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Colorectal cancer (CRC) is one of the most prevalent cancer types worldwide,

with a high mortality rate due to metastasis. The tumor microenvironment

(TME) contains multiple interactions between the tumor and the host,

thus determining CRC initiation and progression. Various immune cells

exist within the TME, such as tumor-infiltrating lymphocytes (TILs), tumor-

associated macrophages (TAMs), and tumor-associated neutrophils (TANs).

The immunotherapy approach provides novel opportunities to treat solid

tumors, especially toward immune checkpoints. Despite the advances in the

immunotherapy of CRC, there are still obstacles to successful treatment.

In this review, we highlighted the role of these immune cells in CRC,

with a particular emphasis on immune checkpoint molecules involved in

CRC pathogenesis.

KEYWORDS
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Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in 2020,
affecting 10% of the global population (1). The increasing mortality rate in patients
with advanced CRC is of concern and reflects the limited range of treatment options.
This could be attributed to the diagnosis of CRC at a late stage when the tumor
has already metastasized. Furthermore, in most CRC patients, surgical resections are
not the ultimate cure as there is a high possibility of recurrence of the disease in a
more aggressive form; thus, using additional therapeutic modalities is mandatory (2).
CRC is not a single disease and every patient has a unique illness due to distinctive
genetic/epigenetic causes (3). The molecular classification of CRC is changing over
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time. Global genomic status [microsatellite instability (MSI)
status and chromosomal instability (CIN) status] and
epigenomic status [CpG island methylator phenotype (CIMP)
status] contribute significantly to the clinical, pathological
and biological properties of CRC. CIN tumors are mostly
microsatellite stable (MSS) and have been associated with an
aggressive clinical picture (4–6). Such tumors usually have
large genomic abnormalities that lead to higher average DNA
copy number compared with MSI tumors (7). MSI is typically
diagnosed by the variable lengths of DNA microsatellites
(mononucleotide and dinucleotide repeats) (8), which are
caused by epigenetic silencing (9, 10) or mutation of DNA
mismatch repair (MMR) genes, leading to accumulated
mutations at 10–100 times the normal rate promoting cancer
progression (8). CRC tumourigenesis has been reported to be
triggered by gene mutations associated with multiple signaling
pathways such as KRAS, BRAF, and PIK3CA (11). Several
studies have confirmed that association between BRAF and
KRAS mutations, in addition to BRAF mutations being more
linked to MSI status (3, 12–14).

The tumor microenvironment (TME) is a dynamic
and ever-changing phenomenon that has a pivotal role in
determining CRC initiation and progression. The TME
is a unique environment that develops during tumor
progression due to its interactions with the host. It comprises
several components, such as immune cells, stromal cells,
myofibroblasts, vessels, and extracellular matrix (ECM), which
differ according to tumor type (15). The tumor growth occurs in
a multi-step process, where the neoplastic cells recruit stromal
and immune cells to establish the TME. Then, within the
tumor site, the deranged production of inflammatory cytokines
and growth factors by cellular components in the TME leads
to further recruitment of various immune cells (16). Finally,
angiogenesis and ECM degradation occur during the tumor
growth, eventually leading to invasion and metastasis. Several
multiplexed technologies, such as single-cell RNA sequencing
and mass cytometry, explore the functional diversities of
tumor-infiltrating immune cells and the recent progress in
the cancer immunotherapy (17). Furthermore, multiplex
immunohistochemistry/immunofluorescence (mIHC/IF)
provides throughput staining and standardized quantitative
analysis that could be a proficient approach to detect specific
proteins or molecular aberrations as well as explore the
immune evasion (18). Thus, it could have a great potential
to discover novel prognostic and predictive biomarkers in
cancer immunotherapy and contribute in translational research
and clinical practice (19). During multiplex IHC, more than
three markers can be analyzed simultaneously in a single
cut of formalin fixed parrafin embedded tissue (FFPE) with
good cell discrimination and spatial information due to recent
developments in multiple immunolabeling and multispectral
imaging (20–23). A valuable method for assessing the expression
of numerous markers simultaneously in a single tissue section

was a multiplex IHC with tyramide signal amplification
(TSA) (20–24). This is a more sensitive method than standard
chromogenic IHC and may be able to identify proteins that are
expressed at lower quantities (20, 25). In this review, we aim to
discuss the various cellular immune components, focusing on
the impact of immune checkpoint molecules on the CRC TME.

Immune checkpoint molecules

The therapeutic use of antibodies that disrupt immune
checkpoints was a critical turning point in the cancer
immunotherapy (26). Blocking inhibitory coreceptors
and pathways, which constrain immune cell activities in
normal physiologic contexts, might “loosen the brakes” on
immunological response, thus eliminating tumors. Immune
cell activities are known to be exploited in malignancies (27).
In addition, multiple immune checkpoint molecules have
been identified in CRC pathogenesis and on various cell types,
including lymphocytes, macrophages and neutrophils (28).

The co-inhibitory receptor programmed death-1 (PD-1),
also known as CD279, is expressed inducibly on CD4+ T cells,
CD8+ T cells, B cells, natural killer T cells, and macrophages
(29). PD-L1 (B7-H1) and PD-L2 (B7-DC) are two known
PD-1 ligands. PD-L1 is constitutively expressed on various
immune and non-immune cells. However, PD-L2 expression
can be induced in response to microenvironmental stimuli (30).
The upregulation of PD-1 on tumor-infiltrating lymphocytes
(TILs) and the increased expression of its ligands on tumor
cells have been linked to tumor immune evasion, resulting in
the suppression of tumor-specific CD8+ T cells. This receptor
upregulation has also been linked to T cell exhaustion in
malignant tumors, defined as a reduction in the proliferation
and cytokine production (31). Thus, blocking PD-1 and PD-
L1 using monoclonal antibodies (mAbs) might be effective in
stage IV solid tumors by overcoming this immune suppression
(32, 33).

