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A B S T R A C T

Surgical treatment of medication-resistant mesial temporal lobe epilepsy (MTLE) is associated with cognitive 
deficits. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) for MTLE has been shown to 
result in superior cognitive outcomes in adults when compared to open surgical resection. However, data 
regarding postoperative cognitive outcomes in adolescent and pediatric patients is limited. We retrospectively 
reviewed sequential cases of pediatric patients who underwent MRgLITT for MTLE between 2017 and 2023. 
Patients who had complete preoperative and 12 month postoperative neuropsychological evaluation were 
analyzed for changes in the neuropsychological domains of cognition, memory, executive functioning, visual 
scanning, graphomotor speed, and fine motor speed/dexterity. Six adolescent patients who underwent MRgLITT 
for MTLE (x‾ age = 19.0 years, SD = 1.2) and had complete preoperative and postoperative neuropsychological 
evaluations were included in the analysis. There were no statistically significant changes across neuropsycho-
logical domains when comparing pre- and postoperative cognitive evaluations, including verbal memory scores. 
Clinically significant changes in phonemic fluency were observed when examining side-specific effects and 
improved for patients who received right-sided MRgLITT but declined for patients who received left-sided 
MRgLITT. 50 % of patients achieved Engel I outcome at last follow-up. Our preliminary results suggest mini-
mal adverse neuropsychologic effects following MRgLITT for adolescent MTLE, including preservation of verbal 
memory. Clinical outcomes were similar with those reported in the literature.

1. Introduction

Nearly one quarter of all patients with epilepsy become refractory to 
medications [1], often necessitating other methods of seizure control 
such as surgical resection or neuromodulation [2]. Mesial temporal lobe 
epilepsy (MTLE) is the most common type of focal epilepsy, affecting 
approximately 20% of patients with epilepsy [3,4]. Traditionally, 

anterior temporal lobectomy (ATL) has been the mainstay of treatment 
and has been shown to have approximately 50–60% seizure freedom 
rate in adults [5] and a 70% seizure freedom rate in pediatric patients 
[6]. More recently, magnetic resonance-guided laser interstitial thermal 
therapy (MRgLITT) has gained popularity compared to open surgical 
resection due to its minimally invasive approach, lower infection risk, 
shorter duration of hospital stay, and preference by both patients and 
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providers [7].
Cognitive deficits have been previously reported following ATL with 

decreased naming ability being observed after dominant hemisphere 
procedures [8–11], and deficits in recognizing famous faces and less 
common objects have been associated with non-dominant hemisphere 
procedures [9,11–13]. Selective approaches to amygdalohippocampec-
tomy (SAH) have also been employed and utilize invasive approaches to 
spare the lateral neocortical structures; however, there is evidence that 
these approaches actually cause worse cognitive deficits due to disrup-
tion of the temporal stem [14]. MRgLITT for MTLE has an advantage 
over open approaches in that it allows for stereotactic ablation of the 
amygdala and hippocampus without collateral damage to surrounding 
temporal lobe structures [7]. Studies characterizing the cognitive out-
comes in adult patients undergoing MRgLITT [7,15–17], predominantly 
show dominant-sided procedures are associated with worse verbal 
fluency and memory outcomes. In contrast, neuropsychological 
outcome data in pediatric patients undergoing epilepsy surgery, 
including those treated with MRgLITT, remains underreported. We 
present our neuropsychological outcomes for a series of adolescent pa-
tients with pediatric-onset epilepsy undergoing MRgLITT for MTLE and 
hypothesize that adolescent patients tolerate MRgLITT without signifi-
cant changes to their postoperative neuropsychological scores. To our 
knowledge, this is the first paper that focuses on these data for adoles-
cent MTLE patients.

2. Materials and methods

2.1. Study design

We performed a single-center, retrospective review of patients who 
underwent MRgLITT for MTLE and had preoperative and postoperative 
neuropsychological testing with a clinical neuropsychologist at Chil-
dren’s Hospital of Los Angeles (CHLA) between February 2017 and June 
2023. The study received approval through the institution’s Institutional 
Review board, CHLA-22-00279-AM003.

