10—C11	0.7 (3)	C14—C13—N1—C1	-80.73 (19)

C9—C10—C11—C12	1.4 (3)	C14—C13—N1—C12	93.60 (19)
C10-C11-C12-C7	-2.7 (2)	C8—C7—O1—C6	-173.86 (14)
C10-C11-C12-N1	176.35 (16)	C12—C7—O1—C6	7.7 (2)
O1—C7—C12—C11	-179.65 (14)	C5—C6—O1—C7	172.70 (14)
C8—C7—C12—C11	2.0 (2)	C1—C6—O1—C7	-9.8 (2)
O1C7C12N1	1.3 (2)	C32—C31—P1—C21	81.38 (17)
C8—C7—C12—N1	-177.05 (15)	C36-C31-P1-C21	-94.87 (15)
N1-C13-C14-C15	-168.77 (14)	C32—C31—P1—C5	-22.66 (18)
C13-C14-C15-Cl1	77.1 (5)	C36—C31—P1—C5	161.09 (14)
C13-C14-C15-Br1	78.6 (6)	C26-C21-P1-C31	-17.74 (17)
C26—C21—C22—C23	-0.7 (3)	C22—C21—P1—C31	160.68 (14)
P1-C21-C22-C23	-179.23 (15)	C26—C21—P1—C5	87.00 (16)
C21—C22—C23—C24	1.1 (3)	C22—C21—P1—C5	-94.58 (14)
C22—C23—C24—C25	-0.5 (3)	C6—C5—P1—C31	-76.01 (14)
C23—C24—C25—C26	-0.5 (3)	C4—C5—P1—C31	109.61 (15)
C24—C25—C26—C21	0.9 (3)	C6—C5—P1—C21	-179.49 (13)
C22—C21—C26—C25	-0.3 (3)	C4—C5—P1—C21	6.13 (16)
P1-C21-C26-C25	178.11 (15)	C56-C51-P2-C8	-18.19 (16)
C36—C31—C32—C33	1.3 (3)	C52—C51—P2—C8	163.35 (14)
P1-C31-C32-C33	-174.94 (16)	C56-C51-P2-C41	85.44 (16)
C31—C32—C33—C34	-0.1 (3)	C52-C51-P2-C41	-93.02 (14)
C32—C33—C34—C35	-0.6 (3)	C7—C8—P2—C51	-80.83 (14)
C33—C34—C35—C36	0.1 (3)	C9—C8—P2—C51	102.50 (15)
C34—C35—C36—C31	1.2 (3)	C7—C8—P2—C41	174.69 (13)
C32—C31—C36—C35	-1.8 (3)	C9—C8—P2—C41	-1.97 (16)
P1-C31-C36-C35	174.67 (16)	C46—C41—P2—C51	-7.91 (16)
C46—C41—C42—C43	-0.1 (3)	C42—C41—P2—C51	168.68 (13)
P2-C41-C42-C43	-176.90 (14)	C46—C41—P2—C8	96.84 (15)
C41—C42—C43—C44	0.5 (3)	C42—C41—P2—C8	-86.57 (14)
C42—C43—C44—C45	-0.6 (3)		

