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A metabolic perspective of Peto’s paradox
and cancer

Chi V. Dang

Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19072, USA

The frequency of cancer is postulated to be proportional to the number of cells

an animal possesses, as each cell is similarly exposed to mutagens with every

cell division. Larger animals result from more cell divisions with more muta-

genic exposure, and hence are expected to have higher frequencies of cancer.

Yet, as stipulated by Peto’s paradox, larger animals do not have the higher

rates of cancers seen in smaller animals despite the significant differences in

cell numbers and a longer lifetime that would expose larger animals to more

mutagens. The rates of cancer appear to be inversely proportional to animal

body size, which scales inversely with specific metabolic rates of mammals.

Studies over the past 20 years have linked oncogenes and tumour suppressors

to alterations in cancer metabolism, and conversely, mutations in metabolic

genes have been documented to trigger tumorigenesis. The by-products and

intermediates of metabolism, such as reactive oxygen species, oxoglutarate,

citrate and acetate, all have the potential to mutate and alter the genome or epi-

genome. On the basis of these general observations, it is proposed that

metabolic rates correlate with mutagenic rates, which are higher in small ani-

mals and give the mechanistic basis for Peto’s paradox. The observations

discussed in this overview collectively indicate that specific metabolic rate

varies inversely with body size, which seems to support the hypothesis that

metabolism drives tumorigenesis and accounts for Peto’s paradox.

1. Introduction
Activation of oncogenes and loss of tumour suppressors are mediated by DNA

mutations, chromosomal instability or epigenetic alterations, thereby driving

tumorigenesis [1]. The replicating genome is constantly exposed to mutagens,

such as reactive oxygen species (ROS) produced from mitochondria or ultraviolet

and gamma radiation from the cosmos, that damage DNA, cause imbalance in

nucleotide pools that results in DNA replication stress, and alter levels of metab-

olites involved in modifying the epigenome (e.g. acetyl-CoA, S-adenosyl

methionine, a-ketoglutarate) that result in misregulation of gene expression. As

such, unrepaired mutagenic errors could be propagated to daughter cells and con-

tribute to the development of cancer. It stands to reason, then, that the more cell

divisions an animal has during its lifetime, the more likely it is for mutagenic

events to occur in somatic cells. In fact, microsatellite alterations and genomic

deep-sequencing analysis of somatic cells have been used to trace cell fates in

mice, providing direct experimental evidence for the accumulation of mutations

with cell division [2–5]. Hence, from this viewpoint, the larger an animal is, the

more likely it should be to develop cancer during its lifetime. This supposition is,

however, not support by empirical observations, which suggest that smaller ani-

mals have a relatively higher rate of cancer compared with larger animals,

or conversely larger animals have a lower than relative expected rate of cancer

development. In fact, quantitative analysis supports this contention [6]. This

non-concordance is known as Peto’s paradox [6–9].

2. Cell metabolism as a cause of cancer
Resting and growing cells appear to use distinct metabolic pathways, which

are also different among different cell types, but share many common metabolic
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Figure 1. Regulation of cell metabolism by proto-oncogenes and tumour suppressors. The diagram depicts growth factor receptor activation and the cascade of
events that results in nutrient uptake for biomass accumulation, energy and reductive power production. The PI3K and RAS-RAF-MEK pathways are shown signalling
downstream, resulting in mTOR activation and transcriptional responses, such as the path towards Myc activation. Proto-oncogenes are highlighted in green, whereas
tumour suppressors are in red. Note that the mitochondrion is a key respiratory and biosynthetic organelle, from which intermediates provide the building blocks for
protein, nucleic acid and lipid synthesis. The KEAP1-NRF2 pathway is shown to be activated by KEAP1 inactivation by ROS, which is a key metabolic by-product. The
overarching use of oxygen is depicted with the generation of heat and ROS.
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features [10]. The resting cell could be regarded as a bio-

reactor that maintains its structure and avoids entropy, as

discussed by Erwin Schrödinger in his monograph, ‘What

is Life?’ [11]. Metabolism, which is mediated by cellular

nutrient import to generate energy and building blocks,

replenishes damaged molecules and organelles to prevent

entropic cellular decay (figure 1). The nutrients include glu-

cose, glutamine, other amino acids, fatty acids and acetate

[12,13]. All of these nutrients are processed through the

Krebs or tricarboxylic acid (TCA) cycle to produce ATP,

NADPH, lipids, nucleic acids and proteins. It is estimated

that the bulk of ATP is used to maintain membrane potentials

and for protein synthesis [14,15]. A cell that is stimulated to

proliferate uses nutrients to produce ATP, NADPH for reduc-

tive biosynthesis and building blocks to make a copy of itself.