2.2. Inclusion and exclusion criteria

Medically refractory MTLE pediatric patients evaluated at the CHLA 
Comprehensive Epilepsy Center who were recommended to undergo 
MRgLITT were included. At our institution, we can evaluate and treat 
pediatric patients up to the age of 21. Only patients who had preoper-
ative and postoperative neuropsychological evaluation at 12 months 
after their operation were included in our analysis. Patients who 
received MRgLITT for other foci or who had open surgical resection for 
MTLE as the initial surgical management were excluded.

2.3. Patient selection

All patients included in the study underwent noninvasive seizure 
localization per our institution’s typical protocol. All patients underwent 
video electroencephalography (vEEG) in the Epilepsy Monitoring Unit 
(EMU) and high-resolution 3T MRI. Some of the patients underwent 
ancillary studies, including positron emission tomography (PET), single 
photon emission computerized tomography (SPECT), Wada testing, and 
intracranial monitoring. This information was combined to establish the 
diagnosis of MTLE. The patients were discussed at comprehensive Epi-
lepsy Surgery conference consisting of a multidisciplinary team of 
neurologists, neurosurgeons, neuropsychologists, and neuroradiologists 
at CHLA. The decision to proceed with MRgLITT versus open surgical 
resection was made on a case-by-case basis at Epilepsy Surgery confer-
ence based on comprehensive review of the presurgical electrophysio-
logic, radiographic and neuropsychological data. After considering the 
options, there was a consensus to proceed with MRgLITT for treatment 
of MTLE.

2.4. Surgical technique

MRgLITT of the amygdala and hippocampus was carried out using 
the Medtronic Visualase (Medtronic, Dublin, Ireland) system. Preoper-
ative trajectory planning was conducted on a contrasted, 3D volumetric 
T1-weighted MRI image on the Medtronic Framelink (Medtronic, Dub-
lin, Ireland) or ROSA (Zimmer Biomet, Warsaw, IN, USA) software. An 
occipital entry site along the long axis of the amygdala and hippocampus 
was planned; the trajectory traversed the tail, body and head of the 
hippocampus and terminated in the amygdala in an avascular fashion. 
The majority of patients required one laser fiber for ablation of the 
mesial temporal structures, however patient (patient #5) required two 
fibers to completely cover the amygdala and hippocampus due to an 
expansive nature of the lesion. On the day of surgery, bone fiducial 
markers were placed in the operating room to assist with stereotactic 
registration, a high-resolution computerized tomography (CT) scan was 
obtained with the markers in place and merged to the preoperative plan. 
The Visualize anchor bolt and 10 mm laser fiber was placed with the 
Cosman-Roberts-Wells (CRW) frame or ROSA surgical robot (Zimmer 
Biomet, Warsaw, IN, USA). The patient was then transported to the MRI 
suite for MRI thermography. Axial T2 and sagittal T2 images were ob-
tained, and target and safety regions were defined. Real-time MR ther-
mography was used to ensure a temperature between 60 and 80◦C 
within the target region. After ablation of the amygdala, the laser fiber 
was withdrawn 6-8mm along the trajectory axis until the head, body and 
tail of the hippocampus were ablated. Ablation was confirmed with a 
volumetric T1 sequence with contrast, a T2 sequence, and a diffusion 
weighted imaging (DWI) sequence (Fig. 1).

