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A RT I C L E

Relationship between Pore Occupancy and Gating in BK 
Potassium Channels

Rebecca A. Piskorowski and Richard W. Aldrich

Section of Neurobiology, University of Texas at Austin, Austin, TX 78712

Permeant ions can have signifi cant effects on ion channel conformational changes. To further understand the re-
lationship between ion occupancy and gating conformational changes, we have studied macroscopic and single-
channel gating of BK potassium channels with different permeant monovalent cations. While the slopes of the 
conductance–voltage curve were reduced with respect to potassium for all permeant ions, BK channels required 
stronger depolarization to open only when thallium was the permeant ion. Thallium also slowed the activation and 
deactivation kinetics. Both the change in kinetics and the shift in the GV curve were dependent on the thallium 
passing through the permeation pathway, as well as on the concentration of thallium. There was a decrease in the 
mean open time and an increase in the number of short fl icker closing events with thallium as the permeating ion. 
Mean closed durations were unaffected. Application of previously established allosteric gating models indicated 
that thallium specifi cally alters the opening and closing transition of the channel and does not alter the calcium 
activation or voltage activation pathways. Addition of a closed fl icker state into the allosteric model can account for 
the effect of thallium on gating. Consideration of the thallium concentration dependence of the gating effects 
suggests that the fl icker state may correspond to the collapsed selectivity fi lter seen in crystal structures of the KcsA 
potassium channel under the condition of low permeant ion concentration.

I N T R O D U C T I O N

The permeation and gating processes of ion channels 

are frequently treated as two independent processes. 

However, there is increasing evidence to support the 

idea that the selectivity fi lter may play a role in the gat-

ing conformational changes of potassium channels. 

This evidence comes from four classes of results. First, 

mutations near or in the selectivity fi lter of several po-

tassium channels have been found to alter permeation 

and gating. Backbone mutations in the selectivity fi lter 

(the key amide carbonyls in the selectivity fi lter were 

changed to ester carbonyls) of KIR2.1 were found to 

have signifi cant effects on gating (Lu et al., 2001a). In 

Shaker channels, a mutation near the selectivity fi lter, 

T442S, was found to induce subconductance levels that 

were coupled to activation (Zheng and Sigworth, 1998). 

The mutation Y293W in BK channels was found to de-

crease the open time in single channel records for in-

ward currents only (Lagrutta et al., 1998). Neutralization 

of a neighboring residue in BK channels, D292N, had 

major effects on the biophysical properties of the chan-

nel (Haug et al., 2004b). These results strongly suggest 

that the selectivity fi lter dynamics can alter the gating 

processes of potassium channels.

Second, changes in gating have been observed for po-

tassium channels in the presence of external ions such 

as rubidium and cesium. Specifi cally, the deactivation 

rate is reduced with external rubidium and cesium 

(Swenson and Armstrong, 1981; Clay and Shlesinger, 1983, 

1984; Matteson and Swenson, 1986). Barium block at cer-

tain sites in the BK channel selectivity fi lter altered gat-

ing (Neyton and Miller, 1988a,b) (Neyton and Pelleschi, 

1991). Demo and Yellen (1992) found that external ru-

bidium and cesium were able to slow the deactivation 

and increase the activation rate of BK channels. In this 

case, occupancy of the same site in the selectivity fi lter 

by rubidium or cesium prohibited channel closing 

(Demo and Yellen, 1992). Changes in the single channel 

kinetics with rubidium and thallium have been reported 

for several different potassium channels. Rubidium has 

consistently been reported to increase the open dwell 

time of BK (Demo and Yellen, 1992; Mienville and Clay, 

1996, 1997), KcsA (LeMasurier et al., 2001), KCNQ1 

(Pusch et al., 2000), ROMK2 (Choe et al., 2001), and 

IRK1 channels (Choe et al., 2001). On the other hand, 

thallium has been found to consistently reduce the 

open dwell times for several potassium channels: BK 

(Blatz and Magleby, 1984), KcsA (LeMasurier et al., 

2001), ROMK2 (Chepilko et al., 1995; Choe et al., 2001; 

Lu et al., 2001b), and IRK1 (Choe et al., 2001).

Third, several experiments have demonstrated that 

 occupancy in the selectivity fi lter of KV channels can 

 infl uence on-gating charge movement and activation 

 (Consiglio et al., 2003; Consiglio and Korn, 2004), as well 
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as the rate of off-gating charge movement and deactiva-

tion (Chen et al., 1997; Hurst et al., 1997; Wang 

et al., 1999). Consiglio and Korn (2004) propose that the 

outer vestibule of the selectivity fi lter is in close proximity 

to the S4 voltage sensor and that structural perturbations 

of the selectivity fi lter by ion occupancy can affect volt-

age-sensing motions of the S4. In the absence of all inter-

nal and external potassium ions, Shaker channels were 

found to enter a stable, noninactivating, nonconducting 

conformation called the “defunct state” (Gomez-Lagunas, 

1997; Melishchuk et al., 1998;  Loboda et al., 2001).

Lastly, permeant ions and occupancy in the selectivity 

fi lter have been found to affect C-type inactivation in 

several voltage-gated potassium channels. Increasing 

the occupancy of the selectivity fi lter with external po-

tassium or blocking ions decreased the rate of C type 

 inactivation for Shaker and Kv channels (Lopez-Barneo 

et al., 1993; Baukrowitz and Yellen, 1995, 1996; Harris 

et al., 1998; Kiss and Korn, 1998; Kiss et al., 1999). Point 

mutations near the selectivity fi lter indirectly altered C 

type inactivation rates by reducing the occupancy of the 

selectivity fi lter (Ogielska and Aldrich, 1998, 1999).

Recent crystallographic results have revealed how the 

low K+ form of the crystal structure depends on the 

identity of the permeating ion (Zhou and MacKinnon, 

2003). In these experiments, the KcsA structure was 

solved with different concentrations of potassium or 

thallium. The selectivity fi lter was found to adopt the 

same collapsed structure in low thallium or low potas-

sium concentrations. The fi lter was found to switch 

sharply from the collapsed structure to the conducting 

structure at �20 mM potassium or at �80 mM thallium 

(Zhou and MacKinnon, 2003). This persistence of the 

collapsed structure in the presence of higher concen-

trations of thallium indicates that thallium is not as effec-

tive as potassium at stabilizing the conducting structure.

BK channels have been extensively studied at the sin-

gle channel and macroscopic levels. An allosteric model 

has been developed by Horrigan et al. (Horrigan and 

Aldrich, 1999, 2002; Horrigan et al., 1999) that can de-

scribe channel gating over a very wide range of calcium 

concentrations and voltages while also providing mech-

anistic insight into channel gating (Scheme 1 and Table I). 

However, even such detailed allosteric models are over-

simplifi cations of channel gating. They do not account 

for short fl icker closing events observed in the single 

channel data (Cox et al. 1997, Rothberg and Magleby 

1998; Horrigan and Aldrich, 2002) or for the effect of 

permeating ions on channel gating.

  (SCHEME 1)

We have examined the gating properties of BK channels 

with different permeant ions to further understand the 

interactions between occupancy and gating. The allosteric 

TA B L E  I

Model Parameters of Scheme 1
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The allosteric model of Scheme 1 can account for the steady-state properties BK 

 channel gating with three equilibrium constants (L, J, and K) and three allosteric 

 factors (C, D, and E) (Horrigan and Aldrich 2002). 
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L is the closed to open equilibrium constant, with L0 as the zero voltage value of L, 

 and Q as the partial charge of the conformational change between the closed 

 and open state.
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J is the voltage sensor equilibrium constant with J0 as the zero voltage value of J, and 

 z as the partial charge of the voltage sensor.
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K is the equilibrium constant for calcium binding with KD as the Ca2+ dissociation 

 constant of the closed state. 
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D is the allosteric factor describing interactions between channel opening and 

 voltage sensor activation with z as the partial charge of the voltage sensor, and VhC 

 and VhO as the half activation voltages of the closed and open states, respectively.

= C

O

K
C

K

C is the allosteric factor describing interactions between channel opening and Ca2+ 

 binding with KC and KO as the Ca2+ dissociation constant for the closed and open 

 channel, respectively.

E E is the allosteric factor describing interactions between Ca2+ binding and voltage 

 sensor activation.
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model presented in Scheme 1 was applied to determine 

which aspects of BK channel gating were being altered by 

the permeant ion. The macroscopic and single channel 

kinetics in thallium solutions could both be accounted for 

by the addition of a short-lived nonconducting fl icker 

state (Scheme 2). This fl icker state may be related to the 

collapsed structure of the selectivity fi lter seen with KcsA.

  (SCHEME 2)

M AT E R I A L S  A N D  M E T H O D S

Channel Expression
The wild-type BK channel construct used in these experiments 
was the mbr5 clone of the mouse mslo gene, which was provided by 
L. Salkoff (Washington University School of Medicine, St. Louis, 
MO). Several silent mutations were made throughout this clone to 
facilitate subcloning and mutagenesis. The mBr5 clone was prop-
agated in a modifi ed Blue Script vector BS-MXT (Stratagene) in 
the Escherichia coli strain DH5-α. cRNA was transcribed from this 
vector in vitro using the mMessage mMachine kit with T3 poly-
merase (Ambion). For macroscopic recordings, �0.05–0.5 ng of 
cRNA was injected into Xenopus laevis oocytes 2–8 d before record-
ing. mBr5 was also incorporated into a mammalian expression 
vector containing the SV-40 promoter. HEK293 cells expressing 
the large T-antigen of the SV-40 virus promoter were cotransfected 
with mBr5 and a transcript encoding green fl uorescent protein 
was used as a transfection marker. Approximately 1 μg DNA was 
tranfected onto plates using Lipofectamine 2000 (Invitrogen).