Resting cells tend to use oxidative phosphorylation, which

efficiently oxidizes acetyl-CoA for ATP production. In many

instances, resting cells can use fatty acids which are the richest

energetic nutrients that can provide up to 129 ATP molecules

per molecule of palmitate (e.g. [16]). The TCA cycle comprises

a series of reactions that oxidize acetyl-CoA through several

dehydrogenases that are coupled with the conversion of

NADþ to NADH, which store high energy electrons [16].

These electrons are channelled through the electron transport

chain in mitochondria to create a proton gradient across the

inner mitochondrial membrane that drives a chemical energy

gradient to generate ATP from ADP.
The canonical replicating cell uses both glucose and glu-

tamine as major nutrients. Glucose is a vital nutrient through

which plants store sunlight energy and animals use as a central

bioenergetic currency that is regulated by a sophisticated

hormonal system, balanced by insulin and glucagon [16].

Glucose imported into cells is subsequently converted via gly-

colysis to pyruvate. Pyruvate is a vital metabolite central to

several pathways that produce alanine through trans-

amination, lactate through reduction, oxaloacetate through

carboxylation or acetyl-CoA through dehydrogenation. Pyru-

vate could be oxidized to acetyl-CoA by growing cells or

used to regenerate NADþ from NADH through its conversion

to lactate.

Glutamine is another critical nutrient for growing cells,

which import glutamine and convert it to glutamate by glu-

taminase [17–20]. Glutamate is converted by either glutamate

dehydrogenase or transaminases to a-ketoglutarate, which

is further oxidized in the TCA cycle as described above.

Glutamine circulates at the highest concentration (0.5 mM)

among amino acids in humans, and glucose level is tightly

controlled by hormones, such that our cells as constantly

bathed in these energy sources [21]. However, normal cells

do not proliferate upon exposure to glucose or glutamine,

as does the unicellular yeast cell, but rather they require an

additional signal—growth factors that engage receptors

(figure 1). Upon activation of a growth factor receptor,

signal transduction pathways activate mTOR to sustain the
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post-translational signalling of growth by increasing protein

synthesis. Signalling pathways also activate transcriptional

programmes in the nucleus, which produce mRNAs that

are essential for ribosome biogenesis, protein, nucleic acid,

lipid and carbohydrate synthesis [13,22,23]. In essence, the

stimulated cell is a biochemical reaction vessel that drives

nutrients into the vessel or cell for the production of daughter

cells with high-fidelity replicated genomes, consuming

oxygen and producing heat and ROS (figure 1).

Metabolic processes of a growing cell generate by-products

that could be toxic to cells, and hence systems to neutralize

these toxins have evolved. Lactic acid is exported by monocarb-

oxylate transporters, while carbon dioxide can be eliminated

by carbonic anhydrase [24–27]. ROS, which can be highly

toxic, are neutralized acutely by glutathione or peroxiredoxins

and subacutely by an anti-oxidant transcriptional response

through the KEAP1-NRF2 system [28,29]. KEAP1, an inhibitor

of NRF2, has uniquely sensitive sulfhydryl groups that can be

oxidized by ROS, rendering KEAP1 inactive. Inactivation of

KEAP1 by ROS activates NRF2 (figure 1). NRF2 is a transcrip-

tional factor that induces the transcription of genes for the

production of ROS-neutralizing enzymes such as superoxide

dismutase, which converts superoxide to hydrogen peroxide,

or catalase, which converts hydrogen peroxide to oxygen and

water. Thus, growing cells need anti-oxidant mechanisms to

protect them from the toxic and mutagenic effects of ROS.