2.5. Neuropsychological testing

All patients received both a preoperative and a postoperative 
comprehensive neuropsychological evaluation. Preoperative testing was 
completed approximately 14 months prior to surgery (x‾ time = 14.67 
months, SD = 6.98 months), while postoperative testing occurred 
approximately 12 months after surgery (x‾ time = 12.00 months, SD =
5.80). The following standardized tools were used: Wechsler Adult In-
telligence Scale, Fourth Edition (WAIS-IV),[18] Wechsler Abbreviated 
Scale of Intelligence, Second Edition (WASI-II),[19] Wide Range 
Assessment of Learning and Memory, Second Edition (WRAML-2),[20]
Delis-Kaplan Executive Function System (D-KEFS),[21] California Ver-
bal Learning Test − Second Edition (CVLT-II),[22] Child and Adolescent 
Memory Profile (ChAMP),[23] Finger Tapping Test,[24] and Grooved 
Pegboard Test.[25] An estimated IQ (EIQ) was derived from vocabulary 
and matrix reasoning subtests of the WAIS-IV (5 participants) or the 
WASI-II (1 participant). Story memory included WRAML-II Story 
Memory (3 participants) and ChAMP Instructions (3 participants). List 
Learning included CVLT-II (1 participant), WRAML-II Verbal Learning 
(2 participants), and ChAMP Lists (3 participants). Visual Memory 
included WRAML-II Design Learning (3 participants) and ChAMP Places 
(3 participants).

2.6. Data collection and analysis

Patient data was obtained retrospectively through review of the 
electronic medical record and the neuropsychology patient database.

2.7. Statistical methods

Descriptive statistics, including measures of central tendency and 
frequency, were computed to describe the sample. Pre-surgical and post- 
surgical scores from the tests were compared using a paired-sample, 
two-tailed Wilcoxon Signed-Rank Test. Our threshold for significance 
was p < 0.05. All statistical analyses were done using SPSS (IBM, 
Armonk, New York, USA). Subgroup analysis of right sided vs left sided 
surgery was also examined. Given the small sample sizes and power 
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limitations, these side-specific effects are reported in terms of clinical 
significance as opposed to statistical ones.

3. Results

3.1. Patient characteristics

Between February 2017 and June 2023, 14 consecutive patients 
underwent MRgLITT for MTLE. Of these, 6 patients had complete pre-
operative and postoperative neuropsychological testing. All six patients 
(100%) meeting inclusion criteria were male, and the majority identi-
fied as Hispanic/Latino (66.7%). The average age at time of surgery was 
19.0 years (SD = 1.2 years, range 17–20). Three of the patients (50%) 
had a left-sided procedure, while the other three patients (50%) had a 
right-sided procedure. Radiographic findings on MRI included a normal 

MRI (n=2), MTS (n=2) and T2 hyperintense expansile lesions of the 
amygdala and hippocampus (n=2). For the expansile lesions, no tissue 
diagnosis was obtained and the main differential included focal cortical 
dysplasia vs a low grade glial/neuroglial tumor of the mesial temporal 
structures. Five of the six patients (83%) were right-handed, and one 
patient (17%) was left-handed. The average duration of epilepsy was 7.6 
years (range 1.3–15.2 years). Two of the six patients (33%) underwent 
Wada testing. Three of the six patients (50%) underwent SEEG for 
seizure localization before undergoing MRgLITT. Patient characteristics 
are summarized in Table 1.

3.2. Group-level neuropsychological outcomes

We sought to demonstrate if there were any group-level changes in 
any of the cognitive domains assessed by the neuropsychological testing 

Fig. 1. MR Images of MRgLITT Procedure. A and B) Axial and Sagittal volumetric T1 images in line with the laser catheter; C and D) post-ablation B1000 and dADC 
axial images confirming the diffusion-restricting ablation area in the amygdala and hippocampus.

J.M. Cavaleri et al.                                                                                                                                                                                                                             Epilepsy & Behavior Reports 28 (2024) 100723 

3 



tools. When comparing preoperative and postoperative neuropsycho-
logical test scores, there were no group-level statistically significant 
changes in the following neuropsychological domains: cognition (i.e., 
nonverbal reasoning, vocabulary, EIQ), verbal memory (i.e., story 
memory, list learning), visual memory, executive functioning (i.e., se-
mantic fluency, phonemic fluency, verbal switching, visual-motor 
switching), visual scanning, graphomotor speed, or fine motor speed 
and dexterity (i.e., finger tapping, grooved pegboard) (p > 0.05, Wil-
coxon Signed-Rank Test, Table 2).

