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Abstract

Using a model for the dynamics of the full somatic nervous system of the nematode C. ele-

gans, we address how biological network architectures and their functionality are degraded

in the presence of focal axonal swellings (FAS) arising from neurodegenerative disease

and/or traumatic brain injury. Using biophysically measured FAS distributions and swelling

sizes, we are able to simulate the effects of injuries on the neural dynamics of C. elegans,

showing how damaging the network degrades its low-dimensional dynamical responses.

We visualize these injured neural dynamics by mapping them onto the worm’s low-dimen-

sional postures, i.e. eigenworm modes. We show that a diversity of functional deficits arise

from the same level of injury on a connectomic network. Functional deficits are quantified

using a statistical shape analysis, a procrustes analysis, for deformations of the limit cycles

that characterize key behaviors such as forward crawling. This procrustes metric carries

information on the functional outcome of injuries in the model. Furthermore, we apply classi-

fication trees to relate injury structure to the behavioral outcome. This makes testable pre-

dictions for the structure of an injury given a defined functional deficit. More critically, this

study demonstrates the potential role of computational simulation studies in understanding

how neuronal networks process biological signals, and how this processing is impacted by

network injury.

Author Summary

Neurodegenerative diseases such as Alzheimer’s disease, Creutzfeldt-Jakob’s disease, HIV

dementia, Multiple Sclerosis and Parkinson’s disease are leading causes of cognitive

impairment and death worldwide. Similarly, traumatic brain injury, the signature injury

of the Iraq and Afghanistan wars, affects an estimated 57 million people. All of these con-

ditions are characterized by the presence of focal axonal swellings (FAS) throughout the

brain. On a network level, however, the effects of FAS remain unexplored. With the emer-

gence of models which simulate an organism’s full neuronal network, we are poised to

address how neuronal network performance is degraded by FAS-related damage. Using a
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model for the full-brain dynamics of the nematode Caenorhabditis elegans, we are able to

explore the loss of network functionality as a function of increased neuronal swelling. The

relatively small neuronal network generates a limited and tractable set of functional

behaviors, and we develop metrics which characterize how these behaviors are impaired

by network injuries. These metrics quantify the severity of TBI and/or neurodegenerative

disease, and could potentially be used to construct diagnostic tools capable of identifying

various cognitive deficits. Additionally, we apply classification trees to our results to make

predictions about the structure of an injury from specific cognitive deficits.

Introduction

Understanding networked and dynamic systems is of growing importance across the engineer-

ing, physical and biological sciences. Such systems are often composed of a diverse set of

dynamic elements whose connectivity are prescribed by sparse and/or dense connections that

are local and/or long-range in nature. Indeed, for many systems of interest, the diversity in

connectivity and dynamics make it extremely challenging to characterize dynamics on a mac-

roscopic network level.

Of great interest in biological settings is the fact that such complex networks often produce

robust and low-dimensional functional responses to dynamic inputs. Indeed, the structure of

their large connectivity graph can determine how the system operates as a whole [1, 2]. Neuro-

nal networks, in particular, may encode key behavioral responses with low-dimensional pat-

terns of activity, or population codes, as they generate functionality [3–8].

Unfortunately, all biological networks are susceptible to pathological and/or traumatic

events that might compromise their performance. In neuronal settings, this may be induced

by neurodegenerative diseases [9–11], concussions, traumatic brain injuries (TBI) [12–14] or

aging. In this work, we extend a computational model to investigate behavioral impairments

in the nematode C. elegans when the underlying neuronal network is damaged. Specifically, we

consider how the low-dimensional population codes are compromised under the impact of an

injury. Characterizing the resulting cognitive and behavioral deficits is a critical step in under-

standing the role of network architecture in producing robust functionality.

A hallmark feature of damaged neuronal networks is the extensive presence of Focal Axonal

Swellings (FAS). FAS has been implicated in cognitive deficits arising from TBI and a variety

of leading neurological disorders and neurodegenerative diseases. For instance, FAS is exten-

sively observed in Alzheimer’s disease [10, 11], Creutzfeldt-Jakob’s disease [15], HIV dementia

[16], Multiple Sclerosis [17, 18] and Parkinson’s disease [19]. Most concussions and traumatic

brain injuries also lead to FAS or other morphological changes in axons [20–25]. Such dra-

matic changes in axon geometry may disrupt axonal transport [26, 27], and can potentially

hinder the information encoded in neural spike train activity [28–30]. Injured axons thus pro-

vide an important diagnostic marker for the overwhelming variety of cognitive and behavioral

deficits [9, 28, 31], in animals and humans [23, 32–34].