A well-known immune checkpoint molecule is cytotoxic T
lymphocyte antigen-4 (CTLA-4), expressed on T lymphocytes’
surfaces. CTLA-4 binds to B7-1 (CD80) and B7-2 (CD86)
costimulatory receptors present on antigen-presenting cells
(APCs), leading to inhibition of T cell activity by competitive
blocking of CD28 (29). Therefore, CTLA-4 has been a hot target
for mAbs cancer immunotherapy such as Ipilimumab (28).
A remarkable target for immune checkpoint blockade (ICB) is
lymphocyte activation gene-3 (LAG-3), a surface molecule of the
immunoglobulin superfamily. LAG-3 interacts with MHC class
II markers, thus leading to negative regulation of T cells, natural
killer (NK) cells, B cells, and plasmacytoid dendritic cells (DCs)
(34, 35). T cell immunoglobulin and mucin-containing protein-
3 (TIM-3) is another immune checkpoint marker expressed on
T helper 1 (Th1) and CD8+ cytotoxic T cells (CTLs). TIM-3
plays a critical role in inhibiting Th1 responses by causing cell
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death and is also known as hepatitis A virus cellular receptor
2 (HAVCR2) (36). Hence, blocking TIM-3 boosted the anti-
tumor activity, with a greater efficiency upon combinatorial
effect with PD-1 blockade (36). On the other hand, blockage of
the inducible T-cell co-stimulator (ICOS), belonging to the B7-
CD28 immunoglobulin superfamily, gained promising results in
the treatment of different malignancies. Its expression is linked
to a better prognosis in CRC patients, as the percentage of
ICOS+ CD4+ cells operating as Th1 cells in either primary
tumor tissue or peripheral blood could be a clinical predictive
marker for a favorable prognosis (37).

CD40, a member of the tumor necrosis factor (TNF)
family, was characterized on immune cells such as DCs, B cells
and macrophages, as well as non-immune cells. The ligand
of CD40 (CD40L) is expressed by activated B and T cells
as well as platelets (38). CD40/CD40L interactions regulate
T cell activity, cytokine production and antigen presentation
(38, 39). In some cases, this interaction could inhibit tumor
growth (40). On the other hand, tumors could utilize the
CD40/CD40L to manipulate both T-cell and antigen-presenting
compartments, thus contributing to the establishment of
the immunosuppressive TME (38, 41). For instance, this
immunosuppression could be achieved by inducing their
proliferative capacity, growth, and survival (42).

Sialic acid-binding immunoglobulin-type lectins (Siglecs)
are expressed on most white blood cells of the immune system,
as well as TILs, DCs, and macrophages. Hypersialylation of
neoplastic cells was identified as a hallmark of poor clinical
outcomes and contributes to tumor escape from immune
surveillance (43). Therefore, they are considered potential
immune checkpoint targets for anticancer therapy (44, 45).
Another promising target for cancer immunotherapy is the T
cell immunoreceptor with immunoglobulin and ITIM domain
(TIGIT). Its expression was known to be upregulated by various
immune cells such as activated T cells, regulatory T (Treg) cells
and NK cells. In addition, it can bind to two known ligands,
CD155 and CD112, expressed by tumor and antigen-presenting
cells in the TME (46).

Therapies targeting immune
checkpoint molecules in
colorectal cancer

Several immunotherapeutic strategies are under clinical
trials, especially in metastatic CRC; however, the results in MSS-
CRC are generally modest. The ongoing studies investigate
the outcome and potential biomarkers of metastatic CRC
using various immunotherapy-based modalities, including
immune checkpoint blockers (ICB) such as PD-1 blockers
(e.g., nivolumab, pembrolizumab, atezolizumab, avelumab,
durvalumab) and CTLA-4 blockers (e.g., ipilimumab,
tremelimumab). This is besides the use of other approaches

such as cancer vaccines (autologous, peptide, viral vector,
and dendritic cell-based) that aim to stimulate an immune
response against tumor cells, as well as adoptive cell transfer
using chimeric antigen receptor T-cell therapy to kill the tumor
cells directly, and oncolytic virus therapy (e.g., herpes simplex
virus and NV 1020) where the viruses selectively replicate in
cancer cells to destroy them with no harm to normal cells. Also,
among immunotherapies under clinical trials are indoleamine
2,3-dioxygenase 1 (IDO-1) inhibitors, OX40 antagonists (e.g.,
epacadostat, indoximod) that enhance the immune response,
and biphasic antibody targeting carcinoembryonic antigen (e.g.,
RO6958688) on T cells (47, 48).

Multiple clinical trials in this research area are at different
phases, and some of which have been completed and the
results are expected to be published soon. To mention
a few examples, a phase II clinical trial investigated a
combination of pembrolizumab and azacytidine in metastatic
CRC refractory to chemotherapy. The findings demonstrated
the safety and tolerability of this regimen, however, the
clinical effect was modest in the investigated cohort, likely
due to DNA methylation and immunomodulation of the
tumor as an effect of azacitidine therapy (NCT02260440)
(49). Another remarkable study was IMblaze370, which did
not meet its primary endpoint of improved overall survival
with atezolizumab plus cobimetinib or monotherapy using
atezolizumab vs. regorafenib in previously treated metastatic
CRC (NCT02788279). The study findings highlighted the
challenge of using immunotherapy in tumors with low baseline
levels of immune inflammation, such as that observed in the
MSS metastatic CRC (50). Results from ongoing comparative
clinical trials, such as Morpheus-CRC, are likely to thoroughly
evaluate the role of immunotherapy in CRC. Morpheus-
CRC is an ongoing study to evaluate the efficacy and safety
of multiple immunotherapy combinations in metastatic CRC
(NCT03555149) (48).