3.3. Subgroup analysis: phonemic fluency

Given no group-level statistically significant differences, we exam-
ined clinically significant changes based on subgroups (right- vs. left- 
sided procedures). We observed a clinically significant improvement 
in phonemic fluency (7.00 relative units preoperative average vs. 10.33 
relative units postoperative average) for all patients who underwent 
right-sided MRgLITT. In contrast, there was a clinical decline in pho-
nemic fluency for all patients who underwent left-sided MRgLITT (9.67 
relative units preoperative average vs. 6.33 relative units postoperative 
average) (Fig. 2, Table 3).

3.4. Seizure outcomes

Postoperative Engel classification outcomes were acquired for all 
patients who completed postoperative neuropsychological testing. At 
time of last follow-up after MRgLITT, three of the six patients (50%) had 
Engel I outcome; one patient had Engel II outcome (16.7%); one patient 
had Engel III outcome (16.7%), and one patient had Engel IV outcome 
(16.7%). The average length of follow-up was 28.7 months (range: 16 – 
43 months). Clinical outcomes are summarized in Table 1.

4. Discussion

Although there have been a number of studies that present clinical 
outcomes for MRgLITT in pediatric patients with MTLE (reviewed by 

Hoppe and colleagues), no studies to date have provided a compre-
hensive analysis of post-surgical neuropsychological outcomes [26]. In 
our study, we demonstrated that there were no statistically significant 
group-level differences between preoperative vs. postoperative neuro-
psychological metrics amongst our adolescent patients who underwent 
MRgLITT for MTLE. Importantly, this finding included verbal memory. 
Interestingly, our subgroup analysis showed a clinical improvement in 
phonemic fluency for patients who underwent a right-sided procedure, 
and a decrease in phonemic fluency in patients who underwent a left- 
sided procedure. Our results revealed similar seizure freedom rates to 
those reported in the literature [26].

In pediatric patients, several studies have characterized cognitive 
outcomes in open temporal lobe surgery. Sbazó et al. observed a 
decrease in delayed verbal memory for patients undergoing left-sided 
temporal lobectomy [27]. In contrast, Westerveld et al. found that pa-
tients undergoing temporal lobectomy did not experience significant 
declines in cognitive function, though some individual patients experi-
enced a decrease in verbal intellectual functioning [28]. Similarly, 
Skirrow et al. found that there were no group-level declines in cognitive 
functioning, but did observe that improved verbal memory scores 
correlated with residual hippocampal residual volume after surgery 
[29]. Finally, Flint and colleagues conducted meta-analysis on 73 
studies that examined postsurgical neuropsychological outcomes among 
pediatric patients after resective temporal lobe surgery. While the 
literature supports improvement or unchanged neuropsychological 
outcomes in the majority of pediatric patients, a proportion experienced 
postoperative neuropsychological declines in cognition (10%), memory 
(25%), language (11%), and behavior (3%) [30].

Outcome literature addressing pediatric patients undergoing 
MRgLITT for MTLE, at best, includes qualitative statements on cognitive 
functioning and no reported quantitative cognitive outcomes 
[16,26,31–33]. Our findings contribute to this existing literature by 
providing objective data to support preservation of several neuropsy-
chological domains following MRgLITT in adolescent patients. This is in 
contrast to outcomes reported in adult patients, where patients were at 
risk of verbal memory decline, especially with dominant-sided 

Table 1 
Patient characteristics.

Patient Sex Age 
(years)

Handedness MRgLITT 
Side

Seizure 
Duration 
(years)

Semiology Imaging Wada 
Findings

SEEG 
Findings

Engel 
Outcome 
at Last 
Follow-Up

Time to 
Last 
Follow-Up 
(Months)

1 Male 20 Right Left 15.2 Aura, nonsensical 
speech, oromotor 
automatisms

MRI: Normal 
PET: left temporal 
hypometabolism

Left 
language, 
bilateral 
memory

N/A I 43

2 Male 20 Right Left 2.0 Mouth pulling, 
unresponsiveness

MRI: left expansile T2 
hyperintense lesion of 
amygdala and 
hippocampus, left 
choroidal fissure cyst 
PET: N/A

