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INTRODUCTION
The explosion of genome-wide association studies (GWAS) for 
diseases and for quantitative traits has generated a surprising 
and, to some, disappointing result: even with many associated 
genomic variants and even for conditions long known to have 
high “heritability”, the population attributable risk accounted 
for by the variants identified thus far is very small, typically 
less than 10% (Omenn, 2010a; Thomas, 2010a, b). What could 
be the explanations?

The “missing heritability” is widely called the “dark mat-
ter” to connote our current lack of understanding and the 
relatively vague notion of what “heritable” factors might be 
responsible. For such conditions as diabetes, high blood pres-
sure, high cholesterol values, obesity, or height, we know 
from epidemiological risk factor studies and from clinical 
management of patients that dietary and behavioral factors 
play on the inherited substrate to create the phenotypes. It 
is important to remember that, in the calculation of heritabil-
ity, h2 = genetic components (G) + gene–environment inter-
actions (G × E), so that gene–environment interactions are 
“counted” as part of the heritable fraction of variation (Vogel 
and Motulsky, 1997). Endogenous but non-genetic factors, like 
hormone levels, pathways of inflammation, and neural sig-
naling, and the enormous microbiome, interact with genetic 

variation. The broader environmental landscape of physical, 
chemical, and infectious exposures, the built environment, 
and social interactions surely must be considered as well. In 
addition, there are gene–gene interactions, transmitted epi-
genomic marks, copy-number variants, and alternative splicing 
events that must be considered in any models of heritability.

Another difficulty in the interpretation of GWAS for most 
diseases or traits is the fact that most genomic variants tested 
in such studies do not occur in the protein-coding regions of 
the genome. That should not be a surprise either, since only 
1.2% of the genome accounts for the estimated 20,000 genes 
that code for proteins. The rest of the genome offers many 
possibilities of gene regulatory mechanisms, including pro-
moter regions, enhancers, small RNAs, transposons, and even 
endogenous retroviral sequences. Figure 4.1 shows a scheme 
from the University of Michigan-based National Center for 
Integrative Biomedical Informatics for exploiting multi-level 
’omics datasets about the genome, gene regulation, and gene, 
protein, and metabolite expression that reflect interactions 
with external variables to produce various phenotypes. The 
small yield of variants occurring in protein-coding regions, let 
alone producing non-synonymous, function-changing muta-
tions in those proteins, limits the interpretation of the func-
tional consequences of these variants using bioinformatics 
and data mining techniques.
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ECO-GENETICS
“Eco-genetics” is the term introduced by Brewer (1971) 
and carried forward by Motulsky and Omenn (Omenn and 
Motulsky, 1978) and many others to denote the interactions of 
genes with many categories of environmental factors, as out-
lined in Table 4.1. There are numerous examples in each cat-
egory, some of which will be highlighted in this chapter.

As noted by Olden in the first edition of this book (Olden, 
2009), the concept of gene–environment interactions dates 
back more than a century to Archibald Garrod’s report of 
the first inborn errors of metabolism and his prediction that 
individuals would vary in their responses to diet and drugs 
(Garrod, 1902). In the 1950s, Motulsky, Kalow, Lehman, 
and Vogel recognized the importance of genetic variation 
in metabolism of drugs and target-based responses to drug 
action, and introduced the term “pharmacogenetics.” Studies 
of monozygotic versus dizygotic twins showed striking herit-
ability for rates of drug metabolism involving diverse drugs 

(Vesell, 1991). Now there are chips with probes for polymor-
phisms of the cytochrome P450 xenobiotic metabolizing 
enzymes and for other drug-metabolizing enzymes, which can 
be useful in choosing initial doses and modulating doses of 
the relevant drugs (see Chapter 31). Under Olden’s leadership 

T a b l e  4 . 1  Eco-genetics: categories of environmental 
agents with known inherited predispositions
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in the 1990s, the National Institute for Environmental Health 
Sciences (NIEHS) of the US National Institutes of Health 
embarked upon the Environmental Genome Project and estab-
lished the Center for Toxicogenomics.