Electrophysiology
Excised patches, in inside-out and outside-out confi gurations, 
were transferred into a separate chamber and washed with at least 
50 volumes of internal solution. All experiments were done at 
22°C. Patches were allowed to stabilize for at least 5–10 min be-
fore recording. K currents were recorded with internal solutions 
containing (in mM) 100 mM KNO3, 20 mM HEPES, 4 HCl and 
40 μM (+)-18-crown-6-tetracarboxylic acid (18C6TA) to chelate 
contaminating barium. “0 calcium” solutions contained 5 mM 
EGTA, reducing free calcium to �0.8 nM. Calcium solutions were 
buffered with HEDTA, EGTA, or NTA, depending on the targeted 
free concentration. Calcium concentrations were measured with 
a calcium electrode (Orion Research, Inc.). External potassium 
solutions contained (in mM) 100 KNO3, 20 HEPES, and 2 MgCl2. 
The pH for the internal and external solutions was adjusted to 7.2 
with methane sulfonic acid (MES). For thallium solutions, KNO3 
was replaced in all solutions by TlNO3. TlOH was added to ac-
count for the difference in activity between KNO3 and TlNO3. 
For N-methyl glucamine (NMG) and sucrose solutions, 100 mM 
N-methyl glucamine-methane sulfonate replaced KNO3, 200 mM 
sucrose replaced KNO3. Extreme care was taken to account for all 
junction potential errors. Junction potentials were measured for 
all possible solution confi gurations, and the data were adjusted 
 accordingly. There was never any junction potential error >7 mV.

Data were acquired at room temperature with an Axon 200-A 
patch clamp amplifi er (Axon Instruments, Inc.) in the resistive 

feedback mode and a Macintosh-based computer system using 
Pulse acquisition software (HEKA Electronik) and the ITC-16 
hardware interface (Instrutech Scientifi c Instruments). Unless 
otherwise indicated, currents were digitized at 20-μs intervals for 
macroscopic currents and 5-μs intervals for single channel cur-
rents. Experiments were low-pass fi ltered at 20 kHz using an 
 external eight pole Bessel fi lter (Frequency Devices). Before 
 macroscopic currents were analyzed, capacity and leak currents 
were subtracted using a P/5 leak subtraction protocol with a hold-
ing potential of −120 mV and voltage steps opposite in polarity to 
those in the experimental protocol. Patch pipettes were made 
with borosilicate glass (VWR Micropipettes) or thick walled 1010 
glass (World Precision Instruments), coated with wax (KERR 
sticky wax) to minimize electrode capacitance and fi re polished 
before being used. Pipette access resistance was measured in bath 
solutions (0.5–1.5 MΩ). For recordings with currents >2 nA, the 
internal circuitry of the amplifi er was used to compensate for at 
least 80% of the series resistance. For recordings with <2 nA of 
current, the pipette access resistance was used to estimate the se-
ries resistance errors of the command voltage and corrections to 
this error were made to the command potential. For all kinetic 
measurements, there was <5 mV series resistance error.

Data were analyzed using Igor Pro software (Wavemetrics) and 
single channel data were analyzed using the ScanApp analysis 
software developed by Dorothy Perkins and Dan Cox.

To record the GV curves, patches were held at −100 mV and 
then stepped to from −100 to 140 mV at 10-mV intervals for 20 ms 
and then stepped down to −80 mV. To increase the signal to noise 
ratio, 4–12 current families were recorded under identical con-
ditions and averaged before display and analysis. The minimal 
inward current during the −80 mV voltage step (i.e., the “tail” 
current) was plotted as a function of the voltage of the preceding 
step. The normalized plot of these values is a measure of the chan-
nel’s ability to open over a range of voltages. GV curves were fi t 
with a Boltzmann function: G = {1 + exp[−z(V − V1/2)/kT]}−1.

The deactivation kinetics were measured by holding the mem-
brane potential at 150 mV for 30 ms to open all of the channels 
and then stepping to a series of potentials (from −200 to +200 mV) 
at which the deactivation time constant was measured by a single 
exponential fi t. The deactivation currents were fi t with single or-
der exponentials and the goodness of fi t was evaluated. Near the 
reversal potential, fi ts were performed on small currents; the 
small size of the current created some variability in the fi ts. How-
ever, this variability was reduced when the deactivation rates from 
multiple patches were averaged (n = 13–17).

R E S U LT S

Effects of Permeant Monovalent Cations 
on BK Channel Gating
Macroscopic BK channel currents were recorded in 

symmetrical solutions of potassium, rubidium, cesium, 

and thallium (Fig. 1 A). As previously described, changes 

in gating kinetics were observed with rubidium and ce-

sium (Demo and Yellen, 1992). Rubidium and cesium 

both increased the activation rate and decreased the de-

activation rate. For currents recorded in rubidium and 

cesium, there was no signifi cant change in the range of 

voltages required to open the channel, as illustrated by 

the conductance versus voltage curve (Fig. 1 B).

Symmetrical thallium ions were found to have a dra-

matic effect on the range of voltages at which the channels 

open (Fig. 1 B), shifting the GV curve by approximately 
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+38 mV. Fig. 1 (C and D) shows paired current traces 

from patches recorded with either symmetrical potassium 

or symmetrical thallium. Thallium slows the activation 

and deactivation of BK channels.

Permeating Thallium Alters Channel Kinetics
The effects of symmetrical thallium on gating could 

arise from either thallium occupancy of the pore, an ac-

tion of thallium at an internal or external site on the 

channel protein, or both. If thallium is acting on the 

channel as it passes through the permeation pathway, it 

would be predicted that the kinetics would only be al-

tered when thallium is primarily occupying the selectiv-

ity fi lter. The selectivity fi lter can be selectively occupied 

by controlling the internal solution and the direction of 

the current.

The deactivation kinetics were measured under four 

conditions: symmetrical thallium, symmetrical potas-

sium, internal potassium with external thallium, and in-

ternal thallium with external potassium. The deactivation 

kinetics displayed a dramatic dependence on the direc-

tion of current fl ow. A plot of the deactivation time con-

stants as a function of voltage for data with internal 

potassium is shown in Fig. 2 A with either external po-

tassium or external thallium. At positive potentials, po-

tassium was the permeating ion and primarily occupied 

the selectivity fi lter. At these voltages, the deactivation 

rate constants were not affected by the external thal-

lium and corresponded to the deactivation rate seen in 

symmetrical potassium. At negative potentials, current 

was fl owing from the external side of the membrane to 

the internal side. The deactivation rate constants from 

currents recorded with external thallium abruptly 

shifted at the reversal potential, refl ecting the slower ki-

netics induced by thallium. At negative potentials, a dif-

ference was seen in the rate constants between inward 

potassium currents and inward thallium currents. The 

same dependence on deactivation rate with permeating 

ion was seen with internal thallium and external thal-

lium or potassium (Fig. 2 B). At positive potentials 

above the reversal potential, the outward current corre-

sponds to the slower thallium deactivation time con-

stants. The kinetics with external potassium abruptly 

shifted at the reversal potential to slower deactivation 

rates as internal thallium primarily occupied the selec-

tivity fi lter. Taken together, these results argue strongly 

that the effects of thallium on tail current kinetics occur 

as a result of thallium occupancy in the channel.

The abrupt change in kinetics at the reversal potential 

suggests that the selectivity fi lter undergoes a surpris-

ingly steeply voltage-dependent change of occupancy 

at the reversal potential. Such a steep voltage depen-

dence of occupancy is compatible with the high con-

ductance and well-documented ion–ion interactions in 

BK channels. Strong ion interactions would lead to a 

large fl ux-ratio exponent (Hille, 2001), which would be 

expected to tightly correlate the unidirectional fl uxes 

and net fl uxes, causing a steep voltage dependence to 

the change in the directionality of the net fl ux at the 

reversal potential.

Figure 1. BK channel currents recorded with four different per-
meant ions. (A) Currents recorded with 100 mM symmetrical 
 potassium, rubidium, cesium, and thallium. (B) The conductance 
versus voltage curve from currents recorded in symmetrical potas-
sium (squares), symmetrical cesium (triangles), symmetrical ru-
bidium (diamonds), and symmetrical thallium (circles). Thallium 
produced a signifi cant shift in the GV curve to higher potentials 
as analyzed by a shift in the V1/2 of the Boltzmann fi t (by ANOVA, 
P = 6.87 × 10−8), unlike cesium and rubidium (P = 0.845 for 
 cesium and P = 0.954 for rubidium). Thallium, rubidium, and 
cesium all changed the slope of the GV curve. Thallium alters the 
gating of BK channels: (C) Currents in response to a 200-mV volt-
age step traces recorded from the same patch. Currents were nor-
malized to the maximal steady-state current for both symmetrical 
potassium (black) and symmetrical thallium (gray). (D) Inward 
tail currents in response to a −80-mV pulse. These currents were 
preceded by a +200-mV pulse. Currents are normalized to the 
peak of the tail current. Solutions are either symmetrical potas-
sium (black) or symmetrical thallium (gray). All currents were 
 recorded with 300 μM internal calcium.



 Piskorowski and Aldrich 561

Effects of Thallium on Steady-state Gating
As shown in Fig. 1, thallium shifts the range of voltages 

required to open the channel to higher potentials. Is 

this effect on the steady-state kinetics due to thallium 

interacting through the selectivity fi lter or somewhere 

else in the channel?

To address this question, currents were recorded under 

two biionic conditions: external potassium with  internal 

thallium and external thallium with internal potassium. If 

thallium can only alter the GV from one side of the mem-

brane, and not via the permeation pathway, then a shift in 

the GV curve would be expected for only one of these 

conditions. If thallium is shifting the GV by a site on the 

external face of the channel, a shift in the GV would be 

seen only in conditions containing external thallium.

The GV shifted relative to symmetrical potassium for 

both biionic conditions. As shown in Fig. 3, the V1/2 

for symmetrical potassium was −29.8 ± 8.657 mV (n = 

29), for internal potassium with external thallium it was 

−7.01 ± 8.52 mV (n = 15), and for internal thallium 

with external potassium it was −0.09 ± 6.3 mV (n = 17). 

For symmetrical thallium, the V1/2 was 3.75 ± 7.49 mV 

(n = 21). If thallium is acting on the channel through 

the permeation pathway alone, then the ion carrying the 

current will dictate the gating behavior of the channel. 

Since the GV curves for the two biionic solutions strad-

dle the reversal potential, potassium and thallium would 

both carry the current at voltages where the GV curve is 

determined. This would potentially create a smaller shift 

in the GV than if thallium alone were permeating.

The GV shift by thallium was further analyzed under 

conditions in which only one kind of ion is passing 

through the selectivity fi lter. A consistent change in the 

slope (z) of the GV curve is seen along with its shift to 

more positive voltages. This effect of thallium depends 

on the sidedness of thallium action. This slope of the 

GV curve was 1.31 ± 0.27 (n = 17) for internal potas-

sium with external thallium and 1.79 ± 0.15 (n = 15) 

for internal thallium with external potassium.