Left 
language, 
bilateral 
memory

N/A III 26

3 Male 18 Right Right 12.0 Aura (headache), 
staring

MRI: no MTS 
PET: bitemporal 
hypometabolism

N/A N/A I 29

4 Male 17 Right Right 2.1 Dizziness, nausea, 
automatisms

MRI: Right MTS, 
anterior temporal 
FCD 
PET: negative

N/A Right 
mesial 
temporal 
onset

I 37

5 Male 17 Right Right 2.1 Left visual field 
prism auras, 
confusion

MRI: Right, expansile 
T2 hyperintense 
lesion of amygdala 
and hippocampus 
PET: right temporal 
hypometabolism

N/A Broad 
right 
temporal 
onset

IV 21

6 Male 19 Left Left 12.8 Mostly nocturnal, 
wake up confused, 
drooling

7T MRI: Left MTS 
PET: left anterior 
hypometabolism

N/A Left mesial 
temporal 
onset

II 16

Average  19   7.7      28.7
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procedures, and declines in delayed verbal memory performance 
following dominant-sided procedures [7,17,34]. Recently, Drane et al. 
2021 reported on verbal memory outcomes in a large series of adult 
patients who underwent open surgery versus MRgLITT.[35] Although 
verbal memory decline was observed in both the open surgery and 
MRgLITT groups, this effect was significantly greater in patients un-
dergoing open surgery. Patients undergoing language-dominant, open 
procedures were at highest risk. Importantly, the authors’ results sug-
gest that verbal memory may not solely involve the amygdala and hip-
pocampus, but also include the extrahippocampal mesial temporal lobe, 
white matter tracts, and lateral neocortical regions that are typically 
spared during MRgLITT.

We observed similar results with preservation of verbal memory in 
our cohort of adolescent patients and this finding was independent of 
procedure sidedness. This may be due to a combination of factors, 
including the focused targeting of the amygdala and hippocampus 
without disruption extrahippocampal structures involved in verbal 
memory, as well as a relative robustness of pediatric population to 
neuropsychological decline following temporal lobe surgery as 
described above [30]. Future investigations should focus on identifying 
these factors.

The observed clinical changes in phonemic fluency are unexpected 
when considering the current structure–function relationship underly-
ing phonemic fluency. Verbal fluency is comprised of semantic fluency 
and phonemic fluency [36], which both involve executive processing, 
including self-monitoring, selective attention and inhibition, and 
working memory [36,37]; however, semantic fluency relies on semantic 
memory while phonemic fluency relies on phonological memory. Lesion 
studies have demonstrated that both semantic and phonemic fluency 
involve large left hemispheric networks with considerable overlap, 
though semantic fluency involves more left temporal structures while 
phonemic fluency involves more left frontal structures [38]. As all our 
patients underwent MRgLITT of mesial temporal structures only, the 
underlying explanation as to the observed clinical changes in this frontal 
lobe network warrants further investigation.

One important consideration is the cognitive effects of antiseizure 
medications (ASMs). Carbamazepine, in particular, has been associated 
independently with negative cognitive effects. Aikiä et al. found that 
patients taking carbamazepine had worse verbal fluency scores than 
those taking other ASMs [39]. Similarly, Hessen et al. demonstrated that 
scores on verbal tasks and Stroop tasks improved after discontinuation 

Table 2 
Group-level Neuropsychologic Outcomes.

Neurocognitive Variable Pre-Op 
Average

Post-Op 
Average

Z- 
value

p- 
value

Estimated IQ 89.00 93.83 − 1.57 0.12
Vocabulary 7.67 8.17 − 1.34 0.18
Matrix Reasoning 8.83 9.17 − 0.27 0.79
Story Memory    
Story Memory Recall 6.33 6.17 − 0.14 0.89
Story Memory Delay 7.17 6.50 − 0.43 0.67
Story Memory 