METHODS TO STUDY G × E 
INTERACTIONS
Thomas has thoroughly reviewed a broad range of study 
designs for G × E interaction protocols (Thomas, 2010a, b), 
updating earlier methods reviews (Kraft and Hunter, 2005; 
Yang and Khoury, 1997). Among the standard case-control, 
cohort, nested case-control, and case-cohort epidemiologi-
cal study designs, cohort studies have the desirable feature of 
longitudinal exposure data collection. Counter-matching and 
two-phase designs permit stratification jointly on disease and 
exposure status, based on sampling probabilities. A variant 
that counter-matches each case with three controls on sur-
rogates for both exposure and genotype can be substantially 
more efficient than counter-matching only on exposure, only on 
genotype, or neither. Family-based designs, including case and 
parents triads, generate a higher proportion of genotype-con-
cordant, exposure-discordant case-control pairs than in usual 
case-control series. Mendelian randomization separately tests 
the associations of an environmentally modifiable intermediate 
variable and a disease with a gene that appears to influence it. 
For example, the gene MTHFR governs a critical step in folate 
metabolism; the genotype acts as an instrumental variable 
under the assumption that the gene has no effect on the dis-
ease independent of the intermediate phenotype (the enzyme 
activity). Emerging methods focus on multiple genes and mul-
tiple environmental factors related to biomarkers, pathways, 
modules, and functional systems. Hierarchical Bayes modeling is 
well suited to these studies. Applications include the WECARE 
study of radiotherapy-associated risk of second breast cancers 
in relation to DNA damage response pathways, and colon can-
cer candidate gene studies in relation to folate.

Challenge studies in exposure chambers are feasible to 
study some kinds of environmental exposures. For exam-
ple, atopic individuals have been studied for effects of diesel 
exhaust particles and allergens on immunologic markers, using 
a double-blind factorial randomized crossover design; individ-
uals with either GSTM1 null or GSTP I105 genotype had higher 
IgE levels in response to either exposure, and still higher lev-
els if they had both genotypes (Gilliland et al., 2004). Ancillary 
studies in randomized clinical trials can be efficient designs 
as well, since both treatment and genotype are randomly 
assigned. Subsets can be genotyped based on their treatments 
or outcomes, or can be selected for biomarker measurements 
based on treatment and genotype.

Exposure assessment is critical to G × E studies, as it is for 
environmental epidemiology generally. Exposure variables are 
often complex, with continuous scales of measurement that 

are time-dependent, multidimensional, spatially correlated, 
and sometimes available only at an aggregate level, as with 
ambient air pollutants. With ambient measurements, expo-
sure doses for individuals must be imputed or predicted with 
models using time–activity and dispersion patterns, potential 
chemical modifications, subsample data, and transport and 
fate mapping. Much larger samples are required for inter-
actions than for detection of main effects, typically at least 
four times larger (Thomas, 2010b). Measurement errors and 
uncertainties of exposure estimates put conclusions about 
G × E interactions at risk. Another complication is the use of 
individual single nucleotide polymorphisms (SNPs), because 
individual genes often have multiple variants. Thus, haplotype 
analysis is more reliable and more efficient.

Genetic, environmental, and behavioral variables jointly 
influence the risks of many diseases and traits. It is hard 
enough to discover, confirm, validate, and generalize across 
populations robust single-factor disease associations. Dose–
response relationships for genotypes and especially for 
environmental exposures are critical to obtaining credible 
evidence.

In quantitative terms, two or more different risk factors 
(genetic or non-genetic) can appear to interact in several ways:

l They may each give statistically and clinically significant 
increases in risk of onset (or severity of progression) of 
the disease; the effects of the interaction between fac-
tors a and b may then be additive (a + b) or synergistic 
(>>a + b), as, for example, in the case of cigarette smok-
ing and occupational asbestos exposure in causing lung 
cancers.

l Neither of the risk factors may be detectable as increasing 
incidence rates for the disease, but the two together may 
do so, as in the case of red meat and NAT2 (see later).

l One of the factors may be predisposing silently, while the 
other may increase the risk, as with alcohol or smoking.

NUTRIGENOMICS
It is obvious to laypeople that individuals differ in their met-
abolic and behavioral responses to the same or similar diet 
(Simopoulos, 2010). GWAS have been performed for type 
1 and type 2 diabetes and cardiovascular disorders, and for 
quantitative traits like stature, blood pressure, blood glucose, 
and blood lipid levels. In general, dietary and nutrient informa-
tion is not collected in these studies despite the high probabil-
ity that diet is influential in these complex diseases. Similarly, 
G × E interactions are typically ignored in official recommen-
dations of daily requirements for nutrients, individual medical 
evaluations, and public health campaigns. For example, gen-
eral guidance to increase the polyunsaturated content of the 
diet to decrease plasma cholesterol levels and coronary heart 
disease risk may not be appropriate for women with the APOE 
E3/E2 phenotype. Increasing omega-3 fatty acids (EPA, DHA) 
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and decreasing omega-6 fatty acids (arachidonic acid) may be 
protective against coronary heart disease and prostate can-
cers, interacting with the 5-lipoxygenase promoter polymor-
phism and with COX2 variants, respectively. Intensive exercise, 
nutrition, and lifestyle changes can modify gene expression 
patterns, so it would be wise to analyze both gene expres-
sion and SNPs or haplotypes. The gene FTO (Cecil et al., 2008) 
affects adipose tissue mass, increases body mass index, and 
thus predisposes to higher diabetes risk.

