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Using a quantum work meter to test
non-equilibrium fluctuation theorems

Federico Cerisola® 2, Yair Margalit3, Shimon Machluf4, Augusto J. Roncaglia'?,
Juan Pablo Paz'? & Ron Folman3

Work is an essential concept in classical thermodynamics, and in the quantum regime, where
the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise
isolated) quantum systems, work can be defined as a random variable, associated with the
change in the internal energy. The probability for the different values of work captures
essential information describing the behaviour of the system, both in and out of thermal
equilibrium. In fact, the work probability distribution is at the core of “fluctuation theorems” in
quantum thermodynamics. Here we present the design and implementation of a quantum
work meter operating on an ensemble of cold atoms, which are controlled by an atom
chip. Our device not only directly measures work but also directly samples its probability
distribution. We demonstrate the operation of this new tool and use it to verify the validity of
the quantum Jarzynksi identity.
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lassical fluctuation theorems establish surprising relations

between non-equilibrium and equilibrium concepts.

In particular, the work performed on a system during
non-equilibrium processes is connected with key concepts of
equilibrium thermodynamics, such as the free-energy" 2. These
relations have been verified in various experiments involving
microscopic thermodynamic systems>™. Recent advances in
quantum technologies enable the control of small quantum sys-
tems that can be manipulated far from the regime where the usual
thermodynamical laws are obeyed. This triggered the develop-
ment of the rapidgf growing field of non-equilibrium quantum
thermodynamics®~".

When quantum fluctuations dominate, defining and measuring
work and heat, two central concepts in classical thermodynamics,
is non-trivial. For driven, but otherwise isolated, quantum
systems, work w is a random variable associated with the change
in the internal energy'?, as the first law of thermodynamics
indicates. Thus, the commonly accepted definition of quantum
work requires a two-time measurement strategy, which consists
of performing two projective energy measurements, one at the
beginning and the other at the end of the process. Then, work is
associated with the measured energy difference. However,
implementing the two-time measurement is experimentally
difficult'> 12 due to the fact that the two projective measurements
are unavoidably disruptive (see ref. '3 for an ion trap imple-
mentation). Alternative methods to evaluate the work probability
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distribution that rely on the direct estimation of its Fourier
transform were also proposed in refs. ' 1> and later implemented
in NMR experimentsl6.

In this paper we present the design and the experimental
implementation of a “quantum work meter” (QWM) operating
on an ensemble of cold atoms, combining the idea presented in
ref. 17 and the experimental setup used in ref. 8, Our QWM is
conceptually different from previous work-measurement devices.
Its main advantage is that the QWM efficiently samples P(w),
which is a direct observable in the experiment. Namely, our
QWM not only directly measures work but also directly samples
its probability distribution P(w) (i.e. the outcome w is obtained
with probability P(w)). As the work probability distribution plays
a central role in the fluctuation theorems of non-equilibrium
quantum thermodynamics, the QWM is an ideal tool to test
their validity. In particular, we use it to verify the Jarzynski
identity!> 10> 19-21,

Results

Work measurement and the QWM. A QWM is an apparatus
that measures the work performed on a driven quantum system
whose Hamiltonian varies from an initial H to a final H with
eigenvalues E, and E,,, respectively. For an isolated system S, with
a D-dimensional space of states, the number of different values of
work is bounded by D?. Therefore, the pointer of the QWM has
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Fig. 1 The quantum work meter. a A quantum circuit for the quantum work meter (QWM). S and A are entangled so that the eigenvalue of the observable
H of the system S is coherently recorded by A. Then S is driven by Us. Finally, another entangling operation between S and A creates a record of w on A.
In the experiment, A is encoded in the motional degree of freedom of the atoms along the vertical direction z, which also evolves while freely falling. S is
the pseudospin associated with the Zeeman sub-levels of a 87Rb atom. b Physical operations for the QWM on an atom chip: (i) The atoms, prepared in
state |2), are released from the trap, and a RF field generates an initial pseudo-thermal state. (ii) After 2.4 ms, internal and motional degrees of freedom are
entangled with a magnetic gradient pulse (U), applied for a duration of z=40 us. (iii) Another RF field drives S. (iv) 3.1 ms after the application of U, a
second magnetic gradient pulse (U) is applied for a duration of 7 = 300 ps. At this stage, A keeps a record of the different work values. (v) After 18.2 ms
from the application of U, the positions and optical densities of the atomic clouds are measured. The number of atoms in each cloud reveals the work
probability in a single experimental realisation. ¢ Image of the four clouds obtained at the end of a single run of the QWM. The four possible values of w fix