There are several challenging factors in using
immunotherapeutic agents in CRC. In contrast to melanoma,
which represents a successful example of immunotherapy,
patients with metastatic CRC responded modestly to
immunotherapy treatment, with many trials with high
failure rates. Several mechanisms may explain the discrepancy
in immunotherapy outcomes in different types of cancer. The
tumor mutational burden (TMB) has been early identified as a
potential predictor for effective response to immunotherapy.
For example, MSI in CRC, where there is deficient DNA
repair, gives rise to high TMB. In addition, appropriate
immune response in the intestine could be preserved by
ameliorating the host immune system that must tolerate
commensal bacteria while maintaining the ability to face
infections, otherwise, severe chronic inflammatory reactions
might occur (51). Another important aspect of the poor
outcome of CRC to immunotherapy is the fact that most tumors
are associated with activated WNT/β-catenin signaling which
can promote dendritic cell and T-cell exhaustion (52). This is
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similar to metastatic melanoma, where the activation of the
WNT/β-catenin signaling pathway resulted in T-cell exclusion
and resistance to anti-PD-L1/anti-CTLA-4 monoclonal
antibody immunotherapy (53). Similarly, in a mouse model
of hepatocellular carcinoma, the β-catenin pathway enhanced
immune escape and suppressed the recruitment of DCs, and
consequently led to impaired T-cell activity (54). Apart from
the MSI status of the tumor, at the moment, no predictive
biomarkers of immunotherapy response in CRC are available.

Immune components of the colon
cancer microenvironment

The cellular landscape of the TME includes various immune
cells, namely, TILs such as T, B, and NK cells, as well as
tumor-associated macrophages (TAMs) and tumor-associated
neutrophils (TANs). Various immune checkpoint molecules are
expressed on these immune cells, thus modulating the colon
cancer microenvironment and regulating the pathogenesis and
response to therapy (Figure 1). The anti-tumor and pro-tumor
roles of these immune cells on the TME have been previously
discussed in CRC context [reviewed in (55)].

Tumor-infiltrating lymphocytes

TILs mainly include CD8+ T cytotoxic and CD4+ T
helper lymphocytes, in addition to B and NK cells. They are
usually considered the host protecting element against tumor
formation, as they induce the recruitment, maturation, and
stimulation of immune cells that repress tumor growth (56).

T cells
In conventional terms, TILs represent the heterogeneous

population of αβ T cells, both CD4+ and CD8+ subsets,
present within the TME (57). CD8+ T cells (CTLs) recognize
tumor-associated antigens (TAAs) along with proteins of HLA
class I. These cells become differentiated into killer cells,
release perforins, and express the apoptotic inducer FasL
after expansion. Perforins disrupt the cell membrane, aiding
the entry of granzymes inside the cells, causing cleavage of
caspases’ precursors, thus directing the neoplastic cells toward
apoptosis. Additionally, CD4+ T helper cells proved to have
an essential role in the anti-tumor immunity by responding to
antigens presented by antigen-presenting cells (APCs) such as
macrophages (58).

Increased TILs is a favorable prognostic factor in
many malignancies, including CRC (59). In addition, the
quantification of lymphocyte infiltration has prognostic
significance, suggesting that lymphocyte infiltration is not
passive but may actively modulate tumor growth (60). This was
supported by a large multicenter study spanning more than

10 years, which demonstrated levels of lymphocyte infiltration
into primary tumors to be a strong independent predictor of
relapse and overall survival (61). Using expression profiling of
CRC, they further defined the relevance of specific immune
signatures, demonstrating that Th1 type interferon-γ (IFN-γ)
dominant immune profiles signified an improved prognosis. In
contrast, Th17 type IL-17 dominant immune profiles signified a
poor prognosis (61).

A recent study of most tumor-infiltrating immune cell
subtypes revealed that CD8+ T cells had the most significant
impact on patients’ survival (62). CD8+ CTLs mediate tumor
rejection by recognizing TAAs and directly killing transformed
cells. Effector CD8+ T cells in the TME generate IL-2, IL-12, and
IFN-γ, which enhance the cytotoxic potential of CD8+ CTLs,
leading to a targeted tumor cell killing (63, 64). On the other
hand, CD4+ helper T cells present in the TME are involved in
activating CTLs against tumor cells (65). Exhaustion of CTLs
could be caused by long-term interaction between CTLs and
antigens, leading to loss of their efficiency and function.

Similarly, tumor cells suppress the immune response by
inducing the exhaustion of CTLs in the TME through the
expression of inhibitory immune checkpoint receptors such
as PD-1, CTLA-4, and LAG-3 (66, 67). In CRC pathogenesis,
PD-1 was shown to be upregulated on CD8+ T cells in
the TME, and its ligand was associated with cytokines and
perforin impairment (30). Furthermore, a study by Hua
et al. reported an inverse relationship between T cell density
in the TME and the expression of PD-L1 on CRC cells
(68). This was accompanied by an expansion of Treg cells,
further linking the presence of PD-L1+ tumor cells and poor
prognosis (68).

CTLA-4 was found to be expressed on TILs within
the epithelial component of the tumor, the surrounding
tumor stroma and the invasive front of the tumor. Further,
CTLA-4 was identified on subsets of Treg cells, where
high expression of CTLA-4 was revealed along with a
significant increase of activated Tregs (CD45R Foxp3+ T
cells) in the blood and tissues of CRC patients (69). Also,
a highly suppressive subset of the CD4+ Foxp3− T cell
population was described in CRC patients to express multiple
immune checkpoints (such as LAG-3, PD-1, and CTLA-
4) and produce immunosuppressive cytokines such as IL-
10 and transforming growth factor (TGF)-β (70). Therefore,
CTLA-4 expression on Treg cells highlighted its potential
role as a therapeutic target in CRC, such as in the case of
Tremelimumab, which has been investigated in a phase II study
for CRC patients with refractory metastatic adenocarcinoma
who failed standard chemotherapy (70). Additionally, LAG-
3 was reported to regulate the function of Treg cells, and
its expression on CD4+ CD25+ cells was associated with
potent inhibitory activity (71). Exhausted CD8+ T cells
were observed to express LAG-3 along with other inhibitory
receptors, such as PD-1, and thus inhibition of both PD-1
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FIGURE 1