During development and in normal adult tissues, there are

anatomical regions within tissues that have diminished oxygen

levels or hypoxia, which reprogrammes cellular metabolism

through the hypoxia-inducible factors (HIFs) [30–33]. HIF-1 is

documented to transcriptionally activate genes involved in

glycolysis or the conversion of glucose to pyruvate and sub-

sequently to lactate through lactate dehydrogenase (figure 1).

HIF-1 also increases the importation of glucose by driving the

expression of glucose transporters. With oxygen deprivation, pyr-

uvate is diverted away from acetyl-CoA or the TCA cycle through

induction of pyruvate dehydrogenase kinase by HIF-1 and

shunted to lactate through activation of lactate dehydrogenase

A by HIF-1. In this manner, hypoxic cells can survive by means

of anaerobic glycolysis. Recent studies have also revealed that

certain cells can backfill the hypoxic TCA cycle with glutamine-

derived TCA cycle intermediates to enable cellular survival.

Studies of basic cell metabolism have taught us the general

lessons that resting cells tend to use oxidative phosphorylation,

whereas proliferating cells use both oxidative phosphoryl-

ation and aerobic glycolysis for the conversion of glucose and

glutamine to ATP and the metabolic intermediates required

for building key components of a cell. Production of ROS by

the mitochondria, peroxisomes and also from the NADPH

oxidases generates mutagens that could have driven genomic

diversity during evolution over the past billion years. Indeed,

the acquisition of mitochondria through endosymbiosis is

believed to have been pivotal for the evolution of complex

organisms, which presumably have arisen from rapid genomic

diversity through bioenergetics, mutations and subsequent

natural selection [34,35]. In similar fashion, cancer can result

from endogenous mechanisms of mutagenesis via ROS that

can activate oncogenes and cause the loss of tumour suppres-

sors. Thus, metabolism appears to be able to cause

mutations, driving the development and evolution of cancer.

The supposition that metabolism can cause cancer is further

underscored by studies of familial cancer syndromes that are

linked to mutations in metabolic enzymes [36,37]. Mutations
in succinate dehydrogenase (SDH) subunits are linked to

familial syndromes of paraganglioma or pheochromocytoma.

Fumarate hydratase (FH) mutations are associated with herit-

able predisposition to leiomyoma, leiomyosarcoma or renal

cell carcinoma. More recently, somatic mutations of isocitrate

dehydrogenase 1 or 2 have been found frequently in gliomas,

acute myelogenous leukaemia, angioimmunoblastic lym-

phoma and chondrosarcoma [38]. These mutations occur in

enzymes that are either upstream (isocitrate dehydrogenase 2,

IDH2) or downstream (SDH or FH) of the key TCA cycle metab-

olite a-ketoglutarate, which also serves as a cofactor for many

dioxygenases. In the case of IDH, the mutant neo-enzyme con-

verts a-ketoglutarate to 2-hydroxyglutarate, which can inhibit

dioxygenases. With SDH or FH mutations, the accumulation of

succinate or fumarate, respectively, can also inhibit dioxygenase

activities. These dioxygenases included the prolyl hydroxylase

domain (PHD) enzymes, which mediate HIF degradation,

and oxygenases that are involved in epigenetic regulation via

their DNA (TET) or histone ( jumonji proteins) demethylase

activities [39,40]. In this regard, it has been documented

that acute myeloid leukaemia (AML) or glioma tumours with

IDH mutations tend to cluster into groups with distinct

genome-wide methylation patterns [38,41]. These observations

suggest that these mutations alter metabolism, which in turn

changes the epigenome that predisposes to tumorigenesis. As

such, mutations in metabolic enzymes provide evidence for

metabolism as a cause of cancer.

Another factor that contributes to tumorigenesis is inflam-

mation which results from injury or infectious agents [42].

In this regard, it is notable that many of the more common can-

cers are associated with organs with more immediate exposure

to the external world, such as the lung, breast, prostate and gas-

trointestinal tract. In fact, the gastrointestinal tract, which has

its own immune defence hubs or Peyer’s patches comprising

lymphoid cells, is teaming with the gut microbiota, which is

emerging as a key factor in health and disease, particularly

cancer [43]. The gut microbiota and its metabolism are docu-

mented to contribute to disease, such as the association of a

pro-atherogenic compound, trimethylamine-N-oxide, with

cardiovascular disease. It is probable that inflammatory metab-

olites from the microbiota stemming from short chain fatty

acids could well contribute to tumorigenesis. Thus, whether

the microbiota plays a role in Peto’s paradox is unknown, but

it is a factor that should be considered.