the position of each cloud
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D? distinct positions (one for each value of w = wy,,, = E —E,).
The QWM presented here enables us to choose H and H (fixing
the possible values of w) and to vary the intermediate driving
(inducing different evolution operators denoted as Us). In this
way, we vary the probability P(w), which depends on the inter-
mediate driving Us.

By sampling P(w), we use the QWM to verify a fundamental
result in non-equilibrium quantum thermodynamics: the Jar-
zynski identity. This identity states that for any initial state with
populations identical to the ones associated to a thermal Gibbs
state and for any distribution P(w), the linear combination
(e?) =3, e?"P(w), where 3= 1/kzT is the inverse tempera-
ture of the system, is an equilibrium property (rather than a non-
equilibrium one). The Jarzynski identity (see Supplementary
Note 1) reads

(e7) = e, (1)

where AF is the free energy difference between the thermal states
associated with the Hamiltonians H and H. In the absence of
degeneracies, this implies that the Vector formed by the D*-1
measured probabilities belongs to a D>~2 dimensional hyper-
plane: the ‘TJarzynski manifold’ (as shown in Supplementary
Note 1, further constraints restrict this dimensionality to (D—1)?).
With the QWM we measure P(w) for different driving fields
showing that all probability vectors belong to the same manifold.
By characterising this manifold, we not only verify the identity
but1 also independently estimate the free energy difference
AF13-
The work distribution sampled by the QWMIO’ 19-21 4

ZPanM -

Thus, P(w) is the probability density of finding the energy
difference w after a measurement of H followed by an
intermediate driving /s and a final measurement of H. This is
indeed the case if p, is the probability of obtaining E, when
measuring H and p,,, is the probability of obtaining E,, when
measuring H given that E, was detected at the beginning.
Equation (2) defines a probability density that is independent of
the initial coherences in the energy basis. For the discrete D?
values of w we will use P(w) to denote the probability (not the
density) of each w. The concept on which our QWM is based was
first discussed in refs. !> 22 where it was noticed that the work
done on §, can be detected by performing a generalised quantum
measurement, which enables the number of outcomes to be larger
than D. This can be done by entangling S with an ancilla A that
stores a coherent record of w. Then a standard measurement on S
can reveal w. Similar strategies have been later studied and
extended to other contexts in refs. 22724,

—E,)]. 2)

Design and operation of the QWM. A pictorial representation of
the protocol we follow to operate the QWM is shown in Fig. la.
The QWM is designed to measure the work done on a system S
whose Hamiltonian changes from H to H and which is subjected
to a driving Us in between. We couple S to a continuous variable
system A and use z4 to denote its position (the generator of
translations along the momentum p). A coherent record of w is
created by an ‘entangling interaction’ between A and S that must
take place before and after the driving Us. The unitary operators
representing these interactions are: — ¢ #aBH/h - apd
U = e*24®H/h swhere 1 is a coupling parameter. Thus, U and U
respectively t~ranslate A along p by a displacement proportional to
(—AH) and AH. Then, as shown in detail in Supplementary Note 3,
the final measurement of p on A yields a random result whose
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distribution P4(p) is a smeared version of the true work dis-
tribution P(w) defined in Eq. (2). In fact, outcome p is obtained
with a probability density P4(p) = f dwP(w)f (p — Aw), where
the window function f(p) = |(p|#)|* is fixed by |¢), the initial
state of A (thus, by localising |¢) we improve the accuracy in the
estimation of P(w)).