Immune checkpoint molecules on various immune cells in colorectal cancer. The schematic representation shows the expression of various
immune checkpoint molecules on immune cells that interact with colon cancer cells. These immune cells include tumor-infiltrating
lymphocytes (TILs) such as natural killer (NK) cells, T cells, regulatory T cells (Tregs) and B cells, as well as tumor-associated macrophages
(TAMs) and tumor-associated neutrophils (TANs). The molecules include programmed cell death (PD1) and its ligand (PDL1/PDL2), CD40 and its
ligand (CD40L), CD80/CD86, cytotoxic T-lymphocyte associated protein 4 (CTLA4), T-cell immunoglobulin and mucin domain 3 (TIM-3),
lymphocyte-activation gene 3 (LAG-3), identification of the inducible T cell co-stimulator (ICOS) and its ligand (ICOS-L), T cell immunoreceptor
with Ig and ITIM domains (TIGIT) and sialic acid-binding immunoglobulin-type lectins (Siglec). Furthermore, several monoclonal antibodies
have been introduced to target these molecules (LAG-3, PD/PD-L axis, and CTLA4) as potential CRC immunotherapeutic agents.

and LAG-3 could boost T cell activity (72). There are several
clinical trials with LAG-3 inhibitors (LAG-525 and BMS-
986016) with or without the combination of PD-1 inhibitors
(Nivolumab and PDR001) in patients with advanced solid
malignancies (28).

Xu et al. found considerably greater levels of circulating
TIM-3+ PD-1+ CD8+ T cells in CRC patients’ peripheral
blood samples than in healthy subjects’ blood (73). The
expression of TIM-3 and PD-1 on CD8+ and CD4+ T cells
was also revealed in peripheral blood collected after surgery.
Furthermore, both TIM-3 and PD-1 expression appeared to

be linked to decreased T cell activity (74). In comparison to
adjacent colonic tissues, tumor tissue had a higher number
of TIM-3+ PD-1+ CD8+ T cells. Together with the lack
of quantifiable responses to PD-1 blockage in a large group
of CRC patients, these findings point to TIM-3 as a more
prominent inhibitory receptor in CRC patients, thus limiting
T cell responses. Furthermore, inhibiting this route may help
to restore damaged cell-mediated immunity following surgical
resection. These findings support the development of TIM-3
inhibitors and show considerable promise in CRC patients as
single or combined treatments (34).
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Immunoregulatory cells such as Treg cells, mesenchymal
derived stem cells (MDSCs), and M2 macrophages possess
the ability to control and modulate T cell function by
releasing cytokines such as IL-10 and TGF-β that can activate
specific inhibitory immune checkpoints (75–77). Likewise,
tumor cells and other cells in the TME can express these
inhibitory ligands and activate their receptors, thus impairing
T cells’ activity (78). This was reported to disrupt the
proliferation of CTLs and reduce the immune response against
CRC (79).

A known prognostic approach for immune checkpoint
inhibitor therapy is MSI. Furthermore, MSI is linked with an
MMR system that recognizes and repairs DNA damage. Several
clinical trial data highlight that deficient MMR (dMMR) or
MSI were able to predict treatment response across different
solid tumor types, including CRC (80). In particular, MSI is
known to be a good predictor of CRC prognosis, as it is
closely associated with the abundance of tumor-infiltrating T
cells. Several immunohistochemical studies have revealed high
infiltration of intraepithelial activated CD8+ T cells within MSI
colorectal tumors (81–83). Furthermore, Dolcetti et al. found
that cytotoxic infiltrating structures were highly abundant in
tumor epithelial cells of MSI-high (MSI-H) patients. The exact
pathophysiology of TILs accumulation in MSI-H CRC has not
been elucidated. However, an early proposal was that MSI-H
tumors produce many abnormal proteins that trigger a host
immune response. This was supported in a study by Smyrk
et al. which reported an active immune microenvironment in
MSI/dMMR tumors that are characterized by a more favorable
prognosis compared to MSS/MMR-proficient (pMMR) tumors
(8). In the MSI/dMMR subset of CRC, the high accumulated
mutation creates many tumor-specific neoantigens, typically
10–50 times that of MSS/MMR-proficient subset (84), which
might be the reason for the high level of TILs and active
Th1/CTL immune microenvironment in MSI/MMR-tumors
observed in many previous studies (8).

Moreover, granase B expression and other cytotoxic effects
were more active in MSI-H tumors (85). Additionally, pMMR-
microsatellite instability-low (MSI-L)/MSS have low tumor
mutational burden, poor infiltration by TILs and often have
a worse prognosis than dMMR-MSI-H as well as a poor
response to immune checkpoint inhibitors (86). In the TME,
the PD/PD-L1 pathway leads to the escape of tumor cells
from the immune response via the inhibition of CTLs (87, 88).
Additionally, the expression of PD-L1 on tumor cells is related
to the exhaustion of T cells, therefore blocking this pathway
has been demonstrated to be a successful approach for the
treatment of different types of cancers, including non-small cell
lung cancer, melanoma, breast, renal cell carcinoma, and CRC
(87–92). In particular, higher expression of PD-1 and PD-L1
has been associated with a better prognosis in CRC patients.
Furthermore, PD-1 expression in TILs has been found to be an
independent prognostic factor for overall survival and disease-
free survival of CRC patients, especially for MMR-proficient