3. Metabolism and cancer rates in animals
If metabolism can drive tumorigenesis through ROS and

imbalances in metabolites such as nucleotide pools, then

the rate of metabolism could correlate with the rate of cancers

among animals of different sizes. The correlation between

animal size and cancer rates, particularly for large animals,

has not been solidly established as studies among very

large animals are very limited [7,8]. For example, it is cited

in the literature that whales and elephants rarely are found

with cancers, whereas feral mice have lifetime cancer rates

of up to 50%, but the primary literature supporting this

cannot be easily found. A comprehensive review on marine

mammal cancers cited studies with relatively significant

numbers of necropsies, and the data suggest that whales

have much lower cancer rates relative to smaller mammals,

such as the sea lion [44]. An inspection of a worldwide data-

base of over 15 000 wild or captured elephants appears to
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support the claims of Peto’s paradox. Of the 616 deceased

elephants in this database (http://www.elephant.se), 18

(approx. 3%) are documented to be associated with cancer;

however, these numbers do not provide a lifetime rate of

cancers. Nonetheless, these data suggest that elephants do

not often die because of cancers, compared with 12.5% of

human deaths attributable to cancer among all causes. Natu-

ral murine deaths with aging have been documented for a

group of over 2000 animals, of which about 50% succumbed

to cancer by 800 days of age [45]. These observations appear

to support but do not prove the general contention of

Peto’s paradox.

If one were to assume that it is true that larger animals

have relatively lower rates of cancer burden compared with

smaller mammals, could metabolic rates that scale with

body size be associated with the propensity for tumorigen-

esis? The correlation of animal body size with basal

metabolic rates has been recognized for many decades, start-

ing with the observations of Max Klieber in the 1930s which

document a relationship between animal body mass and the

amount of heat production per day [46] who found that body

mass best correlated with 3/4 power of whole body basal

metabolic rate (B) (B ¼M3/4; where M is body mass). This

power law is known as Klieber’s law, which has been a

matter of debate regarding the exact magnitude of that

power; i.e. 2/3 versus 3/4. It had been argued that basal

metabolic rate relates to heat loss through body surface

area, which would be more closely aligned with the 2/3

power. An updated examination of extant data suggests

that the power function is closer to 3/4 than 2/3, although

there is significant variability in subgroups of mammals. It

is notable that mass-specific metabolic rate B0 is defined as

B/M and reflects metabolic rates normalized to tissue mass,

such that B0 ¼M21/4 (figure 2): when plotted as logB0

versus logM, the slope (approx. 21/4) is the exponent.

From a biological perspective, this power function is observ-

able from the significantly higher metabolic rates of mice,

whose rates are orders of magnitude higher than that of ele-

phants [47]. Further, this is reflected in the significantly

different amounts of food consumption in mice (approx.

20% body mass of food per day) compared with elephants

(approx. 5% body mass per day). Specifically, Klieber esti-

mated that one steer weighing the same as 300 rabbits
would take 120 days to eat 1 ton of hay, while 300 rabbits

would finish 1 ton of hay in 30 days [48]. What hypothesis

then would account for the power function relating B or B0

to M?

A theoretical basis for the 3/4 power law function was

proposed by West, Brown and Enquist (WBE), who focused

on nutrient delivery through the geometry of the circulatory

system as the cause of the power law [49–52] (figure 3a). In

essence, these researchers investigated a theoretical model

(termed the WBE model) of the circulatory system, which

resembles a fractal network originating from the central

aorta branching all the way down to the end capillaries. If

one assumes that the branching pattern is repeated from

aorta to capillaries, then the end capillary density in this

model would predict the rate of perfusion of nutrients to

cells, which determines metabolic rate. This model predicts

that the larger the animal, the sparser is the capillary density

in tissues. The larger inter-capillary distance is thought to

cause decreased delivery of nutrients and a steeper oxygen

gradient from blood vessels, causing decreased respiration

and oxidative phosphorylation, and culminating in dimin-

ished specific metabolic rates (figure 3a). Intriguingly, this

theoretical framework resulted in a 3/4 power function

relation between M and B. This theory does not account for

the variation in the power function (2/3 to 1) and assumes

a cell-independent cause for the power relation based

solely on nutrient delivery that depends on the fractal

geometry of the circulatory system. In fact, a closer examina-

tion of the extant data reveals a curvature of the relation

between logB and logM, which is not strictly linear and

does not fit the WBE model [53]. Modifications of the WBE

model, however, could improve the theoretical model fit

with empirical data. This work suggests that the general con-

cept of nutrient resource distribution could provide the

mechanistic underpinning for the scaling of metabolic rates

with body mass.