During human evolution, drastic changes in the diets of 
most people have altered seven critical nutritional character-
istics of ancient diets: glycemic load, fatty acid composition, 
macronutrient composition, micronutrient density, acid–base 
balance, sodium–potassium ratio, and fiber content (Cordain 
et al., 2005). Most of the food types that dominate present 
diets were introduced only recently: dairy products, cereal 
grains, refined sugars, alcoholic beverages, salt, refined veg-
etable oils low in omega-3 and high in omega-6, and mam-
malian red meats rich in omega-6. These foods displaced wild 
plant and animal foods of our predecessors, and contribute 
to obesity, diabetes, atherosclerosis, high blood pressure, 
dyslipidemias, osteoporosis, bowel disorders, inflammatory 
and autoimmune diseases, and several cancers. All of these 
diseases are rare among hunter-gatherers even today; most 
are associated with insulin resistance. Presumably, natural 
selection over many generations acted upon numerous gene 
variants available in our genome. The most studied G × E 
nutritional relationship involves evolution of the persistence 
of intestinal lactase activity, facilitating tolerance for lac-
tose ingestion (from milk) after the time of weaning (Omenn, 
2010a; Simopoulos, 2010).

PATHOGENS AND HOST 
SUSCEPTIBILITY OR RESISTANCE GENE 
VARIANTS
Studies of infections reveal many host–pathogen interac-
tions, with genetic variation in both the host and the pathogen 
genomes (Garantziotis and Schwartz, 2010). Many susceptibil-
ity genes are part of the innate or adaptive immune systems. 
The innate immune system notably recognizes common, con-
served microbial antigens, now called pathogen-associated 
molecular patterns (PAMPs) through toll-like receptors. The 
TLR2 receptor recognizes lipoteichoic acid and peptidogly-
cans on Gram-positive bacterial or fungal walls, while TLR4 
recognizes endotoxins in Gram-negative walls. G × E studies 
have had practical value in diagnosis, epidemiological surveil-
lance, and targeted therapies of multiple infectious diseases. 
Genomics has played a critical role in understanding the evo-
lution and pathogenicity of antigenic variation of influenza 
strains, origins of HIV/AIDS retroviruses, transmission of severe 
acute respiratory syndrome (SARS) (and other viruses) from 
animals to humans, spread of drug-resistant tuberculosis, and 

highly differential susceptibility to the vivax form of malaria 
(Omenn, 2010b). Hyporesponsive TLR4 polymorphisms and a 
CD14 SNP associated with higher circulating levels of CD14 are 
associated with increased mortality from sepsis in adults and 
from respiratory syncytial virus (RSV) in high-risk infants due to 
prematurity or congenital heart disease. SNPs in the vitamin D 
receptor gene VDR are associated with increased susceptibil-
ity to severe RSV and tuberculosis (TB). Conversely, an S180L 
TIRAP polymorphism is associated with reduced response to 
TLR2 and TLR4 activation in vitro and risk for developing TB. 
As more is learned about predisposition or resistance to infec-
tions, screening of potentially or definitely exposed animal-care 
and healthcare workers may be an important application.

The coagulation system is important in responses to infec-
tions. Plasminogen activator inhibitor (PAI-1) polymorphisms 
can increase or decrease susceptibility to community-acquired 
pneumonias (CAP) and to invasive aspergillosis in immune-
compromised patients. SNPs in the heat shock protein gene 
HSP70 and lymphotoxin alpha (LTA) or human leukocyte anti-
gen (HLA) genes have been associated with increased suscep-
tibility to severe CAP or TB. A polymorphism in the adenosine 
receptor P2X7 gene has been reported to be associated with 
dissemination of TB.