tumors (93). Therefore, the upregulation of the PD-1/PD-L1
axis in CRC is correlated with a favorable clinical outcome. Such
a pattern could be a compensatory upregulatory mechanism
in the TME in order to identify the tumor and trigger an
immune response. Furthermore, an association between PD-L1
on tumor cells and a high TILs density could further support this
hypothesis, similar to that observed in breast cancer (94, 95).
Moreover, there is a remarkable high expression of checkpoint
molecules such as PD-1, PD-L1, CTLA-4, and LAG-3 in MSI
CRC in comparison to MSS CRC, which could contribute to the
immunosuppressive microenvironment that aids MSI tumors
evade immune destruction by the infiltrating immune cells.
Therefore, this explains why the MSI subset of CRC could be a
potentially good candidate for the checkpoint immunotherapy
(9). ICB was described as more effective in MSI CRC in a
phase 2 trial of Pembrolizumab, a fully human mAb targeting
PD-1. In addition, another PD-1 mAb, Nivolumab, showed
efficacy in CRC, where a patient showed complete response
with no disease recurrence and demonstrated MSI (27, 96).
Therefore, MMR status is a critical key for response to therapy,
as shown by different clinical trials with anti-PD-1 and anti-
PD-L1 therapy. Moreover, it was also demonstrated that CTLA-
4 expression is increased in MSI tumors compared to MSS
cancers (84).

B cells
Tumor-infiltrating B cells constitute a significant proportion

of the immune infiltrates in CRC. Until recently, B cells
have not been considered an important population of TILs,
despite that they compose around 40% of TILs (97, 98).
They are considered positive regulators of immunity, often
collaborating with T cells to generate potent, unrelenting
immune responses (98).

B cells can exert anti-tumor effects by activating antibody-
dependent cell cytotoxicity (ADCC) and the complement
cascade (99). In tumor tissues, B cells can be found in lymphoid
aggregates, known as tertiary lymphoid structures (TLSs) or
could be sparsely distributed in the TME. B cells present
in the immature TLSs were reported to possess immune-
regulatory functions by the secretion of anti-inflammatory
cytokines and thus leading to the inhibition of anti-tumor
immunity (100). Also, B cells can act as APCs besides
their main function as antibody producers. Furthermore, B
cells possess the unique capability of concentrating antigens
through membrane immunoglobulin mediated uptake, which
might also facilitate T cell activation above certain thresholds
for TAAs (98, 101). Autoantibodies were shown to react
primarily with autologous tumor targets or allogeneic tumors
of the same tissue type, suggesting recognition of TAAs
(102). Antibodies were believed to play a negligible role in
the TME, so their relevance in tumor biology has been
overlooked. However, studies revealed that B cell markers such
as CD20 and CD138 correlated significantly with a lower CRC
stage (103).
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A study by Maletzki et al. observed that tumor-infiltrating
B cells in primary CRC were of a mature immunophenotype,
suggesting activation and antigen-induced maturation (104).
This was supported by other studies where most tumor-
infiltrating B cells reside in follicular aggregates in CRC.
Likewise, peritumoral follicular aggregates of lymphocytes
have been previously reported as a “Crohn’s-like reaction”
and interpreted as an immune-mediated anti-tumor effect in
CRC (105, 106). Similar to T cells, B cells express checkpoint
ligands on their surface, such as PD-L1, CD80/CD86, and
ICOS-L (107–109). Furthermore, a study by Helmink et al.
observed significantly higher levels of B-cell-related gene
expression, increased B cell receptor diversity, and clonal
expansion in tumor samples from melanoma patients
who responded to ICB treatment compared to other
patients (110).

Natural killer cells
Being members of the innate immunity, NK cells can lyse

tumor cells without prior sensitization or clonal expansion,
unlike T cells. NK cells can be classified into two major
groups, where the CD56bright CD16− subset represents 10-
15% of circulating NK cells and are more immunoregulatory
by releasing cytokines such as IFN-γ. They mainly reside in
the secondary lymphoid organs, such as lymph nodes and
tonsils (111). In contrast, CD56dim CD16+ cells represent
the significant population (90% of circulating NK cells) and
predominantly mediate cytotoxicity (112, 113). NK cells play
a fundamental role in cancer immunosurveillance through
their anti-tumor activity (114). This has been supported by
studies where the elimination of NK cells led to increased
malignancy occurrence (115). NK cells perform their anti-tumor
activity mainly when the expression of MHC class I molecules
is downregulated. Moreover, upregulation of stress-induced
molecules such as ligands of the activating receptor C type lectin
receptor D (NKG2D) on cancerous cells makes them prone to
NK-cell killing (116).

Most neoplastic cells and tumor-associated cells in the TME
secrete factors that block the activation of NK cells, such as IL-
6, IL-10, IDO, TGF-β, and prostaglandin E2 (PGE2), through
downregulating NK cells activating receptors including NKG2D
(117). Thus, NK cells, which infiltrate the tumor stroma,
might proficiently lose their tumor-killing function due to these
immunosuppressive mediators (118). For instance, IDO causes
tryptophan depletion and kynurenine accumulation leading to
immunosuppression of T and NK cell functions as well as the
stimulation of Treg cells (119). Additionally, PGE2 suppresses
IFN-γ production and responsiveness to IL-12 and IL-15 (120).
Moreover, there is a reduction in the cytokine production of
intra-tumoral NK cells (121). TGF-β affects the IL-15 signaling
pathway, thus dampening NK cell proliferation and cytotoxicity
(122). Furthermore, hypoxia and poor nutrient levels in the
TME suppress NK cell activity (116). On another note, NK

cell migration and penetration into the tumor growth site
might be halted by ECM accumulation and increased interstitial
fluid (123).

Furthermore, the recruitment of immunosuppressive cells
such as MDSCs and the emergence of NK cell-resistant tumor
variants result in primary tumor overgrowth. On the other hand,
other tumor cells try to increase the expression of MHC class
I molecules, such as human leukocyte antigen (HLA)-E, which
engages the inhibitory receptor NKG2A on NK cells. This has
been supported by studies where high expression of HLA-E and
NKG2A led to a high inhibitory signal, potentially leading to
poor outcomes and tumor growth (124–126).