Although the WBE theoretical framework appears

compelling and fits the observed power law function of

B ¼M3/4, the evidence for alterations in capillary density as

a function of animal body size is not well documented.

In fact, examination of the literature on capillary density in

key muscle tissues does not fully support this contention

[54]. Schmidt-Nielsen & Pennycuik [55] compared the capil-

lary density across 10 mammals by studying masseter and

gastrocnemius muscles. While the smallest of mammals

appear to have some of the highest capillary densities, such

as those found in bat and mouse, capillary density does not

scale monotonically over larger animals. It appears that

other factors, such as the type of muscle, activity and cold

acclimation, may play a significant role in determining capil-

lary density. Activity appears to be a key factor in capillary

density and perfusion, as capillary blood transit time

(a measure of tissue perfusion) correlates with muscle mito-

chondrial density and intrinsic activity of specific animals. For

example, the dog body mass is roughly equivalent to those of

goats, but goats being less active have a twofold lower mito-

chondrial volume density. Another study by Kayar et al. [56]

examined capillary and mitochondrial volume density in

muscles of five mammals with body masses ranging from 3

to 447 kg. Capillary density did not scale with body mass,

and the mitochondrial density appears highest in the most

active animals, correlating with muscle–mass-specific maximal

oxygen consumption. However, body mass scales best with

http://www.elephant.se


capillary

tissue(a)

(b)

M increases

nutrient
storage surface

body mass

(c)

~

M increases

M increases

nutrient energy

T

specific heat

Figure 3. Metabolic theories for Kleiber’s law B ¼ M3/4. (a) The WBE model assumes that metabolic rates are determined by the geometry of the nutrient delivery,
which is modelled as a fractal with more sequential branchings of the vasculature in larger animals (a, left diagram). Higher branching results in larger distances
between capillaries that lead to decreased metabolism and perfusion to more hypoxic (blue areas in the right diagram) tissues in larger animals. (b) The DEB model
is based on the concept that metabolic rates depend on access to energy depot, which is assumed to be related to body surface area. With the DEB theory, the body
mass is related to metabolic rate with a 2/3 power function that approaches the 3/4 power as body mass approaches infinity. (c) The quantum metabolism theory is
based on the concept that bioenergetic (mitochondrial) membranes store energy as coupled oscillators (conceptually depicted by the wavy membrane) whose
energy output depends on the nutrient delivery rate and the enzymatic oscillatory cycle time. The model relies (depicted as �) on the theoretical foundation
of Einstein – Debye to derive the relation between temperature (T ) and specific heats of solids based on quantized elastic waves of solids (illustrated on the
right). This theory accounts for the variations in the power function observed empirically.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140223

5

mean transit time for blood in muscle capillaries at maximal

aerobic exercise, suggesting that perfusion rather than capillary

density may be important for the scaling of metabolic rates with

body mass. Hence, experimental data only partially support the

WBE model at extremes of body masses, for which capillary

density correlates with body mass in one study. Although

these studies are only limited to muscle groups and did not

extend to other organs, these observations question the validity

of the elegant WBE model, which assumes a fractal branching

network of the vasculature as the basis for the power law func-

tion relation between B and M. Elegance of a theory, therefore,

may not reflect reality.