The normal lung has long been described as sterile 
(Garantziotis and Schwartz, 2010). Now genomic analysis of 
unculturable microbes shows that there is a rich ecology of 
microorganisms, whose composition changes drastically in 
the course of chronic obstructive pulmonary disease (COPD) 
(enriched for Pseudomonas).

Observant clinicians have long recognized that some 
individuals are remarkably resistant to infections despite 
extensive exposure. Resistance to infectious disease can be 
a powerful positive selection factor in the emergence of par-
ticular genotypes. Childhood survival in areas with endemic 
Plasmodium falciparum malaria is enhanced if the child carries 
a gene for hemoglobinopathies (HbS or HbC), thalassemia, or 
glucose-6-phosphate dehydrogenase deficiency, all of which 
make the erythrocyte less able to host the malaria parasite. 
Susceptibility to infection by HIV and progression to AIDS is 
another salient example. A homozygous 32-amino-acid dele-
tion in the co-receptor CCR5 renders the individuals impervi-
ous to HIV penetration of T cells to initiate the infection (Dean 
et al., 1996; Smith et al., 1997). This same deletion has been 
found in small numbers of individuals in many parts of the 
world. Multiple other gene variants are associated with faster 
or slower progression of HIV.

McNicholl and colleagues discussed host–pathogen inter-
actions for five very important pathogens and the resulting 
diseases: Mycobacterium TB, HIV-1, hepatitis B, Plasmodium, 
and Vibrio cholera (McNicholl et al., 2000). Genetic variation 
in the human genome has been emphasized above; however, 
research on the genetics of the pathogens is equally impor-
tant, especially for the design of vaccines and drugs effective 
and selective for particularly pathogenic strains.
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INHALED CHEMICAL AIR POLLUTANTS 
AND ALLERGENS AND SENSITIZING 
AGENTS
The lung is highly exposed to air pollutants from industry and 
mobile vehicles, aerosol toxins, dusts, fumes, and infectious 
agents, in numerous occupational, medical, indoor, and out-
door environments. Risks of pulmonary impairment and dis-
ease depend upon susceptibility, exposure, clearance, immune 
responses, and repair mechanisms. G × E interactions are 
important in essentially all respiratory diseases. Epidemiologic 
analyses of gene–particulate interactions can be combined 
with toxicologic assays of biological effects of particle samples 
on cell lines with the same genes modified (Thomas, 2007); 
this study of exposures to complex mixtures is an example of 
the NIEHS Genes, Environment, and Health Initiative (http://
www.gei.nih.gov).

Asthma has frequent familial occurrence and high esti-
mates of heritability. Much improved hygiene and delayed 
exposure to sensitizing agents have increased susceptibility 
over recent centuries. Striking increases in incidence, preva-
lence, and severity of asthma in recent years, especially in 
developed countries, are presumed to be due to environ-
mental exposures, ranging from mites and cockroaches to 
chemicals. Prenatal exposures to diesel exhaust particles and 
environmental tobacco smoke are associated with increased 
risk of asthma, while maternal ingestion of fruits, vegetables, 
and oily fish appears to be associated with lower risk; expo-
sure to an environment rich in microbial compounds seems 
to reduce the development of atopy and down-regulate toll-
like receptors. Genomic imprinting and immune interactions 
may account for the four-fold higher risk of mother-to-child 
transmission of atopic disease than father-to-child. At least 10 
genome-wide linkage and association studies have been com-
pleted, identifying potential associations with genes on 20 dif-
ferent chromosomes; however, the effect sizes are small, and 
few thus far have been confirmed.

In the US, the Clean Air Act requires protection of sensi-
tive subpopulations from adverse health effects of criteria air 
pollutants. For example, in setting the ambient air standard for 
photochemical smog (ozone), the US Environmental Protection 
Agency (EPA) stated that its aim was to protect subpopulations 
with asthma, emphysema, or chronic bronchitis. Asthma has a 
prevalence in the US of 22 million adults and 9 million children. 
Note that EPA did not propose to protect the much smaller (and 
unstudied) population with cystic fibrosis. EPA has issued an 
Interim Policy Guidance on Genomics (EPA, 2004). For asthma, 
predisposing gene variants have been noted in genes for IL-4, 
IL-13, TNF-alpha, β2-ADR, Fc-RI-β, and IL-4R, mediated by influ-
ences on inflammation, hyperresponsiveness to airway irritants, 
and airway constriction and obstruction. There is an association 
among asthma symptoms, exposure to cigarette smoke, and 
SNPs in the genes for the xenobiotic enzymes EPHX1, CYP1B1, 
and CYP2D6 (Kramer et al., 2006).