Recognition
6.50 8.33 − 0.81 0.42

List Learning    
List Learning Recall 5.00 6.33 − 1.22 0.22
List Learning Delay 5.67 5.50 − 0.42 0.67
List Learning Recognition 5.67 7.50 − 0.67 0.50
Visual Memory    
Visual Memory Recall 9.17 8.83 − 0.41 0.69
Visual Memory Delay 8.00 8.33 − 0.14 0.89
D-KEFS Semantic Fluency 7.83 6.50 − 1.24 0.22
D-KEFS Phonemic Fluency 8.33 8.33 0.00 1.00
D-KEFS Visual Scanning 10.17 7.83 − 1.83 0.07
D-KEFS Visual-Motor 

Switching
6.00 7.67 − 0.74 0.46

D-KEFS Motor Speed 8.83 10.33 − 1.16 0.25
Finger Tapping Test (FTT)    
FTT Dominant − 1.91 − 2.13 − 0.11 0.92
FTT Nondominant − 1.92 − 2.23 − 0.52 0.60
Grooved Pegboard Test (GP)   
GP Dominant − 0.94 − 1.32 − 0.11 0.92
GP Nondominant − 1.54 − 1.03 − 0.52 0.60

Note: An estimated IQ (EIQ) was derived from vocabulary and matrix reasoning 
subtests of the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) or 
the Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II); Story 
Memory included the Wide Range Assessment of Memory and Learning, Second 
Edition (WRAML-II) Story Memory subtest and the Child and Adolescent 
Memory Profile (ChAMP) Instructions subtest; List Learning included the Cali-
fornia Verbal Learning Test, Second Edition (CVLT-II), the WRAML-II Verbal 
Learning subtest, and the ChAMP Lists subtest; Visual Memory included the 
Wide Range Assessment of Memory and Learning, Second Edition (WRAML-II) 
Design Learning subtest and the ChAMP Places subtest; Finger Tapping Test 
norms from Strauss et al., 2006;[24] Grooved Pegboard Test norms from Skogan 
et al., 2018.[25].
Abbreviations: Delis-Kaplan Executive Function System (D-KEFS).

Fig. 2. Phonemic fluency scores improved for patients who underwent a right-sided MRgLITT and decreased for patients who underwent a left-sided procedure. 
Phonemic fluency scores have a normative mean of 10 and standard deviation of 3. Error bars represent the standard deviation of individual scores.
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of carbamazepine [40]. Lee et al. showed that carbamazepine had worse 
cognitive effects than levetiracetam [41], and Gillham et al. similarly 
showed that carbamazepine had more cognitive effects than lamotrigine 
[42]. In our cohort, two patients were on carbamazepine. One of the 
patients had a right-sided procedure with an improvement in phonemic 
fluency, and subsequent seizure freedom. The other patient had a left- 
sided procedure and a decrease in phonemic fluency and had 
continued seizures. Given the heterogeneity of changes in ASMs be-
tween pre- and post-neuropsychological testing, an analysis for corre-
lation between ASM and neuropsychological was challenging to 
accomplish. Two patients had decreases in ASMs, two patients had in-
creases in ASMs, and two patients had replacements of one ASM for 
another in their regimens. From our data, it is unclear if there is a direct 
interaction between ASMs and MRgLITT with respect to cognitive out-
comes, and more patients would need to be analyzed to reveal any ef-
fects of such medications.

One of the major limitations of this study is that it is a single-center, 
retrospective investigation with a small number of patients. Our overall 
number of MRgLITT patients (n = 14) was comparable to previously 
published multi-institutional studies; however, our report was signifi-
cantly limited by the number of patients who had complete post-
operative neuropsychological evaluations due to medical limitations 
during the COVID-19 pandemic, patients that may have aged out or 
those that were lost to follow-up (n = 8). With a small number of pa-
tients, it may be difficult to make statistical inferences and we attempted 