A ‘universal’ QWM is an apparatus which can measure w and
sample P(w) for any possible choice of H and H. To build it,
we need enough control to enforce the entangling operators U
and U for any choice of H and H. Remarkably, this is achieved for
a 2-level system by the atom chip implementation we describe
below.

Experimental implementation of the QWM. To describe
our QWM we should identify the physical systems representing
S and A, the way in which H and H can be chosen, and how
the associated U and U are implemented. In our experiment
we represent S by the subspace associated with the Zeeman
sublevels |1) =|F=2,mp=1) and [2) =|F=2,mp=2) of
a YRb atom that, as in ref. '® behaves as a two-level
system (see below). The motional degree of freedom of the
atom plays the role of A.

A key element of the QWM presented here is the atom chip®,
which efficiently entangles the internal and motional degrees of
freedom of an atom just ~100 pm away from the atom chip
surface, through short and strong Stern-Gerlach type magnetic
gradlent pulses. These pulses are generated using a 3-current-
carrying wire setup on the atom chip surface (described in ref. 2°
and the Methods section). A gradient pulse along the z direction
with amplitude B’ and duration 7, induces a momentum kick
mpSp on an atom in the mp state (5p ~ ppgpB'z, where g and gr
are, respectively, the Bohr magneton and the Landé factor'®). The
evolution of the state of the atom induced by such a pulse is
described by the unitary operator U, = e'®?4%%/h " where
6 = |1)(1] + 2|2)(2|. This physical operation translates .A along
the momentum p by a displacement dpé (notice that the operator
6 defines the magnetic dipole moment of the atom since
6=3 ,_1,mm)(m|). As described below, we apply two
gradient pulses with different amplitudes (B’ and B') and
different durations (r and 7). Thus, defining H = E6 and
H= Ea, U, and UP implement the required entangling operation
Uand U, respectlvely In this implementation A is consequently
replaced by —8p/E and 6p/E, enforcing E/E = —8p/dp. The
momentum kicks induced by both pulses are controlled in the
experiment, and consequently, by fixing their ratio, we can
simulate an arbitrary system with initial and final Hamiltonians H
and H which are characterised by E/E having the same ratio.
Finally, let us note that the two pulses utilise B’ and B with
opposite signs to ensure that the sequence creates a record of
work corresponding to E,, — E,,.

To achieve universality we only need to be able to fix the
energy splitting E and E of H and H, as well as their eigenbasis.
The traces of H and H (the sum of their eigenvalues) do not affect
P(w) but only add a constant to all values of w. As arbitrary E and
E can be simulated and any change of basis can be absorbed into
Us, we conclude that our atom chip QWM can sample P(w) for
an arbltrary 2-level system and is thus universal.

The 8Rb atoms are magnetically trapped in state |2) and
evaporatively cooled to a Bose-Einstein condensation (BEC). The
BEC is released from the trap and a radio-frequency (RF) pulse is
used to prepare a superposition of |1) and |2). A strong
homogeneous magnetic field (created by external coils)
suppresses the transitions taking |1) into the |2,0) state (due to
the non-linear Zeeman effect'®). The initial populations (p; and
P») are chosen so that the temperature is determined via JE =1n
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Fig. 2 The Jarzynski identity. a Each point defines a probability vector (with its experimental error) measured for a certain driving. The three lines
correspond to three temperatures: fE = 0.58 +0.02 (blue circle), 111+ 0.02 (red square) and 1.75 + 0.04 (grey triangle). For each temperature all
points lie in the same Jarzynski manifold (which in this case is a line). Reported errors are the SEM of three independent experiments with the same
initial parameters and driving. The projections onto the three different axes of the probabilities are shown in detail in Supplementary Fig. 2.

b —In{e?) = —In[3>_,, e #"P(w)] becomes independent of the duration of the intermediate driving (for three temperatures). The dots are the calculated
values using the measured work distribution in the Jarzynski identity, and the solid line is the theoretical estimate of SAF (with an uncertainty due to the
uncertainties in the temperature and energy splitting). Error bars are the SEM

Table 1 Estimates of fAF and AF for three different temperatures

PE BAF (JD) BAF (PF) AF/E (J1) AF/E (PF)

0.58 +£0.02 -0.36+0.04 -0.35+0.03 -0.62+0.07 -0.60+0.06
111+ 0.02 -0.63+0.05 -0.63+0.04 -0.57+0.05 -0.57+0.04
1.75+0.04 -0.92+0.09 -0.93+0.06 -0.53+0.05 -0.53+0.04

We show the estimation obtained using the Jarzynski identity (JI) and from a direct calculation of the partition function (PF)

(p1/p2). The initial motional state is a wave-packet localised in
position and momentum.