For COPD (emphysema and chronic bronchitis), smoking 
is the dominant risk factor in the US, while similar chemical 
exposures from stoves and open fires are more responsible 
in less developed countries. Still, many highly exposed indi-
viduals do not develop COPD, so there must be substantial 
variation in susceptibility. Outliers with very high susceptibility 
may be rare homozygotes for alpha-1 anti-trypsin deficiency; 
still, they require cigarette smoke exposure to develop severe 
emphysema. SNPs apparently predisposing to emphysema 
include inflammatory genes TNF-alpha and TGF-beta; antioxi-
dant genes GSTM1, GSTP1, and HMOX-1; and the xenobiotic 
metabolizing enzyme gene EPHX1 (Garantziotis and Schwartz, 
2010). Meanwhile, genes predisposing to nicotine/smoking 
addiction include nicotine-metabolizing P450 enzymes, nico-
tine receptors, and genes in dopamine and serotonin path-
ways. Interestingly, genes predisposing to addictive behaviors 
also increase the relevant environmental exposure.

Idiopathic pulmonary fibrosis (IPF) and interstitial lung dis-
eases constitute a highly heterogeneous group of serious lung 
disorders with highly variable prognosis; many biomarkers 
are under investigation. Familial interstitial pneumonia occurs 
in several types of interstitial lung disease, with interaction 
between cigarette smoke and several predisposing genes, such 
as ELMOD2, TERT, and TERC, surfactant proteins C and A2, and 
various chromosomal regions. Metal- and wood-dust expo-
sures can also trigger IPF.

EXAMPLES OF RISK FACTORS
Cigarette Smoking, Bladder Cancers, and 
Colorectal Cancers
One of the best-established G × E interactions involves ciga-
rette smoking and polymorphism in the N-acetyltransferase 
(NAT2) gene in predisposition to urinary bladder cancers. 
A Spanish case-control study reported a 1.6-fold interac-
tion odds ratio (OR) comparing NAT2 slow acetylators versus 
rapid or intermediate (heterozygous) acetylators, and smok-
ers versus non-smokers (Garcia-Closas et al., 1998). The slope 
of the dose–response relationship for pack-years of smoking 
was modified by NAT2 variants in an intensity-related man-
ner. Four other European case-control studies have confirmed 
this interaction, mediated by detoxification of heterocyclic and 
aryl amines in smoke (as well as in hair dyes) (Thomas, 2010b). 
NAT2 much earlier was shown to influence strongly the sus-
ceptibility to occupational beta-naphthylamine exposures in 
the dye industry in multiple countries.

A less striking interaction has been reported for colorec-
tal cancers, starting with a weak main effect of well-done red 
meat, a source of heterocyclic amines, together with the pre-
disposing gene polymorphisms low CYP1A2 and slow NAT2, 
with or without cigarette smoking, which can induce CYP1A2 
activity. An OR of 8.8 was found for those who were heaviest 
smokers and genetically susceptible, compared with never-
smokers not predisposed (Le Marchand et al., 2001).

http://www.gei.nih.gov
http://www.gei.nih.gov
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Heavy Metals
Hu and colleagues hypothesized that low-level lead exposures 
and elevated free iron levels might contribute to cognitive 
decline in older people through promotion of oxidative dam-
age. They investigated prevalent polymorphisms in the gene 
for predisposition to hemochromatosis (HFE) and iron over-
load. Higher lead levels were associated with steeper cogni-
tive decline among participants in the Normative Aging Study 
who had at least one HFE variant allele, compared with men 
with only wild-type alleles, and this was steeper with addi-
tional variant alleles (Wang et al., 2007). In the same popula-
tion, there was evidence that ALAD genotype may modify the 
effect of lead on the renal excretion of uric acid as well as on 
overall renal function among middle-aged and elderly men 
who had community (nonoccupational) exposures to lead 
(Wu et al., 2003). Cantonwine and colleagues investigated the 
role of HFE C282Y, HFE H63D, and transferrin (TF) P570S gene 
variants in modifying the association of lead and infant birth 
weight in a cohort of Mexican mother–infant pairs. Interaction 
models indicated that maternal HFE H63D variant carriers had 
a negative association between tibia lead and birth weight 
(Cantonwine et al., 2010).