NK cells have the potential to regulate the function of the
adaptive immune system. For example, NK cells have been
found to enhance T cell infiltration, thus triggering immune
responses through their cytokine and chemokine secretion
turning tumors immunologically “hot.” In contrast, the absence
of these immune cells leaves the tumors immunologically “cold”
(127). Consequently, CD8+ T cell recruitment in the TME
and their interaction with NK cells elicit tumor regression. In
addition, NK cells possess anti-metastatic activity by possible
elimination of circulating tumor cells, “i.e., metastatic clones”
(118, 127). However, tumors could escape NK cell activity
through several mechanisms, including immune checkpoints
expression by NK cells: PD-1, CTLA-4, LAG-3, and TIM-3.
Upon binding to their receptors, NK cell activity is dampened
(128), which can be surpassed by ICB, thus restoring NK and
CD8+ T cell anti-tumor immunity. Nevertheless, many tumors
still develop resistance to ICB therapy, representing a potential
therapeutic target (129).

Another major obstacle in solid tumors is the homing of
immune cells such as NK cells to tumor growth sites. This
could be attributed to a dysregulation in the chemokine gradient
in the TME, thus preventing NK cells from reaching the
tumor growth sites (130). This has been reported in several
studies where aberrant signaling pathways led to alterations
in chemokines, including CCL27, CCL2, and CXCL11, hence
impairing leukocyte migration (131–133). In CRC, loss of
MHC class I expression is quite common, allowing NK cell
recognition and killing of tumor cells (134, 135). However,
like other types of cancer, a decreased number of NK cells
in CRC patients was reported, which was associated with
an increased frequency of CRC tumor recurrence (136, 137).
This has been further supported where a negative correlation
between peripheral NK cells and the CRC staging was reported,
especially at early (I) and late (IV) stages of the disease (138).
Phenotypically, CRC patients exhibited a reduction in the
expression of the natural cytotoxicity receptors, NKp44 and
NKp46 (139).

Furthermore, other activating receptors such as NKG2D,
NKp30, NKp46, and DNAX accessory molecule-1 (DNAM-1)
were reduced in the peripheral blood of patients with CRC (140–
142). Upon tumor progression, the percentages of NKG2D+ NK
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cells were decreased, indicating a role in the metastasis of CRC
(143). It has been shown that reduced expression of NKG2D
on NK cells was correlated with high soluble serum levels of
its ligand MHC-class I related molecule A (MICA) (144). The
pathway of NKG2D and its ligands has been reported to be
affected by TGF-β, which is highly expressed by colorectal cells
(145). Hence, ligands of the activating receptor NKG2D were
detected in the early stages of CRC, but as an immune evasion
strategy, their expression decreased upon disease progression
(146). Additionally, dysregulated NK cells displayed impaired
function in CRC, including IFN-γ secretion and degranulation
(140). Moreover, phenotypic alteration has been observed in the
circulating CD56dim population of NK cells in CRC patients
(139). Interestingly, a subpopulation of NK cells that is positive
for CD16 and CD56 was studied and correlated negatively
with the occurrence of CRC and the staging of CRC (147).
The inhibitory receptor, NKG2A, has been reported to be an
interesting target as a checkpoint molecule in cancer (148).
Thus, blocking the inhibitory NKG2A receptor enhances tumor
immunity by promoting both NK and CD8+ T cell effector
functions. Monalizumab, a humanized anti-NKG2A antibody,
was reported to induce NK cell activity against various tumor
cells, especially in combination with PD axis blockade (149).
This is under investigation in multiple clinical trials in solid
tumors such as CRC (149).

Differentiated CRC cells were found to be more resistant
to NK cells compared to cancer-initiating cells that were more
susceptible to NK cell killing (150). It has been established
by both in vitro and in vivo studies, where NK cells were
shown to mediate the direct killing of human tumor cells in
colon cancer (151–153). This has been implemented in clinical
settings, where autologous NK cells were utilized in patients
with advanced gastric or colorectal cancers combined with
trastuzumab or cetuximab chemotherapy (154, 155). Colon
adenocarcinomas exhibited low NK cell infiltration rates, thus
causing the NK cell population to remain in the outer stroma
and halting them from performing their anti-tumor activity
(60, 134, 156, 157). Additionally, infiltration of NK cells was
proposed to be a potential predictive marker of therapy. The
homing and migration of NK cells are dependent on selectins,
adhesion molecules and chemokines. Hence, future clinical
trials should target the trafficking of NK cells into tumor sites
rather than focusing on the simple administration of a single
cytokine/chemokine as a therapeutic approach (157).

Another interesting aspect that is critical for
immunotherapy for CRC is the expression of immune
checkpoint molecules on NK cells (158). These include CTLA-4
and PD-1 receptors as well as TIGIT, CD96, LAG-3, and
TIM-3. In CRC animal models and human patients, NK cell
exhaustion was reported to be associated with the expression
of TIGIT. Furthermore, the presence of NK cells was critical
for the efficacy of TIGIT and PD-L1 checkpoint inhibitors, as
they regulate the frequency of effector CD8+ T cells secreting

IFN-γ and TNF-α (159). The combination of these checkpoint
inhibitors showed a synergistic effect in their anti-tumor
potential that was accompanied by prevention of NK cell
exhaustion in both animal models and CRC patients (159,
160). In addition, PD-1 was found to be upregulated on tumor-
infiltrating and peripheral NK cells in digestive cancers such as
esophageal, gastric, biliary, and CRCs (161).