It should be noted that the initial internal state of the atom,
while having the same populations as defined by the temperature
of a thermal state, is still a pure state. However, the quantum
coherences of this initial state do not affect the results of the
QWM. As explained in Supplementary Note 3, the contribution
of the initial coherences to the final probability is multiplied by
the overlap between the motional states of the atom associated
with the different values of work. Thus, when the atomic clouds
associated with the different work values are well separated, the
effect of initial coherences is negligible. In this regime, our
experiment gives the same result as the one we would obtain by
preparing an initial thermal state (with no coherences). The study
of the importance of the initial coherences in the definition of
work is an interesting topic in itself, which is beyond the scope of
our paper (see, for example, refs. 24 27-30)

The experimental sequence, presented in Fig. 1b, is: (i) prepare
the initial state and release the cloud (which then freely falls along
z, the direction of gravity), (ii) apply the magnetic gradient U
along z, (iii) apply the driving Us by exposing the atoms to a RF
field resonant with the Zeeman splitting induced by the
homogeneous bias field, (iv) apply the gradient U, (v) obtain an
image of the four clouds after a time-of-flight and count the
number of atoms in each cloud. More details of the experiment
can be found in the Methods section and Supplementary Note 3.
For the experimental demonstration presented here we set the
ratio between the measured momentum kicks induced by the two
pulses to —8p/Sp = 0.56 +0.02. Hence, our realisation of the
QWM samples the work distribution of a simulated system in
which the energy splitting is reduced to 56% of its original value,
from E to E, while driven by Us.

4
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Figure 1c shows a typical image obtained by the QWM. Four
clouds are visible. From the positions of the centre of each cloud,
z, we infer the total momentum shift, p, induced by the pulses on
that cloud (we take into account both the free fall and the kicks
induced by the pulses, see Supplementary Note 3). Then, we
obtain the corresponding value of work as w = Ep/Sp (w is
proportional to E, whose value, together with the measurement of
the remaining quantities, determine the work w). Furthermore,
the probability P(w) for each w is directly measured by the
number of atoms in each cloud. Notably, this experiment
determines the entire P(w) distribution in a single shot.

Testing the Jarzynski identity. We repeat the experiment fixing
the timing, duration and pulse strength. We consider three initial
f’s and vary the intermediate driving Us by changing the
duration of the RF field. In this way, we obtain many sets of
probability distributions, each of which defines a 3D-vector
(as there are three independent probabilities). When we represent
all these vectors in the same 3D-plot, we find that they all
belong to the same f-dependent manifold. Figure 2a shows that
this manifold is a f-dependent line (the dimensionality of this
‘Jarzynski manifold’ is (D-1)2, which in this case equals 1).
Using the measured work probabilities we calculate
the exponential average of the work (e#*) for each driving
field. Figure 2b displays the value of G= —In[(e)] =
—In[}>, e P(w)] as a function of the duration of the
intermediate RF field, that parametrises Us. As established by
the Jarzynski identity, G is independent of the driving field and
only depends on f. The horizontal lines in Fig. 2b are the
theoretically predicted values of SAF, obtained from a direct
calculation (with its own theoretical uncertainty, due to the error
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in the estimation of PE). This calculation simply involves
computing the initial and final partition functions, respectively,
denoted as Z and Z, and using the identity SAF = In(Z/Z). We
find, as the Jarzynski identity establishes, G = JAF. From Fig. 2b
one can notice that the largest errors in the estimation of SAF
appear for SE = 1.75. In this case, P(w)<0.1 for two values of w
and, therefore, the relative error in the atom number estimation is
large, inducing a larger error in the estimation of SAF.