A series of experiments was performed with the non 

permeant ion NMG in order to assess the effect of the 

charge carrying ion on the GV curve. All of the perme-

ant ions on one side of the membrane were replaced 

with NMG. Conditions were selected so that all currents 

would only be going through the membrane in one di-

rection over the range of activation voltages. For exam-

ple, to investigate how the internal ion alters gating in 

the BK channel, all external permeant ions were re-

placed by NMG, and the internal calcium concen-

tration was lowered to 2 μM so that the channels would 

require more positive voltages to activate. The patches 

were stepped from 0 to 210 mV and the tails were re-

corded at 5 mV. Under these conditions, the selectivity 

fi lter could only be populated by the internal ion.

Fig. 4 (A and B) shows data from patches recorded 

with external NMG and either internal potassium or 

thallium solutions. Internal thallium shifted the GV 

curve by �33 mV relative to internal potassium. While 

the shift in the GV curve was similar to the shift seen with 

symmetrical solutions (�30 mV), the slope of the GV 

was found not to signifi cantly differ between conditions 

with internal potassium (z = 1.84 ± 0.07, n = 5) and 

internal thallium (z = 1.85 ± 0.02, n = 6) by ANOVA, 

P = 0.9993. These results indicate that thallium is acting 

on the channel via the permeation pathway or the inter-

nal face of the channel to shift the V1/2. The change in 

slope seen with symmetrical and external thallium/ 

internal potassium solutions seems to be due to an in-

teraction between thallium and an external site.

To investigate any potential interactions between thal-

lium and the external face of the channel, the opposite 

NMG experiment was performed. All of the internal 

permeant ions were replaced by NMG, and either thal-

lium or potassium solutions were external. The internal 

calcium concentration was raised to 300 μM so the 

channels would be active at negative voltages below the 

reversal potential. As shown in Fig. 4 (F and G), the GV 

Figure 2. Deactivation rates shift at the reversal potential under 
biionic conditions. (A) Deactivation rates from data collected 
in symmetrical potassium (solid black squares) or internal potas-
sium with external thallium (open gray squares). (B) Deactiva-
tion rates from data collected in symmetrical thallium (solid gray 
circles) or internal thallium with external potassium (open black 
circles). Each data point is the mean ± SEM. For symmetrical 
 potassium, n = 19, symmetrical thallium, n = 17, internal thallium 
with external potassium, n = 15, internal potassium with external 
thallium, n = 13. Zero internal calcium.
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was shifted by �38 mV. This shift indicates that thallium 

does not need to interact with the intracellular face of 

the channel to induce the GV curve shift. However, the 

shift in V1/2 from external ions fl owing inward is com-

pounded by a reduction in the slope of the GV curve. 

For external potassium, the z value was 1.4 ± 0.11, and 

for external thallium it was 1.1 ± 0.10 . The shift in the 

V1/2 is larger for this set of conditions than when thal-

lium carried outward current, and it is likely due to this 

additional effect of external thallium on the GV curve’s 

slope along with the effect of the thallium and the per-

meation pathway.

The slopes from the GV curves of currents recorded 

with internal NMG solutions were shallower than the 

slope from currents recorded with internal permeant 

ions (1.4 ± 0.16 for symmetrical thallium and 1.84 ± 

0.27 for symmetrical potassium). Extra care was taken 

to correct for any artifacts arising from nonconducting 

solutions (junction potential shifts, series resistance). 

However, it is possible that this change in slope may be 

a result of complications from the absence of permeant 

ions on one side of the membrane. NMG has been 

shown to compete with potassium for a site in the inter-

nal vestibule (Lippiat et al., 1998); therefore NMG may 

have an unpredictable effect on pore occupancy under 

these conditions. To rule out a specifi c effect of NMG 

on the permeation pathway, these experiments were re-

peated with internal sucrose. The reduction in the GV 

curve slope was similar with internal NMG or sucrose.

From these results, it can be concluded that thallium 

can shift the GV curve to more positive voltages from 

 either side of the membrane. In addition, external 

 thallium causes the GV curve to be shallower. This re-

duction in slope contributes to the larger V1/2 shift ob-

served in conditions with external thallium. Thallium 

has two different effects on BK channel gating: one is the 

parallel shift in GV from ions passing through the per-

meation pathway, and the other is the reduction of the 

slope of the GV curve caused by external thallium ions.

Shifting the GV Curve with Increasing Mole Fractions 
of Thallium
To establish how the concentration of permeating thal-

lium affected the shift in the GV curve, currents were 

recorded from patches with external potassium and in-

ternal solutions with varying concentrations of thallium 

relative to potassium.

The V1/2 was shifted to higher potentials as the frac-

tion of thallium in the internal solution was increased. 

These experiments were done with 2 μM internal 

calcium. The channels would primarily be open at more 

positive potentials and the currents outward. The V1/2 

from these experiments are plotted in Fig. 5 A. The V1/2 

stopped increasing at 40–50 mM internal thallium and 

remained constant as the fraction of thallium was 

 increased further.

Fig. 5 B shows the single channel current amplitude 

at 70 mV for several patches recorded under the same 

conditions as the data shown in Fig. 5 A. Potassium is 

able to permeate better than thallium, so when potas-

sium is the only internal permeant ion, outward currents 

are �13 pA. As the potassium is replaced by thallium, 

the single channel current decreases as internal thal-

lium is increased. At �40 mM, the single channel cur-

rent magnitude does not change as potassium is replaced 

by thallium. The thallium concentration dependence is 

similar for the GV curve shift and the single channel cur-

rent, further supporting the idea that the effect of thal-

lium on gating occurs as a result of pore occupancy.

Application of Scheme I: Thallium Does Not Alter 
the Calcium Activation Pathway
To determine how permeating thallium is altering the 

gating of the BK channel, the model shown in Scheme 1 

was applied. Fig. 6 A shows the currents recorded from 

two patches recorded with three different internal cal-

cium concentrations and either symmetrical potassium 

or symmetrical thallium.

In the absence of calcium (10 mM internal EGTA), 

thallium altered the GV curve much as it does at higher 

calcium concentrations. There was an �32-mV shift to 

higher potentials in the V1/2 of the GV curve. To alter 

the activity of the channel in the absence of calcium, 

thallium would have to be altering a gating process that 

does not require calcium binding such as voltage sensor 

Figure 3. The gating of BK channels is infl uenced differently 
by internal and external thallium solutions. (A) The GV curve of 
BK channels recorded in four conditions: symmetrical potassium 
(solid black squares), internal potassium with external thallium 
(open black squares), internal thallium with external potassium 
(open gray circles), and symmetrical thallium (closed gray cir-
cles). The solid lines are fi ts with Boltzmann curve. (B) Box plots 
of the half activation, V1/2, from the Boltzmann fi ts for the four 
conditions. (C) Box plots of the z values from the Boltzmann fi ts. 
Box plots display the median and the 10th, 25th, 75th, and 90th 
percentiles. All data was recorded in 300 μM internal calcium.
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activation or channel opening. However, even though 

these results in the absence of internal calcium show 

that thallium alters a gating mechanism different from 

calcium dependence, they do not rule out the possibil-

ity of additional effects of thallium on the calcium acti-

vation mechanism.

Figure 4. Gating effect from internal permeant 
ions. (A) Currents from an inside-out patch with ex-
ternal NMG and internal potassium. (B) Currents 
from an inside-out patch with external NMG and in-
ternal thallium. (C) The GV curves from multiple 
experiments. (D) Box plots of the V1/2 from 
 Boltzmann fi ts of all the data with external NMG. (E) 
Box plots of the z values from Boltzmann fi ts (n = 6 
for potassium and n = 5 for thallium). (F) Currents 
from an inside-out patch with internal NMG and ex-
ternal potassium. (G) Currents from an inside-out 
patch with internal NMG and external thallium. (H) 
The GV from multiple experiments. (I) Box plots of 
the V1/2 from Boltzmann fi ts of all the data with ex-
ternal NMG. (J) Box plots of the z values from 
 Boltzmann fi ts. (n = 11 for potassium and n = 13 
for thallium).
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shift in the GV curves caused by permeating thallium 

was examined independently of the external effect of  

thallium. This was done by limiting the data to expe-

riments with external potassium and either internal 

 potassium or thallium. Curves from data recorded with 

different calcium concentrations were fi t simultane-

ously (Fig. 7). For curve fi tting, one or two parameters 

were allowed to vary while the others were constrained. 

The results of these fi ts are in Table II.

Simultaneous fi ts of GV curves with the coupled allo-

steric model revealed that the vast majority of the effect 

of permeating thallium could be accounted for by in-

creasing L, the closed to open transition equilibrium 

constant. The fi ts of the data were not improved if any 

of the other parameters were allowed to vary. This result 

indicates that permeating thallium is disrupting the 

equilibrium between the open and closed states of the 

channel while not altering the voltage or calcium activa-

tion pathways.

The external effect of thallium was also examined 

by fi tting GV curves with the coupled allosteric model 

(Scheme 1). GV curves from data recorded with either 

external thallium or external potassium and various cal-

cium concentrations with internal potassium were fi t si-

multaneously. The external effect of thallium could be 

accounted for in two ways. First of all, reasonable fi ts to 

the data were achieved by changing both L, the equilib-

rium constant between the open and closed states, and 

by reversing the sign of Q, the voltage dependence as-

signed to L. A change in the sign of Q would indicate 

that charges may move in the opposite direction across 

the electric fi eld upon channel opening in the presence 

of external thallium. However, this change in sign would 

predict the deactivation time constants to increase at 

very negative voltages, which is inconsistent with our 

data (Fig. 2). If the value of Q was constrained and L 

alone allowed to vary, the fi ts were slightly off at the base 

of the GV curves.

However, the external effect of thallium could also be 

reproduced with the model by changing L along with 

D, the allosteric factor describing interactions between 

voltage sensor activation and channel opening, as well 

as VhC,, the half activation voltage of the closed state of 

the channel. As shown in Table I, D is the factor by 

which opening of the channel is enhanced by voltage 

sensor activation, and VhC is the voltage at which the 

voltage sensors are half activated in the closed state. 

Changes with these parameters  would indicate that 

external permeant ions are altering the response of the 

voltage sensors (i.e., J) and/or altering the ability of the 

voltage sensors to promote opening (i.e., D). Unfortu-

nately, it is impossible to differentiate the effects of 

 external thallium on voltage sensor activation and allo-

steric activation with this data. Hence, the exact mecha-

nism of the external effect of thallium on voltage 

activation remains elusive.