Pesticides
Just as with pathogens, people differ remarkably in their sus-
ceptibility to organophosphate (OP) pesticides and even nerve 
gases such as Sarin (Costa and Eaton, 2006). About 25% of 
Asians and 10% of Caucasians have a variant of the gene that 
codes for paraoxonase (PON1), the enzyme that converts the 
OP pesticide parathion to the active neurotoxic metabolite 
paraoxon. The variant has 10-fold higher activity to detoxify 
the oxon of various OP pesticides to harmless end-metabolites 
(Costa and Furlong, 2002). This very interesting enzyme circu-
lates in the blood within particles carrying high-density lipo-
proteins, and is associated with risk of cardiovascular disease.

EPIGENOMICS AND THE 
ENVIRONMENT
Much more powerful than statistical associations are demon-
strated mechanisms. A whole new category of mechanism has 
emerged from the study of epigenetics, the analysis of numer-
ous covalent modifications in histones, the proteins in nucle-
osomes and chromatin, and methylation of cytosines in the 
DNA itself (see Chapter 1). External environmental agents can 
mediate these modifications, which control the transcriptional 
activity of specific genes, at specific points in time, in specific 
organs.

Unlike “alleles,” which are defined in a purely genetic 
sense, “epi-alleles” do not differ in genome sequence; their 
information resides in self-propagating molecular signatures 
that provide a memory of previously experienced stimuli, 
without irreversible changes in the genetic information of 

DNA. For example, the methylation pattern of six genes is 
associated with development of lung cancer (Belinsky et al., 
2006). Certain drugs can modify or reverse these modifica-
tions, opening avenues to potential therapies and chemo-
prevention (Andersen et al., 2010). For example, two DNA 
methylation inhibitors, 5-aza-deoxycytidine and 5-azacytidine, 
have been approved by the US Food and Drug Administration 
for treatment of myelodysplastic syndrome, a preleukemic 
disease. Compounds that inhibit histone deacetylase (HDACi) 
have proapoptotic and antitumor properties, and are undergo-
ing phase I trials.

As one example, Schwartz has summarized knowledge 
about epigenetics in the context of respiratory diseases, 
especially COPD and asthma (Schwartz, 2010). Epigenetic 
mechanisms have profound effects on cellular, tissue, and 
whole-organism phenotypes. Hypermethylation of CpG motifs, 
particularly at promoter and enhancer sites, silences gene 
transcription, while hypomethylation of these motifs enhances 
transcription. Histone posttranslational modifications alter 
chromatin structure. Together with non-coding RNAs and pro-
tein transcription factor binding patterns, these mechanisms 
regulate the expression of specific genes, at specific stages 
of development, and in response to specific endogenous and 
exogenous stressors. A convincing experimental demonstra-
tion of the profound effect that epigenetic mechanisms can 
have on in vivo phenotypes is the coat color of the Agouti 
mouse, with yellow governed by a transposable element and 
brown due to methylation of the gene promoter, driven by a 
diet rich in methyl donor compounds (Waterland and Jirtle, 
2003). Epigenetic mechanisms might well account for many 
of the differences between identical twins for various traits 
or diseases, especially as they age. Epigenetic marks (e.g., 
methylation sites) can persist from generation to generation, 
although the mechanisms are unclear.

In humans with obstructive lung disease, bronchial biop-
sies and alveolar macrophages in lavage fluid show increased 
histone acetyltransferase (HAT) activity and reduced his-
tone deacetylase (HDAC) activity (Cosio et al., 2004; Ito  
et al., 2005); treatment with steroids reverses this pattern and 
reduces airway inflammation. In utero supplementation with 
methyl donors alters locus-specific DNA methylation and pre-
disposes mice to allergic airway disease by directing the dif-
ferentiation of T lymphocytes, with a skewing toward a Th2 
phenotype (Hollingsworth et al., 2008). A total of 82 distinct 
loci were differentially methylated. This “epi-phenotype” could 
be reversed with demethylating agents, consistent with epige-
netic plasticity. However, before we consider restricting methyl 
groups in pregnant women’s diets based on results in mice, we 
must recognize that there is definite evidence of striking ben-
efit from folate supplementation and fortification of foods in 
preventing neural-tube-closure congenital defects.

These findings are supported by a study of a birth cohort 
of 32,077 children. Perinatal folic acid supplements were asso-
ciated with an increased risk of wheezing at 18 months of 
age (Haberg et al., 2009). Tobacco smoke is another in utero 
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exposure that is associated with childhood asthma, and can 
modify gene expression through DNA hypermethylation (Digel 
and Lubbert, 2005). In contrast, maternal exposure to a farm-
ing environment exerts a strong protective effect on asthma 
and allergy development in the offspring (Ege et al., 2008).