In Table 1 we compare the measured and estimated values of
PAF. The uncertainty in the estimation of JAF and AF is close to
10%, which is enough to distinguish the three values of JAF. On
the other hand, in the case of AF, there is a significant overlap in
the measured values which does not allow to properly distinguish
between the three different cases due to the error in the
estimation of fE.

Discussion

We presented and implemented a QWM, a new device directly
sampling the work distribution on an ensemble of cold atoms.
Our QWM can be used to simulate the behaviour of an arbitrary
2-level system. We implemented it with an atom chip and verified
the Jarzynski identity over a wide range of non-equilibrium
processes. This is the first experiment, and so far the only one,
directly sampling P(w) offering advantages and different per-
spectives over previous work-measurement schemes. Remarkably,
in this cold atom experiment, the QWM extracts full statistical
information about the work distribution in a single shot.

Methods

Initial state preparation. After preparing the BEC, a homogeneous magnetic field
of 36.7G (25 hMHz/ug, where h is Planck’s constant) is used to push the transition
to |2,0) out of resonance by ~180 kHz due to the non-linear Zeeman effect, which
is larger than the power broadened driving RF field of Us. This ensures that the
atoms behave as 2-level systems. The BEC is released from the trap and a RF
pulse is used to prepare a superposition of |1) and |2). By varying the relative
populations we consider three different pseudo-thermal states. The initial motional
state is a wave packet |¢), well localised at zo=91 + 1.2 pm from the chip with
momentum ~0.

Entangling operations and measurement. An inhomogeneous magnetic field is
used to couple spin and motional degrees of freedom. This is generated by a
current I = 0.85A in the 3-wire setup during a time 7. The three parallel gold wires
lie on the x direction of the chip surface (Fig. 1b). They are 10 mm long, 40 pm
wide and 2 pm thick. Their centres are at y =-100, 0, 100 pm and the same current
runs through them in alternating directions (-1, I, —I, respectively), creating a 2D
quadrupole field at z=98 pm below the chip. After a time of flight of 2.4 ms the
atoms are at z ~ 119 pm. At this point the first gradient pulse implements U: 7 =40
ps with an amplitude of B’ ~ 95G/mm, such that the momentum kick is along +z.
Then, after 3.1 ms the atoms are at zZ ~ 0.3mm and the second gradient pulse
implements U: 7 = 300 ps, B’ ~ —7.5G/mm, such that the momentum kick is
along —z (since the gradient direction is inverted for z > 200 pm). The relative
strengths of the spin-dependent forces sets the energy splitting of the Hamiltonians
which in this case is on average E/E = —&p/6p = 0.56 +0.02 (this is the measured
value, where the error takes into account fluctuations in the initial position of the
cloud and in the gradient pulses). In between the entangling operation Us is
applied with a RF pulse. Finally, an image of the atomic clouds is obtained after a
time-of-flight of 18.2 ms after the second gradient (the clouds are centred around z
~3 mm). The position and number of atoms of each cloud are determined. The
momentum shifts of each cloud (that codifies the value of w) are obtained from the
difference in positions between the clouds, that follow approximately classical
trajectories (Supplementary Note 3).

Uncertainties. The main source of position error is the initial distance of the cloud
from the atom chip, whose uncertainty is ~ 1%. This error is later translated to

momentum uncertainty, since the field gradients are position dependent. The field
gradients have a fractional uncertainty of 107> due to current fluctuations'®. The
central position of each cloud is estimated by fitting a Gaussian profile. Each work
probability is estimated as a normalised sum of the measured optical density in a
relevant region around the cloud, introducing a probability uncertainty (due to

atom numbers uncertainty). Our ~5 pm optical resolution also induces an error in
the determination of the position for each cloud. We perform three different runs
for each combination of initial state population ratios and intermediate driving and

18:1241

use the average values of position and probability. This gives us a position
uncertainty of ~0.015 mm and a probability uncertainty of ~0.015 (standard error).

Data availability. The data that supports the findings of this study are available
from the corresponding author upon request.
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