to combat this by using nonparametric statistical analysis at the group 
level. However, the observed clinically significant differences seen in 
phonemic fluency will need to be verified by a larger population sample. 
Along those same lines, it would be interesting to explore the relation-
ships between neuropsychological outcomes and clinical outcomes like 
Engel classification and medication effects; however, the sample size in 
this study was too small to evaluate these interactions. Another limita-
tion of our study is that it included only male patients and only 
adolescent/young adult patients. This fact did, however, limit confounds 
of sex and age. Furthermore, older pediatric patients allow for more 
comprehensive neuropsychological testing due to increased maturity 
and cognitive ability compared to younger patients. Further analysis 
could focus on younger patients and include female patients as well. On 
a technical note, one limitation is that while most pre/post- 
neuropsychological data represents a direct comparison between test 
measures, intelligence measures, list learning, story memory, and visual 
memory testing varied across subjects, limiting conclusions about these 
measures. Another intriguing facet to investigate would be the influence 
of social determinants of health (e.g. socioeconomic status) on neuro-
logical and clinical outcomes within this population. As we collect more 
data in the future, we will be able to investigate interactions between 
sex, age, socioeconomic status, and clinical outcome with regards to 
neuropsychological measures before and after MRgLITT for MTLE.

5. Conclusion

This study is the first study to report comprehensive neuropsycho-
logical outcomes in pediatric patients undergoing MRgLITT for MTLE. 
Our results suggest MRgLITT can preserve neurocognitive effects, 
including verbal memory, in pediatric patients with MTLE and can offer 
effective seizure control. We also observed clinically significant im-
provements in phonemic fluency for patients who underwent non- 
dominant-sided surgery, while there was a decrease in phonemic 
fluency for patients who underwent dominant-sided procedure. A larger 
sample is required to replicate these neuropsychological findings, 
though our data shows preliminary evidence that MRgLITT is a well- 
tolerated procedure in pediatric population.
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Table 3 
Right- vs. Left-sided Neuropsychological Outcomes.

Right Left

Neurocognitive Variable Pre-Op  

Average

Post-Op  

Average

Pre-Op  

Average

Post-Op  

Average

Estimated IQ 97.00 101.00 81.00 86.67
Vocabulary 9.33 10.33 6.00 6.00
Matrix Reasoning 10.67 10.00 7.00 8.33
Story Memory    
Story Memory Recall 4.67 6.33 8.00 6.00
Story Memory Delay 5.00 6.33 9.33 6.67
Story Memory Recognition 5.67 10.67 7.33 6.00
List Learning    
List Learning Recall 5.33 7.67 4.67 5.00
List Learning Delay 4.67 6.67 6.67 4.33
List Learning Recognition 6.33 9.00 5.00 6.00
Visual Memory    
Visual Memory Recall 7.00 9.00 11.33 8.67
Visual Memory Delay 6.00 8.33 10.00 8.33
D-KEFS Semantic Fluency 9.00 7.33 6.67 5.67
D-KEFS Phonemic Fluency 7.00 10.33 9.67 6.33
D-KEFS Visual Scanning 10.33 9.00 10.00 6.67
D-KEFS Visual-Motor Switching 4.67 8.00 7.33 7.33
D-KEFS Motor Speed 9.33 11.67 8.33 9.00
Finger Tapping Test (FTT)    
FTT Dominant − 2.50 − 2.07 − 1.33 − 2.19
FTT Nondominant − 2.38 − 2.47 − 1.45 − 1.99
Grooved Pegboard Test (GP)    
GP Dominant − 0.09 − 0.15 − 1.78 − 2.48
GP Nondominant − 0.89 − 0.25 − 2.18 − 1.82

Note: An estimated IQ (EIQ) was derived from vocabulary and matrix reasoning 
subtests of the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) or 
the Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II); Story 
Memory included the Wide Range Assessment of Memory and Learning, Second 
Edition (WRAML-II) Story Memory subtest and the Child and Adolescent 
Memory Profile (ChAMP) Instructions subtest; List Learning included the Cali-
fornia Verbal Learning Test, Second Edition (CVLT-II), the WRAML-II Verbal 
Learning subtest, and the ChAMP Lists subtest; Visual Memory included the 
Wide Range Assessment of Memory and Learning, Second Edition (WRAML-II) 
Design Learning subtest and the ChAMP Places subtest; Finger Tapping Test 
norms from Strauss et al., 2006;[24] Grooved Pegboard Test norms from Skogan 
et al., 2018.[25].
Abbreviations: Delis-Kaplan Executive Function System (D-KEFS).
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