In contrast to the WBE model, the dynamic energy budget

(DEB) theory suggests that scaling of energy storage depot

and body mass could underlie the scaling relationship of

B ¼M3/4 [54,57–59] (figure 3b). This model assumes that

animal energy storage depot scales with surface area, because

it is the surface area of depot that would be available for

organisms to access stored nutrients. Access to the energy is

assumed to drive the metabolic rate, particularly since ani-

mals have prolonged non-feeding periods and hence

depend on stored energy. This assumption leads to scaling

of the depot surface to body mass with a 2/3 power, but

when body mass approaches infinity the exponent

approaches the Kleiber power of 3/4. Experimental data to

support the DEB theory are sparse; however, if one assumes

that small intestine surface area is representative of surface

area of nutrient depot, then a 2/3 power function relating

to body mass is found [54].
Another theory, termed quantum metabolism, focuses on

the presumed quantum behaviour of cell-dependent mem-

brane bioenergetics properties as the basis for the power

law [60,61] (figure 3c). The theory is based on coupled

energy-transducing oscillator networks confined to a speci-

fied space, integrating chemi-osmosis and the quantum

thermal properties of solids. Demetrius proposed that bioe-

nergetic membranes, such as those of the mitochondrion

(figure 3c), store and generate energy in the membrane as

coupled molecular oscillators. These confined oscillators

resemble the coupled molecular vibrations of solids, whose ther-

mal properties could be derived by treating the coupled

oscillations as quantized elastic waves according to the Ein-

stein–Debye derivation of the heat properties of solids. The

specific heat of solids, for example, could be related to absolute

temperature. Further, the quantum metabolism theory accounts

for the enzymatic turnover or cycle time of the membrane-bound

respiratory chain that stores and produces energy as a function of

the time of nutrient flow. A scaling law relating body mass and

metabolic rate with a power of 3/4 was hence found when the

dimensionality (3D) of physical space and the mean oscillatory

cycle time in mammals were included. A change in dimension-

ality can alter the power exponent, varying from allometric

(less than unity) to isometric (unity).

Some cell-dependent factor could then theoretically con-

tribute to the curvature of the logB0 versus logM function

(figure 2). The quantum metabolism model suggests a cell-

dependent component and contrasts with the other models

that focus primarily on energy supply. Experimental data
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supporting cell-dependent differences appear conflicting. In

one study of isolated liver cells from mammals with body

masses varying from 0.02 g to 200 kg, the oxygen consump-

tion rates of hepatocytes appear to vary, with the highest

rates being found in smaller animals [62]. In fact, electron

micrographs indicate that there are fewer mitochondria in

cells of a larger animal compared with a smaller one, but

mitochondrial density could not fully account for the differ-

ences in cellular metabolic rates. While these observations

support the quantum metabolism theory, other studies of pri-

mary skin fibroblasts and skeletal muscle from various

mammals did not reveal the scaling with body mass that

was seen in liver cells [63,64]. It is notable, however, that

skin cells could use oxygen directly from the air rather than

from the circulation, but whether this accounts for the differ-

ences between skin versus liver cells is unknown. Another

study of muscle enzymes suggests that oxidative enzymes

scale inversely with body mass, whereas glycolytic enzyme

activities scale proportionally with body mass [65]. The scaling

of enzymes suggests cellular adaptation to nutrient delivery

according to the WBE model, but supports the idea of a cell-

dependent basis for metabolic scaling according to the quan-

tum metabolism theory. Overall, the extant evidence points

to detectable scaling of cell-dependent metabolic rates with

body mass. However, given the uncertainties and differences

in observations, further experimentation is necessary to deter-

mine whether there are true cell-dependent differences in

metabolic rates as a function of body size.

Although the exact underlying mechanistic basis for the

observe power law function is unknown experimentally,

these three theoretical frameworks are based on metabolic

concepts and provide putative insights into mechanisms.

Empirically, it has been observed that mammalian sleep

time scales with body mass, particularly for herbivores [66].

Brain-specific metabolic rates scale inversely with body

mass. As such, the size of the brain, which consumes signifi-

cant energy in proportion to body mass, is also inversely

related to sleep time, such that smaller animals sleep much

longer than larger ones. The vole, for example sleeps on

average approximately 12 h d21 versus the elephant that

sleeps about 4 h d21. Experiments with sleep deprivation in

the rat documented ROS-induced damage to brain cells, indi-

cating that sleep is required to diminish metabolism and

allow time for repair [67,68]. Hence, it appears that higher

metabolic rates in the brain are associated with longer

periods of sleep to repair ROS-induced damage incurred by

the biochemical stress of waking metabolism. Recently, it

was documented that sleep is associated with a 60% increase

in the brain interstitial space allowing for convection of cere-

brospinal fluid (CSF) and interstitial fluid to clear neurotoxic

metabolites that presumably accumulated during waking

time [69]. This study is corroborated by a human sleep depri-

vation study of CSF levels of amyloid protein, revealing that

sleep-deprived normal subjects have higher levels of amyloid

protein in their CSF [70]. These observations collectively

account for an inverse relationship between body mass and

sleep time, and further support the idea the higher metabolic

rates are associated with higher ROS and metabolic stress that

can lead to tumorigenesis.