Figure 5. The shift in the GV curve as internal potassium is 
 replaced by thallium. (A) V1/2 from Boltzmann curve fi ts plotted 
as a function of the concentration of internal thallium. (B) The 
single channel current at 70 mV as a function of the concentra-
tion of internal thallium. The different symbols represent data 
 recorded from different patches. All patches were recorded in 
 external potassium and 50 μM internal calcium. The osmolarity 
is balanced by potassium. 

To understand further how thallium alters BK chan-

nel gating, the GV were measured for both symmetri-

cal thallium and symmetrical potassium at seven 

calcium concentrations: 0, 2, 5, 10, 50, 100, and 300 

μM. For all seven calcium concentrations, currents re-

corded in symmetrical thallium had approximately 

the same shift in the GV curves compared with cur-

rents recorded in symmetrical potassium. The V1/2 val-

ues are plotted as a function of calcium concentration 

for both symmetrical potassium and symmetrical thal-

lium solutions in Fig. 6 C. The difference in V1/2 as a 

function of calcium is shown in Fig. 6 D. These results 

show clearly that the thallium-induced shift in acti-

vation to more positive voltages is independent of 

 calcium concentration.

Fig. 6 E shows that the external thallium-induced 

change in GV curve slope is also independent of cal-

cium concentration. With symmetrical potassium solu-

tions, the slope of the GV curve is around 1.6 ± 0.2 in 

the absence of internal calcium. GV curves from cur-

rents recorded with symmetrical thallium solutions con-

sistently decreased the slope by 20%, to 1.3 ± 0.14.

Application of the Coupled Allosteric Model
The coupled allosteric model (Scheme 1) was used to 

fi t the GV curves from currents recorded with potas-

sium or thallium solutions. To simplify the analysis, the 
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Fitting Data at Very Low Opening Probability
For the coupled allosteric model to account for the 

 permeating effect of thallium, a change in L alone was 

suffi cient. Fitting the GV curve with the model was a 

useful way to isolate parameters that have been poten-

tially altered in the gating process. To further test the 

hypothesis that the open–closed equilibrium (L) is pri-

marily being altered when thallium is permeating the 

channel, data collected at very low open probabilities were 

fi t with the model. At these very low voltages it is possible 

to isolate opening and closing transitions without acti-

vation of voltage sensors (Horrigan and Aldrich, 2002).

The voltage dependence of the opening probability at 

very low voltages is an estimate of Q. If there is a change 

in the concerted opening voltage dependence, then the 

slope of the low open probability plot would be expected 

to change. The open probability (NPO) was measured 

with inside-out patches that contained hundreds to 

thousands of channels, and was estimated in two sepa-

rate ways: NPO was determined from all-points ampli-

tude histograms by measuring the fraction of time spent 

(PK) at each open level (k) using a half-amplitude crite-

ria and summing their contributions NPO = ΣkPK. NPO 

was also determined by fi tting PK with a Poisson distri-

bution PK = e−NPo(NPO)k/k!. Both of these methods re-

sulted in NPO values that agreed within 3% consistent 

with the assumption that the observed currents repre-

sent the activity of a large uniform population of chan-

nels opening with very low probability (Horrigan et al., 

1999; Horrigan and Aldrich, 2002). Plots of NPO are 

shown for several different patches in Fig. 8 (A and B).

The slopes of the NPO voltage curves did not signifi -

cantly differ for currents recorded with symmetrical po-

tassium (0.35 ± 0.116, n = 11) or with external thallium 

and internal potassium (0.36 ± 0.15, n = 12). This lack 

of change in slope indicates that the voltage depen-

dence of the concerted opening transition is not altered 

by external or permeating thallium. Therefore external 

thallium is probably altering the voltage activation of 

the channel by acting through the voltage sensor activa-

tion pathway.

To test the results more completely, plots of the logPOV 

curve were fi t with the coupled allosteric model. For 

these experiments, the opening probability was measured 

Figure 6. Calcium activation of BK channels in symmetrical 
 potassium and thallium solutions. (A) Two patches with either 
symmetrical potassium (black) or symmetrical thallium (gray) at 
three different calcium concentrations. (B) Averages of GV curves 
from multiple voltage families from the patch shown in A. (C) 
Plot of V1/2 from Boltzmann fi ts at multiple calcium concentra-
tions for symmetrical potassium solutions (black squares) and 
symmetrical thallium solutions (gray circles). (D) The difference 
in the V1/2 at each calcium concentration for symmetrical thal-
lium and potassium. (E) The z values from Boltzmann fi ts of GV 
curves from patches with external potassium (black squares) or 
external thallium (gray circles).
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over a very wide range of voltages (−160 to 300 mV). 

This wide range of voltages presented a problem: exter-

nal thallium alters the voltage activation of the channel 

and measurements of the opening probability at nega-

tive voltages with permeating thallium require external 

thallium. However, the NPOV plots indicated that there 

was no signifi cant difference in the voltage dependence 

of the opening probability with internal and external 

thallium at these voltages (Fig. 8, A and B, from ANOVA, 

with mean slopes of 0.35 and standard deviation of 0.02 

for potassium and mean of 0.37 and standard deviation 

of 0.06 for thallium, P = 0.89). The permeating effect 

of thallium could be isolated from the external effect by 

using data from patches with internal potassium and ex-

ternal thallium for negative voltages and data from 

patches with external potassium and internal thallium 

for positive voltages. In this way, PO was estimated from 

the NPO when the number of channels could be ap-

proximated. Fig. 8 C shows a plot of the logPO for per-

meating thallium and symmetrical potassium. The 

points presented in Fig. 8 C are data from one experi-

ment in which currents were recorded at a very wide 

range of voltages. The solid lines are from fi ts with the 

coupled allosteric model with values from simultane-

ously fi tting data from multiple experiments. The per-

meating thallium data were fi t with all of the same 

parameters as the potassium data with only L being the 

free parameter. Allowing the other free parameters to 

vary independently along with L did not improve the 

overall fi t.

Thallium Increases the Flicker of the BK Single Channels
As reported previously for BK channels (Blatz and 

Magleby, 1984), the single channel conductance of thal-

lium is �20% less than that of potassium. The currents 

shown in Fig. 9 (A and B) were recorded with external 

NMG in the pipette. The two traces are from the same 

patch with either internal potassium or internal thal-

lium. These currents were recorded with 10 mM inter-

nal EGTA and no added calcium.

As can be observed from the single channel records 

in Fig. 9, thallium increases the number of short fl icker 

closings. These short closing events have been previ-

ously characterized (Blatz and Magleby, 1984; Rothberg 

and Magleby, 1998; Talukder and Aldrich, 2000). The 

open and closed durations are plotted in dwell time his-

tograms (Fig. 9, C and D). There is a larger proportion 

of longer open dwell times for the potassium data than 

for the thallium data. The average time that the chan-

nel spent in the open conductance level before closing 

was �1.1 ms with potassium as the internal ion, whereas 

with thallium as the permeant ion, the average time 

that the channel spent at the open conductance level 

before closing was around 250 μs. Channels conduct-

ing thallium stay open for briefer times than channels 

conducting potassium.

The closed duration histograms also reveal differ-

ences in gating induced by thallium. As mentioned ear-

lier, the PO for the channel with internal potassium was 

higher than the PO with internal thallium. The histo-

grams for both the internal potassium and internal thal-

lium data have two easily distinguished populations of 

Figure 7. Simultaneous fi ts of GV curves with the allosteric 
model of Scheme 1. The top graph has data from three different 
calcium concentrations in symmetrical potassium solutions. The 
solid lines are fi ts with the 70-state model. All the calcium concen-
trations were simultaneously fi t. The lower graph has data from 
the same patch in the top panel, except with internal thallium 
and three concentrations of calcium. The solid curves are fi t with 
the Scheme 1.

TA B L E  I I

Steady-state Parameters

L0 Q z VhC KD C D E

Parameters that describe symmetrical potassium 1.67 × 10−6 0.3 e 0.58 e 150 mV 11 μM 8 30 2.4

Parameters that can account for external thallium, L and Q   9.7 × 10−7 −0.3 e 0.58 e 150 mV 11 μM 8 30 2.4

Parameters that can account for external thallium, L, D, and VhC      4 × 10−8 0.3 e 0.58 e 84 mV 11 μM 8 15 2.4

Parameters that can account for permeating thallium   2.3 × 10−5 0.3 e 0.58 e 150 mV 11 μM 8 30 2.4
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closed times; one with a mean closed duration of �8 ms 

and another with a mean of �100 μs. The PO measured 

from these traces is �0.4 with internal potassium and 

�0.2 for internal thallium. When thallium is the con-

ducting ion, the short fl icker closed events far outnum-

ber the longer closed events. The increased number of 

short fl icker events is primarily responsible for the 

 decreased PO for thallium currents.

How is fl icker dependent on the concentration of thal-

lium? To answer this question, single channel currents 

were recorded at 70 mV with external potassium and 

a varying mole fraction of thallium and potassium in the 

internal solution. Fig. 10 A shows how the mean open time 

decreased as the fraction of thallium was increased.

A useful metric for assessing the prevalence of the 

fl icker closed states is examining the number of open-

ings separated by brief fl icker closed events. The sets of 

openings, or bursts, are separated by longer-lived closed 

events. For this analysis, bursts were defi ned as series of 

openings that were separated by closing events >1 ms. 

To determine how sensitive the data were to the burst cri-

teria, the data were analyzed with closed-time cutoffs with 

500 μs, 750 μs, and 1.1 ms; the results were found not to 

signifi cantly differ in this range of burst criteria. As inter-

nal thallium replaced internal potassium, the number of 

openings per burst increased until the internal thallium 

was �50 mM and then remained constant (Fig. 10 B). 

The mean open duration also followed a similar pattern, 

decreasing until the internal solution was �50 mM and 

then not changing as the fraction of thallium was in-

creased. Both the decrease in open time and the increase 

in fl icker are dependent on the concentration of thal-

lium and correlate with the mole fraction effects seen 

with the GV shift induced by internal thallium, and single 

channel current amplitudes (Fig. 5, A and B). For all 

four phenomena, the channel gating behavior is altered 

as potassium is replaced by thallium over similar concen-

trations: the single channel current decreases, the GV 

shifts to higher potentials, the number of fl icker-closed 

events increases, and the mean open time decreases.

An additional experiment was performed to further 

test the theory that thallium is inducing this increase 

in fl icker by acting through the permeation pathway. 