Other recently reported immune checkpoints are the Siglec
family receptors, such as Siglec-7 and -9, CD47, and CD200. On
another note, NK cells express Siglec-7 and Siglec-9 receptors,
with a further upregulation on the cytotoxic CD56dim NK
cell subset (162, 163). In addition, Siglec-9 was found to be
upregulated on tumor-infiltrated CD8+ cytotoxic T cells in
various solid tumors, including CRC (164, 165). An interesting
fact about the Siglec immune checkpoint molecules is that they
are expressed on various immune cells and are usually expressed
on T cells that concomitantly express PD-1, further enhancing
the co-inhibitory signal (165). Furthermore, they were known
to play an inhibitory effect on NK cell function against tumor
cells, particularly cytotoxicity.

On the other hand, blocking these immune checkpoint
molecules such as Siglec-9 antibodies improved the anti-tumor
cytotoxic potential of NK cells. This was due to the blockage
of Siglec markers on tumor cells as well as the NKG2A
receptor on NK cells (164). Also, sialidase treatment was
found to enhance NK cell killing against various cell lines,
including the colon cell lines. Therefore, anti-Siglec-7 and
anti-Siglec-9 blocking antibodies could be developed to be
used for cancer immunotherapy, along with other immune
checkpoint inhibitors.

Tumor-associated macrophages

TAMs are the dominant inflammatory constituent in the
TME and are ample in all stages of carcinogenesis. Activated
infiltrating TAMs secrete a plethora of proteolytic enzymes as
well as growth and inflammatory mediators, known to modulate
different molecular pathways involved in tumor progression and
metastasis (166).

Macrophages can be classified into two well-defined
subtypes: M1 macrophages “classically activated” and M2
macrophages “alternatively activated.” M1 macrophages have a
pivotal role in eradicating different organisms and cancerous
cells, as they have an inflammatory function by secreting
pro-inflammatory cytokines like TNF-α, IL-6, and IL-1β.
On the contrary, M2 macrophages release anti-inflammatory
cytokines, such as TGF-β, IL-10, and IL-13, and have been
implicated in tissue healing and tumor progression. M1 and
M2 are distinguished with certain markers in the tumor
samples, where M1 macrophages are characterized by the
expression of HLA-DR, CD11c, CD86, inducible nitric oxide
synthetase (iNOS), and phosphorylated signal transducer and
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activator of transcription 1 (pSTAT1), while M2 macrophages
express CD163, CD204, and CD206 (167). In the TME,
TAMs are mostly pro-tumorigenic/anti-inflammatory “M2
phenotype form.” Their significance in tumor evolution and
progression is accentuated by the fact that they may comprise
up to 80% of the tumor mass (168). The suppression
of an immune response, activation of angiogenesis, and
remodeling of ECM are important functional characteristics
of TAMs. Furthermore, TAMs produce proteolytic enzymes
such as matrix metalloproteinases (MMPs) and cathepsins
that cause ECM breakdown, leading to the intravasation of
tumor cells into the bloodstream, thus enhancing metastases
(169). Additionally, TAMs release angiogenic factors, allowing
tumor cells to spread beyond the primary tumor site
and contributing to metastasis (170). They also provide a
favorable environment for metastatic tumor cells by releasing
inflammatory mediators like IL-1β. Furthermore, reactive
oxygen species (ROS) produced by TAMs are implicated in
malignant cell instability, a hallmark of cancer (168). On
another note, TAMs could promote cancer cell proliferation
by releasing growth factors such as epidermal growth factor
(EGF) (170).

Recently, the effect of colon cancer ECM on macrophage
polarization was investigated, where it was discovered that
tumor ECM-educated macrophages could develop into M2
macrophages. The anti-inflammatory markers (IL-10, CCL18,
and TGF-β) were upregulated, and the pro-inflammatory
markers (TNF-α and IL-6) were downregulated by the
macrophages that are differentiated within the tumor matrices.
It was also found that MMP1, the MMP responsible for
M2 polarization, was upregulated in tumor matrices. These
results indicated that tumor-derived matrices caused an anti-
inflammatory M2-like macrophage polarization significantly
(171). Additionally, clinical staging and lymph node metastases
were found to be associated with macrophage infiltration
and vascular density in CRC (172). Moreover, blocking the
colony-stimulating factor 1 receptor (CSF1R), required for
TAMs’ recruitment, differentiation, and survival, is one of the
most effective ways to target TAMs (173). Small molecule
inhibitors or mAbs against CSF1R diminish the number
and/or affect the behavior of TAMs in mice models of
solid tumors such as CRC, breast cancer, and glioblastoma,
thus impairing tumor formation and progression (174–
176).

TAMs were reported to express molecular triggers of
checkpoint proteins that regulate T-cell activation. Such proteins
are the site of action of checkpoint-blockade immunotherapies
(177). On another note, TAMs are key players in immunological
resistance and their manipulation could improve the efficiency
of immunotherapies, possibly through the NF-κB pathway.
Such a pathway could be inhibited to increase the efficacy of
immunotherapies by repolarizing M2 TAMs and to decrease
the expression of PD-L1 on them (178). A recent study in

CRC by Fiegle et al. showed that the combined blockade of
CTLA-4 and PD-L1 increased the levels of the pro-inflammatory
Th1/M1-related cytokines, increased NOS+ macrophages in
the tumor tissue and reduced PD-L1+ macrophages (179).
The role of TAMs as therapeutic targets was reviewed by
Malfitano et al. (177). Also, CD40+ TAMs and plasma sCD40
in CRC tissues have been identified as favorable prognostic
markers (180). Apoptotic susceptibility is dependent on the
“quality” of the signal, as death occurs when the CD40 signal
is delivered in membrane-bound form (mCD40L), whereas the
soluble CD40 agonists are non-apoptotic (181). Blocking of
CD40 using membrane-bound CD40L showed pro-apoptotic
signal and pro-inflammatory cytokine production in CRC
cells, thus suggesting CD40 as a promising therapeutic in
CRC (182).