EFFECTS ON PROTEIN FOLDING
Protein folding is “the final step in the decoding of genetic 
information,” and prions represent what has been called “epi-
genetics in the extreme” (Halfmann and Lindquist, 2010). 
Prions exist in very different stable co-conformational states, 
and mediate inheritance of environmentally acquired traits. 
They occasionally fold into a conformation that replicates itself 
by templating the conformational conversion of other mole-
cules of the same protein. Originally conceived to explain kuru 
and “mad cow disease,” de novo prion formation proceeds 
through a high-energy oligomeric nucleus to a well-ordered 
fibrillar protein polymer, which is severed into smaller, actively 
growing pieces by protein remodeling factors such as disaggre-
gases, and disseminated to daughter cells. The switch to the 
prion state can modify cell adhesion, nutrient use, and resist-
ance to various toxins or antibiotics, with variation according 
to strain backgrounds. The response to stress constitutes an 
evolved bet-hedging strategy, allowing a fraction of cells to 
try new phenotypes that may prove beneficial and are trans-
missible and heritable. In mammals, prions may mediate 
cell-remodeling processes and memory formation. Protein 
misfolding is at the heart of major neurodegenerative diseases 
and of pro-insulin toxicity in pancreatic beta-cells.

TOXICOGENOMICS AND PREDICTIVE 
TOXICOLOGY
The National Institute for Environmental Health Sciences 
(NIEHS) in the 1990s created a Center for Toxicogenomics to 
examine the effects of environmental exposures, especially 
industrial, agricultural, and pharmaceutical chemical expo-
sures, on the genome, mRNA gene expression, and protein 
expression (toxicoproteomics) (Ramos and Olden, 2008). The 
combination is a systems and pathways approach to toxicology 
(Figure 4.1).

Most toxicologic studies are performed in experimental 
animals, especially rats and mice. A clever use of the large 
number of inbred strains of mice is the demonstration of 26 
population-wide biomarkers of acetaminophen-induced hepa-
totoxicity, in which the changes in gene expression were sig-
nificant for the treatment and the extent of necrosis, but 
not associated with any of the individual strains (Harrill et 
al., 2009). Pathway analyses showed many of the biomark-
ers were part of intracellular signaling for apoptosis. Studies 
in rats showed correlation with human toxicity reflected in 
gene-expression changes in peripheral blood cells (Bushel  

et al., 2007). The same approach has been applied to devel-
opmental toxicity (Daston and Naciff, 2010). Another approach 
is to compare profiles of differential gene expression in target 
and non-target organs, illustrated with methapyrilene (Auman  
et al., 2007).

The Comparative Toxicogenomics Database (CTD; http://
ctd.mdibl.org) is a manually curated, public resource of the 
triad of chemical–gene, chemical–disease, and gene–disease 
relationships, integrated to construct chemical–gene–disease 
networks. As of July 2010, CTD contained 1.4 million triad data 
points, and analytical tools like GeneComps and ChemComps 
to find comparable genes and chemicals that share toxico-
genomic profiles, enriched Gene Ontology terms, and Venn 
diagram tools to discover overlapping and unique attributes 
of any set of chemicals, genes, or disease, and enhance gene 
pathways data. CTD is indexed at numerous other databases, 
including PubChem, PharmGKB, UniProt, T3DB, GAD, ChemID, 
and TOXNET (Davis et al., 2011). Toxicogenomics also needs 
to be linked with databases of gene variants and eco-genetic 
relationships. Datasets from microarray and proteomics stud-
ies in various species are available at CEBS, the Chemical 
Effects in Biological Systems knowledgebase (Waters et al., 
2008) (http://cebs.niehs.nih.gov/cebs).

As part of the Gene–Environment Initiative, NIEHS has 
put a major emphasis on biosensors and other technologies 
for automated quantitative monitoring of ambient exposures 
and body burdens (Weis et al., 2005). As noted earlier, such 
improvements in exposure assessment are critical for G × E 
interactions.