In these experiments, single channel currents were re-

corded with external potassium in the pipette. The con-

centration of internal permeant ion (either potassium 

or thallium) was decreased while the osmolarity of the 

internal solution was adjusted with different concen-

trations of impermeant species NMG or sucrose. It is 

 assumed in this case that the selectivity fi lter will be 

 occupied by external permeant ions at positive poten-

tials when the internal solution lacks permeant ions. 

As permeant ions are added to the internal solu-

tion, it is expected that the selectivity fi lter will gradually 

be occupied by ions from the internal solution. As per-

meant ions are readily available on both sides of the 

membrane, the selectivity fi lter will be primarily occu-

pied by the internal ion at positive potentials.

The results of these experiments are shown in Fig. 

11. The currents recorded with increasing potassium 

solutions show a fairly constant mean open duration at 

potassium concentrations >40 mM. The mean open 

durations with internal potassium at concentrations 

<40 mM are slightly reduced. This reduction in mean 

open duration is most likely due to contamination by 

false threshold crossing by noise as the single channel 

current decreased. The noise was approximately on the 

order of 0.2–0.5 pA and the smallest single channel cur-

rent was on the order of 1–2 pA for potassium solutions 

and 0.7–1.2 pA for thallium solutions. As a result of this, 

the potassium data is skewed a bit to lower mean open 

times at lower potassium concentrations. This same infl u-

ence of noise is probably also corrupting the data from 

internal thallium concentrations. However, as thallium 

is increased, the mean open duration decreases. For 

currents recorded with internal thallium, the number 

of openings per burst increased as the concentration 

of thallium increased until thallium was �40 mM and 

then saturated. The number of openings per burst did 

Figure 8. NPO for external potassium and external thallium. 
NPO versus voltage plots from these two patches are being used 
as an example because their Ns are in the same range. (A) NPO 
at very low voltages for external potassium with internal potas-
sium (solid black circles) or internal thallium (solid gray cir-
cles). (B) NPO at very low voltages for a patch with external 
thallium and with internal potassium (open black circles) or 
 internal thallium (open gray squares). (C) Fit of logPO with the 
seventy state allosteric model. The opening probability over a 
very wide range of voltages for symmetrical potassium (black cir-
cles) and from −160 to 0 mV external thallium with internal po-
tassium and from 0 to +300 mV internal thallium with external 
potassium (gray circles).
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not show any dependence on the concentration of 

 internal potassium.

Flicker at Low Opening Probability
To investigate how permeant thallium is affecting the 

concerted opening transition of BK channels, the single 

channel behavior was investigated under conditions 

where the probability of a single channel opening event 

would be very low. Recordings were made in the pres-

ence of internal EGTA at negative voltages (−160 to 

−40 mV). Under these conditions, calcium is not pres-

ent to activate the channel, so the coupled allosteric 

model can be simplifi ed to a 10-state MWC model with 

voltage sensor activation in subunits activating the chan-

nel. At very low voltages, there is an extremely low prob-

ability that any voltage sensors would be activating.

Under these conditions, a single channel has an open 

probability <10−6. Currents were recorded from traces 

with hundreds to thousands of channels in the patch. 

Because of the very low opening probability for each 

channel, under these conditions two opening events 

 occurring at the same time was extremely rare.

According to the model, there are only a very small 

number of states being visited under these conditions. 

Normally, methods of fitting duration histograms 

could yield information about the kinetic rates between 

the states and be used to refi ne the kinetic model. This 

method of analysis has not been done here for two rea-

sons: the limited resolution of very short events and the 

large number of channels in each patch.

Even though the lifetimes of many events are not re-

solved due to bandwidth limitations, longer events are 

Figure 9. Single channels currents from the 
same inside-out patch. (A and B) The exter-
nal solution (pipette) contained 100 mM 
NMG and the internal solution (bath) con-
tained either 100 mM potassium or 105 mM 
thallium. This data was recorded at +150 mV 
with 0 μM internal calcium. (C and D) Open 
and closed dwell time histograms from the 
same patch shown in A and B. Black bins are 
from currents measured with internal potas-
sium and gray bins are from currents mea-
sured with internal thallium.
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still detected. It is reasonable to assume that compari-

son of detected open dwell times between potassium 

and thallium would still yield information about how 

thallium alters gating at low opening probability. Fig. 

12 A plots the average measured open duration for 

 currents recorded with either external thallium or po-

tassium and internal potassium. The measured open 

time for potassium is �20% longer than the average 

open time for thallium.

For these data, the number of very short fl icker clos-

ings observed during opening events was analyzed (Fig. 

12 B). This analysis is based on the assumption that the 

fl icker closing events seen during an opening event 

from one channel are due to gating events from that 

same channel. Under these conditions there were no 

observed instances where more than one channel opens 

at the same time. With potassium as the permeant ion, 

fl icker closings were observed in 4 ± 1% (n = 11) of the 

events. With thallium as the permeant ion, �15 ± 2% 

(n = 10) of the openings contained at least one short 

fl icker closing. These differences are statistically signifi -

cant with a P value <0.0001. This detection of short-

lived fl icker states indicates that there is more than one 

closed state that the channel can occupy under these 

conditions. While potassium is the permeating ion, a 

larger proportion of longer open times is detected than 

when thallium is the permeating ion. Also, even though 

there is a decrease in the number of longer-lived open-

ing events with thallium, there is an increase in the 

number of short fl icker closings. The detected open 

times may be longer with potassium for two reasons: the 

open state may be more stable or the lifetimes of the 

fl icker events may be too short to be detected, causing 

the openings to appear unnaturally longer. To qualita-

tively address these questions, lifetimes of the brief 

closed events were tallied for both conditions. The aver-

age detected closed fl icker time did not signifi cantly dif-

fer between permeant potassium (92 ± 13 μs, n = 11) 

and permeant thallium (89 ± 11 μs, n = 10), by ANOVA, 

P = 0.9992. Because of the large number of undetected 

events, these results are not conclusive. However, this 

does provide evidence that the fl icker closings exist at 

very low opening probability and do not require cal-

cium binding or voltage sensor activation. It is possible 

that much of the 20% difference in mean open times 

between thallium and potassium conditions is a result 

of the increased occurrence of fl icker closings. The ac-

tual fl icker closed state is itself not altered by thallium, 

only the chance of entering it from the open state.

Increase of Flicker by Thallium at High Opening Probability
To test further whether thallium is altering the stability 

of the fl icker state, data was collected at higher opening 

probability. At 300 μM internal calcium and voltages 

Figure 10. Mole fraction effects on the mean open time and 
number of openings per burst. At point 0 on the x axis, the inter-
nal solutions is 100 mM potassium. The potassium in the internal 
solution was replaced by thallium until the internal thallium 
 concentration was 100 mM. Potassium solutions were external for 
all experiments and the membrane potential was held at 70 mV. 
(A) The mean open time decreased as thallium replaced potas-
sium. (B) The number of openings per burst increased as the 
fraction of thallium increased.

Figure 11. Concentration dependence of the mean open time 
and number of openings per burst. Increasing concentrations of 
potassium (black squares) had little to no effect on the mean 
open time and number of openings per burst. However, increas-
ing concentrations of thallium (gray circles) decreased the mean 
open time and increases the number of openings per burst. 
 Membrane potential was held at 70 mV.
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>50 mV, the channel is maximally open while potas-

sium or thallium is permeating.

At very high opening probabilities, the dwell time his-

togram for the closed conductance level is dominated 

by a large number of flicker closing events (Taluk-

der and Aldrich, 2000). If permeating thallium is only 

altering the probability of the channel to enter the 

fl icker state from the open state, and not actually alter-

ing the ability of the channel to leave the fl icker state, 

then no change would be expected in the closed time 

histograms under these conditions. To test this hypoth-

esis, currents were recorded in patches with external 

potassium solutions and either internal potassium or 

thallium. Fig. 13 shows the dwell time histograms for a 

patch recorded at +50 and +70 mV with either potas-

sium or thallium in the internal solution. The open 

dwell-time histograms are shifted to shorter lifetimes 

when thallium is the permeating ion. For potassium, 

the average open dwell-time was between 2.5 and 3.0 ms. 

For thallium, the average open dwell-time was reduced 

to �1.0–1.5 ms. There were no detectable differences 

in the closed dwell-time distributions for permeating 

thallium and permeating potassium for all seven of the 

patches examined.

These results support the theory that thallium is en-

hancing the probability that the channel will enter a 

short-lived fl icker state once it is in an open state. The 

stability of the fl icker state itself is not apparently af-

fected by permeating thallium because the closed life-

times are not apparently different. Can the fl icker state 

access the closed state? If the fl icker state can only be 

accessed via the open state, then it would be predicted 

that the total open time per burst would be unchanged 

between potassium and thallium. The mean open time, 

the number of openings per burst and the mean total 

open time per burst were compared between currents 

with permeating potassium (n = 3–6) and thallium (n = 

4–6) (Fig. 14).

The mean open time decreased with thallium perme-

ation from +30 to +90 mV (Fig. 14 A). The number of 

openings per burst also increased, indicating an in-

crease in the number of short fl icker closings between 

openings (Fig. 14 B). The mean total open time per 

burst, the product of the mean open time and number 

of openings per burst, slightly decreased when thallium 

was the permeant ion (Fig. 14 C), suggesting a possible 

pathway between the fl icker state and the long-lived 

closed state. However, such a pathway has not been con-

clusively proven in this experiment; the difference be-

tween the thallium and potassium data is not very 

substantial. Extensive single channel analyses have 

shown that BK single channel kinetics require multiple 

open and closed states to account for the data (Blatz and 

Magleby, 1984; Rothberg and Magleby, 1998; Talukder 

and Aldrich, 2000); thus, this complex kinetic behavior 

may mask the effect of thallium on the stability of the 

open state with this measurement.

D I S C U S S I O N

Thallium affected gating of the BK channel in two ways: 

thallium on the external face of the channel alters the 

voltage sensitivity of the channel as evidenced by the 

decrease in the slope of the GV curve; and thallium as 

the permeating ion alters the opening and closing tran-

sition as evidenced by the parallel shift in the GV curve 

and also increases the number of single channel fl icker 

events. Calcium activation of the channel was not al-

tered in either condition.