Based on concepts similar to the WBE model for

whole body metabolic rates, Herman et al. [71] proposed a

quantitative theory of solid tumour growth, vascularization

and metabolism. One conclusion drawn from this theory is
that in a mouse host human and mouse tumours are

expected to grow at similar rates, in contrast to markedly

slower tumour growth rates in humans, which have slower

nutrient perfusion rates through the cancer tissue. This

theory also accounts for Peto’s paradox, arguing that the

power density driving mutagenic biochemical reactions

(such as ROS production) within a cell scales as Bc � M21/

4. Hence, overall cancer incidence would scale as M21/4

logM, which is dominated by M21/4. This would then lead

to the prediction that cancer incidence scales inversely to

maximum lifespan, which scales approximately as body

size to the 1/4 power (M1/4). Thus, smaller animals would

be expected to have a greater incidence of cancer than

larger mammals.
4. Metabolism, ageing and tumorigenesis
Although no specific experiments could be designed to test

directly the hypothesis that Peto’s paradox is based on

scaling of metabolic rates as a function of body mass, experi-

ments that have been performed to slow down metabolism

appear to provide some supportive evidence for a role of

metabolism in tumorigenesis. In fact, processes that curb

metabolism appear to prolong the lifespan of experimental

animals and diminish cancer incidence [72]. Caloric restric-

tion from yeast to mice has been clearly linked to

prolongation of lifespan and decreased tumorigenesis in cer-

tain cancer models [73]. Although the basis for the effects of

caloric restriction in cancer is complex, an effect on cellular

metabolism has been implicated. Inhibition of mTOR through

the use of rapamycin or genetic deletion is associated with

prolonged lifespan in mice [74,75]. It stands to reason that

since mTOR is essential for anabolic metabolism, diminished

mTOR signalling would decrease cellular energy expenditure

and tumorigenesis [75]. Indeed, genetic knockout of

mTOR is associated with decreased formation of spontaneous

cancers in mice [74]. Similarly, rapamycin also diminishes

spontaneous tumorigenesis [76]. Presumably, decreased ener-

getic demands for cell growth through mTOR inhibition

should also decrease demands on mitochondrial output. As

such, diminished mitochondrial activity would be expected

to prolong survival and decrease tumorigenesis. The anti-dia-

betic drug metformin is an inhibitor of mitochondrial activity

via inhibiting mitochondrial respiratory complex I. It has

been observed that metformin can prolong the lifespan of

mice and reduce both spontaneous and genetically engineered

cancers in mice [77,78]. These observations, collectively,

suggest that diminished mitochondrial output or function

can prolong lifespan and reduce tumorigenesis. Although

these studies do not address Peto’s paradox directly, the fact

that diminished metabolism protects again tumorigenesis

is consistent with a role of metabolism in the rate of cancer

incidence in animals.
5. Concluding remarks
In this essay, fundamental aspects of cancer cell metabolism

are reviewed and evidence in support of a metabolic basis

for Peto’s paradox is discussed. There is compelling evidence

that metabolic rates (B) scale with body mass (M ) in mam-

mals with an approximate power function: B ¼M3/4 (or

lnB0 ¼ lnM21/4), for which theoretical models have been
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proposed that derive this power function from metabolic

concepts that pertain to variations dictated by animal body

size. The relationship between metabolic rates and cancer

incidence appears to be supported by evidence that suggests

metabolism drives tumorigenesis, which could be curbed by

decreased metabolic demands through treatment of animals

with mTOR inhibitors or by inhibition of mitochondrial res-

piration. Collectively, this body of evidence supports the
hypothesis that metabolism is a vital factor in Peto’s

paradox.
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