Tumor-associated neutrophils

Neutrophils play an intricate and complex role in cancer
(183). Many reports support the dual function of neutrophils,
including anti-tumoral and pro-tumoral roles, and thus TANs
are segregated into anti-tumor (N1) and pro-tumor (N2)
phenotypes (184). However, these cells do not have specific cell
surface markers to discriminate N1 and N2 neutrophils. Some
studies indicate that N1 neutrophils have a higher expression
of CD54, CD95, TNF-α, CXCL10, and low production of IL-
8, while N2 neutrophils have high expression of CD182 and
IL-8 production (185). In addition, neutrophils play a role in
the immunosuppression of tumors (186), through the release of
different mediators, including IL-4, TGF-β, immune checkpoint
ligands, ROS, and reactive nitrogen intermediates (187). On
the other hand, releasing nitric oxide by neutrophils could
enhance cancer cell killing and suppress CRC growth and
metastasis (188).

Under the effect of TGF-β present in the TME, neutrophils
polarize into pro-tumor N2 neutrophils, which produce
proangiogenic factors and exert immunosuppressive activity
through the secretion of arginase-1 (Arg1) (184, 189, 190). TANs
mediate direct suppression of Th1 and CTL in tumors (191).
On the other hand, upon blockade of TGF-β or administration
of type 1 IFN, neutrophils could polarize into anti-tumor
N1 neutrophils, which activate CD8+ T cells, thus exerting
anticancer cytotoxic activity, by reducing the expression of the
proangiogenic factors (e.g., VEGF and MMP-9), and increasing
the expression of T cell-attracting chemokines (e.g., CCL3,
CXCL9, and CXCL10) (184, 189, 192).

Neutrophils are recruited to the tumor site through
inflammatory molecules such as granulocyte-colony stimulating
factor (G-CSF), tumor-derived cholesterol derivatives
(oxysterols) (193) and anaphylatoxin C5a (complement
component) (99, 194). In CRC, neutrophils play an anti-
tumoral role through the secretion of IFN-β, IFN-γ and
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Granulocyte macrophage-colony stimulating factor (GM-
CSF), and are known to express CD66b, CD11b, CD101, and
CD177 (187). Neutrophils may promote tumor metastasis by
accumulating in the metastatic niche. Tumor and stromal cells
expressing G-CSF, CXCL1, and CXCL2 enhance neutrophil
recruitment in the metastatic sites (195).

In solid tumors, neutrophils’ accumulation is a poor
prognostic marker associated with tumor progression and
metastases (196–198). However, in CRC, high infiltration of
TANs was reported to be associated with a better response
to 5-FU-based chemotherapy (199). In this regard, CRC
represents an exception from other solid tumors in which a
high number of TANs is associated with poor response to
chemotherapy and radiotherapy (200). Different key players in
tumor immunobiology among different cancers may explain
the discrepancy of TANs function in CRC compared to other
tumors (e.g., ovarian and gastric).

Noteworthy, neutrophils interact with TILs. Using an
inducible colon tumor mouse model, Germann et al. reported
that the most potent inhibitor of T-cell activity in the
TME was the TANs. The suppression is exerted through
matrix metalloproteinase-mediated activation of TGF-β (201).
Interestingly, MMP-9 secreted by TANs, converts TGF-β
precursor into an active form. Thus, inhibiting the MMP-
9/TGF-β axis eliminates the immunosuppressive effect of
neutrophils and suppresses their tumor-promoting functions
(201). On the other hand, a recent study reported that the pre-
operative and post-operative neutrophil to lymphocyte ratio
was associated with histological markers of CRC progression.
Also, there was a trend of association between post-operative
neutrophil count and disease-free survival (202). Different
factors affect neutrophil polarization and may, at least
in part, explain the apparent paradoxical impact of TME
neutrophil count.

The link between TANs infiltration and tumor angiogenesis
determines to a great extent the response to ICBs. It has
been reported that neutrophil infiltration in the TME is
associated with significant resistance elements to ICBs and
their adjuvant anti-angiogenic agents. More than 100 clinical
trials investigate the combination of bevacizumab (Avastin; anti-
VEGF-A antibody) with ICBs (203). In addition, inhibition
of CXCL1 or CXCL5/CXCR2 signaling in tumors with low
TILs causes a reduction in TANs infiltration, with an increase
in the number of PD-1+ CD8+ T cells. Furthermore, this
enhances the sensitization of cancer cells to the anti-CD40, anti-
CTLA-4, and anti-PD-1 combination immunotherapy (204).
Moreover, the use of CXCR2 inhibitors might overcome
the resistance to anti-PD-1 immunotherapy in KRASG12D-
expressing CRC (205). Such findings, together with similar
ones in other cancers, promoted the development of phase
I and II clinical trials, using CXCR1 and CXCR2 inhibitors
in combination with anti-PD-1 in patients with metastatic
CRC with MSI-L and Ras-mutation (195). Furthermore, the

“neutrophil extracellular trap” or “NET” is considered an
important element of the TME that leads to resistance to
ICB therapy (206, 207). Accordingly, DNase I, an inhibitor of
NETs, was reported to significantly enhance the therapeutic
effects of anti-PD-1 in an MC38-bearing mouse model of
CRC (208).

Conclusion

Blocking immune checkpoints has ushered in a new era
of cancer treatment. Targeting immunological checkpoints in
CRC TME is an intriguing novel cancer therapeutic approach
via altering the immune cells’ function. Increasing evidence
suggests that patients’ responses are linked to different pro-
tumor and anti-tumor immune cells in the TME, such as TILs,
TAMs, and TANs. Anti-PD-1, anti-PD-L1 and anti-CTLA-4 are
well-known ICBs showing promising results in CRC patients. In
addition, other intriguing immunological checkpoints that can
suppress T or NK cell activity have emerged in recent years, such
as TIM-3 and LAG-3. As a result, combining ICBs with other
therapeutic modalities has shown encouraging results and could
be a successful step forward in CRC treatment.
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