External Effect of Thallium
External thallium was found to decrease the slope of 

the GV curve. This external effect was independent of 

the permeating ion. This was analyzed by fi tting GV, 

NPO vs. voltage, and log PO vs. voltage plots with the 

coupled allosteric model. The parameters representing 

the equilibrium for voltage sensor activation in the 

closed channel (VhC) had to be adjusted to account for 

the changes in gating induced by thallium. Addition-

ally, the allosteric factor that describes enhanced open-

ing by voltage sensor activation (D) also had to be 

adjusted, as well as the equilibrium between the closed 

and open states (L). A mechanistic interpretation of 

Figure 12. (A) Mean open time (overestimate) from patches 
containing multiple channels. Symbols are the average ± SEM of 
mean open durations from patches with symmetrical potassium 
(black squares, n = 10) or internal potassium and external thal-
lium (gray circles, n = 9). (B) Average number of openings per 
burst recorded at very low PO for currents recorded with potas-
sium (black squares, n = 10) and symmetrical thallium (gray 
 circles, n = 11).
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these modeling results would be that external thallium 

inhibits motion of the voltage sensor for the closed and 

the open channel and/or inhibits the voltage sensors 

from enhancing the opening of the channel. It was also 

possible to account for all of the external thallium ef-

fects by changing the closed–open equilibrium (L) and 

its voltage dependence (Q). The deactivation time con-

stants did not increase at negative potentials, nor was 

there a change in the slope of NPO at very low probabili-

ties. Both of these results are incompatible with a change 

in Q. We therefore favor the former interpretation.

In BK channels, neutralization of the aspartic acid in 

the GYGD signature sequence had dramatic effects on 

the voltage gating of the channels. The activation curves 

of the channel were shifted by �20 mV to more depo-

larized potentials (Haug et al., 2004a). It was concluded 

from gating current measurements that the voltage sen-

sors are not affected, but that the voltage sensitivity of 

the concerted allosteric opening transition is reduced. 

The authors state that the neutralization of this residue re-

duces the stability of the open state (Haug et al., 2004a). 

Perhaps external thallium is inducing a similar destabi-

lizing effect on the external face of the selectivity fi lter.

External ions have been found to alter the voltage gat-

ing in Shaker, KV1.5, and KV2.1 channels. For Shaker, ex-

ternal barium was found to increase the rate of off gating 

currents (Hurst et al., 1997). It was concluded that bar-

ium binding in the selectivity fi lter destabilized the open 

state and enhanced closing (Hurst et al., 1997). Similar 

results were seen with KV1.5, where extracellular cesium 

and rubidium accelerated the off gating currents (Wang 

et al., 1999). For KV2.1, the on gating currents were in-

creased with the presence of permeating ions (Consiglio 

and Korn, 2004). For all of these cases, external ions al-

ter the stability of the open state. External thallium may 

be acting through a similar mechanism.

Consiglio and Korn (Consiglio et al., 2003; Consiglio 

and Korn, 2004) proposed that the outer vestibule of 

the selectivity fi lter is only a few angstroms away from 

the voltage sensor. They stated that possible conforma-

tional changes in the selectivity fi lter could allosterically 

translate to the S4 and impede activation or deacti-

vation. This theory can also be applied to the effect of 

external thallium. Because thallium is much more 

 electronegative than potassium, it is possible for it to 

form stronger interactions with backbone carbonyl oxy-

gens, or side chains in the outer vestibule of the selectiv-

ity fi lter. These interactions may be altering the structure, 

and hence altering the voltage activation of the chan-

nel. Such a close interaction between the voltage sen-

sors and the external vestibule, however, would be 

incompatible with the published structure of Kv1.2 

(Long et al., 2005a, 2005b); however, it is conceivable 

that they are closer in different gating states.

Permeating Effect of Thallium
Permeating thallium caused a parallel shift in the GV 

curve for macroscopic currents. The time course of de-

activation was also decreased. At the single channel 

level, permeating thallium increased the number of 

short fl icker events. Qualitatively, all of these results 

 indicate that the open state of the channel is destabi-

lized by thallium. The coupled allosteric model could 

account for the change in kinetics if the parameter 

Figure 13. Duration histograms from one patch with either 
 internal potassium (black bars) or internal thallium (gray bars) 
solutions. Potassium solutions were in the pipette.

Figure 14. Results of further single channel analysis at high Po. 
(A) The mean open duration for currents with potassium as the 
permeating ion (black squares) or thallium as the permeating ion 
(gray circles). (B) The mean number of openings per burst for 
the two conditions. (C) The mean open time per burst for the two 
conditions. This value is the product of the mean open time and 
the number of openings per burst for each patch.
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 representing the equilibrium between the closed and 

open states, L, was adjusted. Single channel analysis re-

vealed that permeating thallium decreased the mean 

open time and increased the presence of fl icker clos-

ings at very low and at very high opening probability. 

This change in the single channel kinetics can also be 

accounted for by altering L. Substantial changes in the 

other model parameters were not compatible with all 

of the experimental effects of permeating thallium on 

channel gating. We are confi dent that permeating thal-

lium alters the gating behavior of BK channels by alter-

ing the allosteric opening and closing of the channel 

(L), and minimally affects the other gating properties 

of the channel such as calcium and voltage activation.

Relating Changes in Flicker to the Macroscopic Results
We have found that permeating thallium increases the 

incidence of fl icker at very low and at very high open 

probabilities. When the channels are maximally acti-

vated, the vast majority of closing events with permeat-

ing thallium are to the fl icker state. Just as the GV curves 

were shifted by increasing mole fractions of thallium, 

the mean open time and fl icker incidence also showed 

dependence on the mole fraction of thallium. The mean 

open time decreased and the number of openings per 

burst increased with increasing thallium. Additionally, 

the overall concentration of permeating thallium 

tended to shift the GV (i.e., alter L) as well as increase 

the fl icker at the single channel level. The similar 

 concentration and mole fraction ranges for the GV 

shift and the fl icker suggest that they may be due to the 

same processes.

Accommodation of Flicker into the Coupled 
Allosteric Model
An additional closed state separate from the activation 

pathway is required to adequately describe the fl icker 

state (Rothberg and Magleby, 2000). To account for the 

fl icker as well as the shift in the GV curve, we have added 

a single additional state, F, to the opening transition in 

Scheme 1, representing the short closed fl icker events. 

Thallium increased the number of fl icker events with-

out altering the average lifetime of the detected closed 

state dwell times. This can be accounted for if thallium 

increases the transition rate from the open to the fl icker 

state. Scheme 2 would be capable of accounting for the 

fl icker at low and high open probabilities as well as the 

slowed deactivation rate in the presence of thallium.

Scheme 2 provides an alternative pathway for the 

channel to get from the closed to open conformation. If 

thallium increases the open to fl icker transition (as re-

quired by the decrease in open duration), and if the 

channel can close from the fl icker state (as suggested 

by the data in Fig. 14), then permeating thallium is 

 decreasing the stability of the closed state relative to 

the open state. To test this hypothesis, Scheme 3, an 

 expanded form of Scheme 2, was used to simulate mac-

roscopic currents. For these simulations, the calcium 

concentration was held at zero. Rate constants were 

constrained so that the voltage activation, D, would en-

hance the transition from closed to open by the same 

factor regardless of pathway. Fig. 15 shows a GV curve 

from simulated currents as well as the decrease in acti-

vation and deactivation rates. Table III lists the values of 

the parameters used for the simulation.

(SCHEME 3)

Scheme 2 can account for the behavior of these chan-

nels at very high and low opening probability. In this 

scheme, a nonconducting fl icker state is accessible from 

both the closed and open states. The increase in fl icker de-

creases the time the channel spends in the open state, and 

the connectivity of the model allows the channel to close 

from the fl icker state, thereby reducing the overall open-

ing probability even more. In this way, the activation curve 

of potassium channels is shifted to higher potentials.

A Proposed Molecular Mechanism for the Open State 
Destabilization by Permeating Thallium
We propose that the fl icker state seen in the single chan-

nel data corresponds to the low-K+ (collapsed) form of 

the selectivity fi lter seen in KcsA (Zhou et al., 2001; 

Zhou and MacKinnon, 2003; Lenaeus et al., 2005). This 

is attractive for several reasons, based on parallels be-

tween our results on BK channels and studies of the 

thallium effects on structure and gating of KcsA. First of 

all, the equilibrium between the high K+ (conducting) 

structure and the collapsed structure of KcsA was af-

fected by the permeant ion. In potassium and thallium 

solutions, the KcsA structure had two distinct and well-

resolved structures at low and high concentrations of 

ions. There was a particular concentration for both 

 potassium and thallium that the channel spent equal 

amounts of time in both structures, thus making the struc-

ture poorly resolved. For potassium solutions, this tran-

sition occurred at �20 mM; for thallium solutions the 

transition occurred at �80 mM (Zhou and MacKinnon, 

2003). Higher concentrations of thallium than potas-

sium ions were required to stabilize the conducting 

form of the selectivity fi lter. In other words, at a given 

concentration of ion, the equilibrium between the two 

structures is shifted toward the collapsed state by thal-

lium. It is important to emphasize that the selectivity fi l-

ter was seen to only have two well-defi ned states (Zhou 

and MacKinnon, 2003). There is no evidence that the 
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selectivity fi lter is wobbly, or has stable intermediates of 

the two states, compatible with a transition between two 

conducting states, open and fl icker.

Second, as in BK channels, permeating thallium alters 

the single channel gating of KcsA. The openings are 

shorter, and there is an increase in the number of fl icker 

closings in each opening burst (LeMasurier et al., 2001). 

This change in single channel kinetics would be pre-

dicted from structural information. If thallium increases 

the stability of the collapsed form of the selectivity fi lter 

in the crystallized state, then it can also stabilize the col-

lapsed form when the channel is in a lipid bilayer. With 

thallium, KcsA only has one open channel conductance 

level (LeMasurier et al., 2001). This would be expected 

for the sharp conformational change occurring between 

the conducting and collapsed states of the selectivity 

fi lter. If the selectivity fi lter had a myriad of conforma-

tions, then there would be a continuum of open chan-

nel conductances. However, just as expected from the 

crystal structure, there is only one conductance level.

Finally, as in BK channels, the occurrence of the 

fl icker in the single KcsA channel data shows depen-

dence on the concentration of thallium. In mole frac-

tion experiments, the single channel behavior changed 

as the potassium was replaced by thallium. In experi-

ments with only thallium in the internal solution and 

potassium in the external solution, the single channel 

behavior changed as thallium was increased. For both 

of these experiments, the single channel kinetics 

stopped changing at around 40–50 mM of thallium, ap-

proximately the same concentration we have observed 

for BK channels. The shift in the GV by internal thal-

lium also follows a similar behavior. This concentration 

may be right where the concentration of thallium is just 

enough to destabilize the conducting high-K+ form.