WILL PERSONALIZED GENOMIC RISK 
PROFILES MOTIVATE PEOPLE TO 
ADOPT MORE HEALTHFUL BEHAVIORS?
Commercial genotyping services are becoming quite popular 
(see Chapter 6) and have attracted the attention of state-level 
and federal healthcare regulators. They will be superseded 
soon by whole-exome or whole-genome screening services 
for those willing to pay. In fact, knowing one’s genotype in 
advance before starting on a variety of important drugs with 
pharmacogenomic (PGx) variants affecting efficacy or safety 
could provide critical guidance for initial dosage and for moni-
toring for adverse effects. There is a valuable data resource 
at PharmKGB (Hansen et al., 2009). In the example of the 
blood anti-coagulant coumadin (warfarin) for heart and stroke 
patients, variants in two major genes (CYP2C9 and VKORC1) 
lead to much prolonged time until anticoagulation is in the 
effective range. Most knowledgeable physicians currently con-
tinue to administer and monitor coumadin without ordering 
the PGx tests. If the genotypes were available at the first deci-
sion point, the information would surely be used and would 
be expected to be critical in a small percentage of cases who 
are extreme outliers (Omenn, 2009). The same might be true 

http://www.ctd.mdibl.org/
http://www.ctd.mdibl.org/
http://www.cebs.niehs.nih.gov/cebs


References n  57

for the anti-clotting drug clopidogrel (plavix); known polymor-
phisms greatly affect the activity of this drug, used to prevent 
strokes and heart attacks (Hansen et al., 2009).

As promising as some of these advances are, the starting 
point for testing must be credible predictive information about 
disease risks. At present nearly all the disease-associated 
genomic variants discovered with GWAS contribute only a very 
small increased risk alone or even in aggregate. Practical pub-
lic health questions about the utility of personalized genetic 
and genomic information and the cognitive capacity of indi-
viduals and families to process and benefit from such knowl-
edge have been anticipated (McBride et al., 2010). There are 
many potential benefits: lifestyle changes that reduce disease 
risk, timely screening, improved adherence to disease preven-
tion medications or other programs, and willingness to engage 
family members in similar actions. There could be negative 
impacts, such as fatalism or reduced sense of personal control, 
although these have not been documented as yet. An excel-
lent test case might be whether evidence of genetic predis-
position to smoking and smoking-related diseases can induce 
significant behavior change to reduce risks.

FUTURE PROSPECTS: BALANCING THE 
GxE EQUATION
Discovering robust G × E interactions is a formidable chal-
lenge, and replicating or validating the findings is even harder, 
based on experience to date and methodological considera-
tions (IOM, 2012). SNPs, haplotypes, and now high-through-
put exome and whole-genome sequencing provide much 
more power on the genetic side of the equation. The 1000 
Genomes Project and other applications of new sequencing 
methods have enabled the comprehensive identification and 
mapping of common and rare variants in individual genomes. 

The map currently includes the location, allele frequency, 
and local haplotype structure of over 24 million SNPs, 1 mil-
lion short insertion–deletion polymorphisms, and thousands 
of structural variants, many of them novel. As of October 
2010, >1000 genomes have been sequenced and >95% of the 
accessible variants in any individual genome are available for 
analysis (Durbin et al., 2010). The results show that low-cover-
age sequencing of many individuals can produce highly accu-
rate individual genotypes at shared sites, demonstrate that 
the hitch-hiking effect has a marked effect on genetic variation 
around genes, and open new avenues for analysis of complex 
disease phenotypes.

Much better methods for measuring and monitoring ambi-
ent and individual exposure levels and modeling transport and 
fate are needed to enhance the environmental side of the equa-
tion. Moreover, a concerted effort is required to link monitoring 
data about air pollution, water pollution, and radon, pesticide, 
and other chemical exposures with genotyping studies. The 
Center for Disease Control and Prevention National Health and 
Nutrition Examination Study (NHANES) collects lots of expo-
sure and health status data, and assays numerous metabolites 
and chemicals in thousands of individuals; genotyping those 
selected for appropriate ancillary studies could be productive. 
The EPA and state health and environmental protection agen-
cies collect extensive monitoring data. Multiple large cohort 
studies have been launched (US Children’s Health Study; UK 
BioBank Initiative) or proposed (Collins, 2004).

Several approaches must be integrated to increase under-
standing and applications of eco-genetics: comprehensive 
genomic analyses, multimodality longitudinal characteriza-
tion of environmental stimuli and stressors, statistical and 
computational modeling of interactions, judicious use of well-
designed animal models, and linkage of datasets for genomic, 
environmental, and behavioral variables important to specific 
diseases.
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