The fl icker observed with thallium solutions is pres-

ent with potassium solutions and has been described 

and characterized multiple times (Barrett et al., 1982; 

Magleby and Pallotta, 1983; Blatz and Magleby, 1984; 

McManus and Magleby, 1988, 1991; Cox et al., 1997; 

Cui et al., 1997; Rothberg and Magleby, 1998, 1999; 

Nimigean and Magleby, 2000; Talukder and Aldrich, 

2000). To account for the fl icker in single channel data, 

extra closed states out of the activation pathway are nec-

essary (Wu et al., 1995; Rothberg and Magleby, 1998, 

1999). How much of a role does this potential selectivity 

fi lter conformational change play in the gating of the 

channel? As suggested by the two KcsA structures, the 

conformational change at the selectivity fi lter would not 

alter the structure of the channel outside of the selectiv-

ity fi lter. This also seems to apply to the two possible 

structures of the BK selectivity fi lter. Increasing the 

fl icker with thallium had no effect on the calcium acti-

vation or the voltage activation of the channel. The de-

crease in the open duration can be accounted for by 

adding a fl icker state, and not altering the opening or 

closing transitions. The gating mechanisms involving S6 

motion and S4 motion are probably not signifi cantly 

 affected by the collapse of the selectivity fi lter.

Interestingly, rubidium consistently decreases the 

fl icker in the single channel data for several potassium 

channels, including BK and KcsA (Demo and Yellen, 

1992; Mienville and Clay, 1996, 1997; Pusch et al., 2000; 

Choe et al., 2001; LeMasurier et al., 2001). Rubidium 

has a different occupancy in the selectivity fi lter because 

of its larger size. It occupies three sites in the selectivity 

fi lter instead of four, with two of the sites in slightly dif-

ferent places than the potassium binding sites. Demo 

and Yellen (1992) have proposed that rubidium occu-

pancy stabilizes the open state. It may be doing this 

by preventing the collapse of the selectivity fi lter by 

Figure 15. Simulated data with Scheme 3. (A) GV curves calcu-
lated from currents simulated with Scheme 3 with parameters 
that can account for permeating potassium (black trace) and per-
meating thallium (gray trace). The kinetic effects of permeating 
thallium can be mimicked by enhancing the exit rates from the 
open state. All of the other rate constants are constrained by the 
model. (B) Simulated currents for permeating potassium (black 
trace) and thallium (gray traces) reveal that the activation rate is 
altered by an increase in the rate from going to the open state to 
the fl icker state. (C) Similarly, deactivation rates are decreased by 
the increase in the open to fl icker rate in simulated currents for 
permeating potassium (black trace) and thallium (gray trace).
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 occupying the space between site two and three. This is 

exactly the site where Gly77 occludes the pore in the 

collapsed structure (Zhou and MacKinnon, 2003). The 

occupancy of thallium in the selectivity fi lter may be 

lower at that particular site, and would destabilize the 

conducting form of the selectivity fi lter.

Zhou and MacKinnon proposed that the high con-

duction rate of potassium channels is facilitated by 

the coupling of ion binding to a protein conforma-

tional change (Zhou and MacKinnon, 2003). It is well 

accepted that ionic repulsion between ions contrib-

utes to the high fl ux of the selective pore; this is sup-

ported by the fact that more than one potassium can 

bind in the selectivity fi lter at one time (Zhou et al., 

2001; Zhou and MacKinnon, 2003). The conforma-

tional change undergone by the selectivity fi lter of 

KcsA may also enhance the conductance of the chan-

nel. If the energy required to stay in the conducting 

form comes from the free energy of ion binding, then 

permeating ions cannot bind as tightly, thus increas-

ing conductance (Zhou et al., 2001). BK channels 

have the highest conductance of all potassium chan-

nels. If this mechanism is contributing to the high 

conductance rate of BK channels, then fl icker would 

be a predicted side effect. In other words, it is possible 

that BK channels have a high conductance because of 

the two conformations in the selectivity fi lter. It has 

been demonstrated that electrostatic contributions 

from charged residues can contribute to the high 

conductance (Brelidze et al., 2003; Nimigean et al., 

2003). However, even after these charges are neutral-

ized, the conductance of these channels is still very 

large (Brelidze et al., 2003; Nimigean et al., 2003).

Flicker closings are also seen in smaller- conductance 

channels such as Shaker (Hoshi et al., 1994); however, 

these events are not nearly as prevalent as they are in 

larger conductance channels such as BK. Thus the 

large conductance of BK channels may due to the 

combination of electrostatic effects and selectivity 

 fi lter destabilization.

It has been reported that internal TEA induces the 

collapse of the KcsA selectivity fi lter presumptively by 

preventing the selectivity fi lter from being occupied by 

ions (Lenaeus et al., 2005). The authors of this work 

propose that the conformation change induced by 

TEA binding is the equivalent of the slow inactivation 

conformational change observed with many voltage-

activated potassium channels (Lenaeus et al., 2005). 

Is it possible that slow-type inactivation and single-

channel fl icker are due to the same conformational 

change in the selectivity fi lter? Permeating ions and 

the occupancy of sites in the selectivity fi lter are known 

to alter the properties of C-type inactivation (Lopez-

 Barneo et al., 1993; Baukrowitz and Yellen, 1995, 1996; 

Harris et al., 1998; Ogielska and Aldrich, 1998; Fedida 

et al., 1999; Ogielska and Aldrich, 1999). Although BK 

channels do not undergo C-type inactivation, this is an 

intriguing hypothesis.

Conclusion
The effects of thallium on the gating of the BK chan-

nel reveal how possible conformational changes in the 

selectivity fi lter can effect the gating of the channel. 

With external thallium, these effects may be due to 

 allosteric interactions with the voltage sensor. Perme-

ating thallium was found to shift the activation curve 

and increase the fl icker in single channel data. This 

may be caused by thallium stabilizing a collapsed state 

of the selectivity fi lter. The interaction between per-

meating ions and the collapsed state of the selectivity 

fi lter may be an important mechanism for conduc-

tance of BK channels.

TA B L E  I I I

Scheme 3 Kinetic Parameters

Parameters Permeating K+ Permeating Tl+ Parameters Permeating K+ Permeating Tl+

s−1 s−1 s−1 s−1

α(0)a 1110 1110 k1a 500 3000

β(0) 32120 32120 k2 a 10000 10000

δ0(0)a 0.0074 0.003 k3 a 1400 571

δ1(0)a 0.126 0.0514 k40 a 0.00014 0.00014

δ2(0)a 2.14 0.8743 k41a 0.004 0.0024

δ3(0)a 25.7 10.49 k42 a 0.0405 0.0405

δ4(0)a 47.3 20.122 k43a 0.688 0.688

γ0(0) 3700 3700 k44 a 11.68 11.68

γ1(0) 3700 3700 zα +0.275 e +0.275 e

γ2(0) 3700 3700 zβ −0.275 e −0.275 e

γ3(0) 2610 2610 zδ +0.262 e +0.262 e

γ4(0) 295 295 zγ −0.138 e −0.138 e

aThese rate constants were suffi cient to characterize the kinetic behavior of the model with the following additional parameters: D = 17, =f D , 

L(0) = 8e−6 = α/β, VhC = +150 mV.



 Piskorowski and Aldrich 575

We thank Sonja Pyott, Anthony Fodor, and Jon Sack for helpful 
comments on the manuscript. Frank Horrigan and Shalini Gera 
provided valuable experimental advice and discussion.

This work was supported by a predoctoral fellowship from the 
American Heart Association for R.A. Piskorowski. R.W. Aldrich is 
an investigator with the Howard Hughes Medical Institute.

Olaf S. Andersen served as editor.

Submitted: 30 December 2005
Accepted: 30 March 2006

R  E  F  E  R  E  N  C  E  S 
Barrett, J.N., K.L. Magleby, and B.S. Pallotta. 1982. Properties of sin-

gle calcium-activated potassium channels in cultured rat muscle. 

J. Physiol. 331:211–230.

Baukrowitz, T., and G. Yellen. 1995. Modulation of K+ current 

by frequency and external [K+]: a tale of two inactivation 

mechanisms. Neuron. 15:951–960.

Baukrowitz, T., and G. Yellen. 1996. Use-dependent blockers and 

exit rate of the last ion from the multi-ion pore of a K+ channel. 

Science. 271:653–656.

Blatz, A.L., and K.L. Magleby. 1984. Ion conductance and selectiv-

ity of single calcium-activated potassium channels in cultured rat 

muscle. J. Gen. Physiol. 84:1–23.

Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. A ring of eight con-

served negatively charged amino acids doubles the conductance 

of BK channels and prevents inward rectifi cation. Proc. Natl. Acad. 
Sci. USA. 100:9017–9022.

Chen, F.S., D. Steele, and D. Fedida. 1997. Allosteric effects of 

 permeating cations on gating currents during K+ channel 

 deactivation. J. Gen. Physiol. 110:87–100.

Chepilko, S., H. Zhou, H. Sackin, and L.G. Palmer. 1995. Permeation 

and gating properties of a cloned renal K+ channel. Am. J. Physiol. 
268:C389–C401.

Choe, H., H. Sackin, and L.G. Palmer. 2001. Gating properties of 

inward-rectifi er potassium channels: effects of permeant ions. 

J. Membr. Biol. 184:81–89.

Clay, J.R., and M.F. Shlesinger. 1983. Effects of external cesium and 

rubidium on outward potassium currents in squid axons. Biophys. 
J. 42:43–53.

Clay, J.R., and M.F. Shlesinger. 1984. Analysis of the effects of cesium 

ions on potassium channel currents in biological membranes. 

J. Theor. Biol. 107:189–201.

Consiglio, J.F., P. Andalib, and S.J. Korn. 2003. Infl uence of pore 

residues on permeation properties in the Kv2.1 potassium chan-

nel. Evidence for a selective functional interaction of K+ with the 

outer vestibule. J. Gen. Physiol. 121:111–124.

Consiglio, J.F., and S.J. Korn. 2004. Infl uence of permeant ions on 

voltage sensor function in the Kv2.1 potassium channel. J. Gen. 
Physiol. 123:387–400.

Cox, D.H., J. Cui, and R.W. Aldrich. 1997. Allosteric gating of a large 

conductance Ca-activated K+ channel. J. Gen. Physiol. 110:257–281.

Cui, J., D.H. Cox, and R.W. Aldrich. 1997. Intrinsic voltage 

 dependence and Ca2+ regulation of mslo large conductance 

Ca- activated K+ channels. J. Gen. Physiol. 109:647–673.

Demo, S.D., and G. Yellen. 1992. Ion effects on gating of the Ca2+-

activated K+ channel correlate with occupancy of the pore. 

Biophys. J. 61:639–648.

Fedida, D., N.D. Maruoka, and S. Lin. 1999. Modulation of slow 

inactivation in human cardiac Kv1.5 channels by extra- and intra-

cellular permeant cations. J. Physiol. 515(Pt 2):315–329.

Gomez-Lagunas, F. 1997. Shaker B K+ conductance in Na+ solutions 

lacking K+ ions: a remarkably stable non-conducting state pro-

duced by membrane depolarizations. J. Physiol. 499(Pt 1):3–15.

Harris, R.E., H.P. Larsson, and E.Y. Isacoff. 1998. A permanent ion 

binding site located between two gates of the Shaker K+ channel. 

Biophys. J. 74:1808–1820.

Haug, T., R. Olcese, L. Toro, and E. Stefani. 2004a. Regulation of 

K+ fl ow by a ring of negative charges in the outer pore of BKCa 

channels. Part II: Neutralization of aspartate 292 reduces long 

channel openings and gating current slow component. J. Gen. 
Physiol. 124:185–197.

Haug, T., D. Sigg, S. Ciani, L. Toro, E. Stefani, and R. Olcese. 

2004b. Regulation of K+ fl ow by a ring of negative charges in the 

outer pore of BKCa channels. Part I: Aspartate 292 modulates 

K+ conduction by external surface charge effect. J. Gen. Physiol. 
124:173–184.

Hille, B. 2001. Ion channels of excitable membranes. Volume 3. 

Sinauer Associates, Inc., Sunderland, MA. 814 pp.

Horrigan, F.T., and R.W. Aldrich. 1999. Allosteric voltage gating of 

potassium channels II. Mslo channel gating charge movement 

in the absence of Ca2+. J. Gen. Physiol. 114:305–336.

Horrigan, F.T., and R.W. Aldrich. 2002. Coupling between voltage 

sensor activation, Ca2+ binding and channel opening in large con-

ductance (BK) potassium channels. J. Gen. Physiol. 120:267–305.

Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. Allosteric voltage 

 gating of potassium channels I. Mslo ionic currents in the ab-

sence of Ca2+. J. Gen. Physiol. 114:277–304.

Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1994. Shaker potassium 

channel gating. I: Transitions near the open state. J. Gen. Physiol. 
103:249–278.

Hurst, R.S., M.J. Roux, L. Toro, and E. Stefani. 1997. External bar-

ium infl uences the gating charge movement of Shaker potassium 

channels. Biophys. J. 72:77–84.

Kiss, L., and S.J. Korn. 1998. Modulation of C-type inactivation by K+ at 

the potassium channel selectivity fi lter. Biophys. J. 74:1840–1849.

Kiss, L., J. LoTurco, and S.J. Korn. 1999. Contribution of the se-

lectivity fi lter to inactivation in potassium channels. Biophys. J. 
76:253–263.

Lagrutta, A.A., K.Z. Shen, A. Rivard, R.A. North, and J.P. Adelman. 

1998. Aromatic residues affecting permeation and gating in dSlo 

BK channels. Pfl ugers Arch. 435:731–739.

LeMasurier, M., L. Heginbotham, and C. Miller. 2001. KcsA: it’s a 

potassium channel. J. Gen. Physiol. 118:303–314.

Lenaeus, M.J., M. Vamvouka, P.J. Focia, and A. Gross. 2005. 

Structural basis of TEA blockade in a model potassium channel. 

Nat. Struct. Mol. Biol. 12:454–459.

Lippiat, J.D., N.B. Standen, and N.W. Davies. 1998. Block of cloned 

BKCa channels (rSlo) expressed in HEK 293 cells by N-methyl 

d-glucamine. Pfl ugers Arch. 436:810–812.

Loboda, A., A. Melishchuk, and C. Armstrong. 2001. Dilated and de-

funct K channels in the absence of K+. Biophys. J. 80:2704–2714.

Long, S.B., E.B. Campbell, and R. Mackinnon. 2005a. Crystal 

 structure of a mammalian voltage-dependent Shaker family 

K+ channel. Science. 309:897–903.

Long, S.B., E.B. Campbell, and R. Mackinnon. 2005b. Voltage 

sensor of Kv1.2: structural basis of electromechanical coupling. 

Science. 309:903–908.

Lopez-Barneo, J., T. Hoshi, S.H. Heinemann, and R.W. Aldrich. 

1993. Effects of external cations and mutations in the pore region 

on C-type inactivation of Shaker potassium channels. Receptors 
Channels. 1:61–71.

Lu, T., A.Y. Ting, J. Mainland, L.Y. Jan, P.G. Schultz, and J. Yang. 2001a. 

Probing ion permeation and gating in a K+ channel with backbone 

mutations in the selectivity fi lter. Nat. Neurosci. 4:239–246.

Lu, T., L. Wu, J. Xiao, and J. Yang. 2001b. Permeant ion-dependent 

changes in gating of Kir2.1 inward rectifi er potassium channels. 

J. Gen. Physiol. 118:509–522.



576 Thallium Alters BK Channel Gating

Magleby, K.L., and B.S. Pallotta. 1983. Burst kinetics of single 

 calcium-activated potassium channels in cultured rat muscle. 

J. Physiol. 344:605–623.

Matteson, D.R., and R.P. Swenson Jr. 1986. External monovalent cations 

that impede the closing of K channels. J. Gen. Physiol. 87:795–816.

McManus, O.B., and K.L. Magleby. 1988. Kinetic states and modes 

of single large-conductance calcium-activated potassium chan-

nels in cultured rat skeletal muscle. J. Physiol. 402:79–120.

McManus, O.B., and K.L. Magleby. 1991. Accounting for the Ca2+-

dependent kinetics of single large-conductance Ca2+-activated 

K+ channels in rat skeletal muscle. J. Physiol. 443:739–777.

Melishchuk, A., A. Loboda, and C.M. Armstrong. 1998. Loss of 

Shaker K channel conductance in 0 K+ solutions: role of the volt-

age sensor. Biophys. J. 75:1828–1835.

Mienville, J.M., and J.R. Clay. 1996. Effects of intracellular K+ and 

Rb+ on gating of embryonic rat telencephalon Ca2+-activated 

K+ channels. Biophys. J. 70:778–785.

Mienville, J.M., and J.R. Clay. 1997. Ion conductance of the Ca2+-

activated maxi-K+ channel from the embryonic rat brain. Biophys. 
J. 72:188–192.

Neyton, J., and C. Miller. 1988a. Discrete Ba2+ block as a probe of 

ion occupancy and pore structure in the high-conductance Ca2+-

activated K+ channel. J. Gen. Physiol. 92:569–586.

Neyton, J., and C. Miller. 1988b. Potassium blocks barium per-

meation through a calcium-activated potassium channel. J. Gen. 
Physiol. 92:549–567.

Neyton, J., and M. Pelleschi. 1991. Multi-ion occupancy alters gating 

in high-conductance, Ca2+-activated K+ channels. J. Gen. Physiol. 
97:641–665.

Nimigean, C.M., J.S. Chappie, and C. Miller. 2003. Electrostatic 

tuning of ion conductance in potassium channels. Biochemistry. 
42:9263–9268.

Nimigean, C.M., and K.L. Magleby. 2000. Functional coupling 

of the β1 subunit to the large conductance Ca2+-activated K+ 

channel in the absence of Ca2+. Increased Ca2+ sensitivity from a 

Ca2+-independent mechanism. J. Gen. Physiol. 115:719–736.

Ogielska, E.M., and R.W. Aldrich. 1998. A mutation in S6 of Shaker 
potassium channels decreases the K+ affi nity of an ion binding 

site revealing ion-ion interactions in the pore. J. Gen. Physiol. 
112:243–257.

Ogielska, E.M., and R.W. Aldrich. 1999. Functional consequences 

of a decreased potassium affi nity in a potassium channel 

pore. Ion interactions and C-type inactivation. J. Gen. Physiol. 
113:347–358.

Pusch, M., L. Bertorello, and F. Conti. 2000. Gating and fl ickery 

block differentially affected by rubidium in homomeric KCNQ1 

and heteromeric KCNQ1/KCNE1 potassium channels. Biophys. 
J. 78:211–226.

Rothberg, B.S., and K.L. Magleby. 1998. Kinetic structure of large-

conductance Ca2+-activated K+ channels suggests that the gating 

includes transitions through intermediate or secondary states. 

A mechanism for fl ickers. J. Gen. Physiol. 111:751–780.

Rothberg, B.S., and K.L. Magleby. 1999. Gating kinetics of single 

large-conductance Ca2+-activated K+ channels in high Ca2+ sug-

gest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 
114:93–124.

Rothberg, B.S., and K.L. Magleby. 2000. Voltage and Ca2+ activa-

tion of single large-conductance Ca2+-activated K+ channels 

described by a two-tiered allosteric gating mechanism. J. Gen. 
Physiol. 116:75–99.

Swenson, R.P., Jr., and C.M. Armstrong. 1981. K+ channels close 

more slowly in the presence of external K+ and Rb+. Nature. 
291:427–429.

Talukder, G., and R.W. Aldrich. 2000. Complex voltage-dependent 

behavior of single unliganded calcium- sensitive potassium 

 channels. Biophys. J. 78:761–772.

Wang, Z., X. Zhang, and D. Fedida. 1999. Gating current studies 

 reveal both intra- and extracellular cation modulation of K+ 

channel deactivation. J. Physiol. 515(Pt 2):331–339.

Wu, Y.C., J.J. Art, M.B. Goodman, and R. Fettiplace. 1995. A kinetic 

description of the calcium-activated potassium channel and its 

application to electrical tuning of hair cells. Prog. Biophys. Mol. 
Biol. 63:131–158.

Zheng, J., and F.J. Sigworth. 1998. Intermediate conductances dur-

ing deactivation of heteromultimeric Shaker potassium channels. 

J. Gen. Physiol. 112:457–474.

Zhou, Y., and R. MacKinnon. 2003. The occupancy of ions in the K+ 

selectivity fi lter: charge balance and coupling of ion binding to a 

protein conformational change underlie high conduction rates. 

J. Mol. Biol. 333:965–975.

Zhou, Y., J.H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 

2001. Chemistry of ion coordination and hydration revealed 

by a K+ channel-Fab complex at 2.0 Å resolution. Nature. 
414:43–48.