The massive size of human neuronal networks and their complex activity patterns make it

difficult to directly relate neuronal network damage to specific behavioral deficits. C. elegans,
in contrast, has only 302 neurons, and its stereotyped connectivity (i.e. the worm’s “Connec-

tome”) is known [35]. This relatively small neuronal network generates a limited and tractable

set of functional behaviors (see Table 1 of [36]), with much of its locomotion/crawling behav-

ior approximately confined to five observable motor states related to forward and backward

crawling, omega turns, head sweeps and brief pause states. Furthermore, these behaviors are
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well described as a superposition of only a few principal component body-shape modes [37].

The combination of a fully-resolved neuronal network and a tractable low-dimensional output

space makes C. elegans an ideal model organism for studying the impact of network damage

on behavioral deficits. Indeed, it is the only such neuronal network model currently available

allowing for such a direct translational study of network damage (injury) to behavioral

responses.

More precisely, computational models of C. elegans nervous system dynamics for the full or

partial connectome successfully generate motorneuron outputs that can be related to behavior

[38], allowing for interpretable outputs even without accounting for muscular, mechanical or

environmental factors, e.g. [39]. We consider the model in [39], which applies a single-com-

partment membrane model to the full somatic connectome; neurons are approximated as pas-

sive linear units connected by linear gap junctions and nonlinear chemical synapses. Synaptic

activation depends sigmoidally upon pre-synaptic voltage in equilibrium, and approaches this

equilibrium value linearly in time. All neurons are approximated as identical, with order-of-

magnitude parameter assignments, except for their connectivity data.

Fig 1(a) demonstrates a simulation of the putative forward crawling behavior identified in

[39] within this model of C. elegans neural dynamics along with its projection onto principal

component body-shape modes [37]. In this perspective, we understand forward crawling as

corresponding to a limit cycle (i.e. a closed periodic trajectory) in the principal component

space of simulated neural recordings. Extending this framework to damaged networks as in

Fig 1(c) allow us to explore how axonal pathologies lead to impaired functionality and behav-

ioral deficits. Even in our idealized injury simulations, the network’s impaired activity dis-

played significant variability. This highlights one of the most challenging aspects of the field:

the need for effective metrics to distinguish different types of behavioral deficits. We propose

such a criterium by using techniques borrowed from statistical shape analysis to quantify dis-

tortions in the main features of dynamical activity. This metric is shown to be related to the

functional outcome of an injury. We further apply classification trees to our results to relate

functional deficits to specific patterns of FAS. This leads to experimentally-testable predictions

about the effects of neuronal network-damage to the crawling motion of C. elegans and poten-

tially new avenues for clinical diagnostics. Indeed, our studies show that network damage

leads to a diversity of dynamical/behavioral deficits.

Results

Low-Dimensional Signatures for Crawling Behavior

We investigate how network distributed FAS as illustrated in Fig 1(c) may affect its ability to

generate desired responses to an input. Network features associated with behavioral outcomes

are best understood in model organisms such as the C. elegans since it has a limited repertoire

of functional responses that include forward and backward crawling, omega turns, head

sweeps and brief pause states. Our focus in these studies will be on the behavior of forward

crawling since a variety of experimental ablation studies have identified key neurons associated

this functionality. For instance, stimulation of PLM neurons excites densely-connected inter-

neurons, which in turn, activate motorneurons responsible for forward body motion [40].

Experimentally, optogenetic stimulation of the PLM neurons directly induces a forward

motion response [41, 42].

Details of the underlying neurocircuitry were found by a series of ablation studies, where

the functional role of a neuron is evaluated by disconnecting it from the network and observ-

ing behavioral deficits [39, 43]. The coordinated body motion of a crawling worm is well docu-

mented in videos and its postural dynamics were revealed by principal component analysis to
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consist of only a few dominant modes [37]. Specifically, the sinusoidal body-shape undulations

which describe the worm’s forward motion is well-described by circular trajectories (limit

cycles) on the phase-space of its first two principal components. An analogous mathematical

form is present in the collective motorneuron dynamics following PLM stimulation [39].

This commonality suggests that observed behaviors do retain fundamental signatures of the

underlying network dynamics. We show such a trajectory for (simulated) motorneuron

responses to PLM excitation in Fig 1(a). This low-dimensional representation captures 99.3%

of the total energy of the system, and can be artificially mapped to crawling body-shape

modes. Although this mapping is still far from a mechanistic description of the worm’s coordi-

nated body movement, we believe it captures important aspects of the crawling behavior. See

the Methods section for details. Importantly, functional deficits of the C. elegans dynamics are

understood as excursions/perturbations from the ideal limit cycle trajectory. Damaged

Fig 1. (a) In our model, stimulating PLM neurons drives two-mode motorneuron oscillations. We project all dynamics onto these modes. We map these

projected dynamics onto the behavioral modes from [37] to reconstruct theoretical body motion. (b) We model neuron injury by scaling membrane

capacitance and conductance with surface area. The relative swelling of neuron i is set by pulling its individual swelling level ai randomly from a

distribution, and scaling all swellings by an overall “injury amplitude” μ. (c) We refer to a particular set of ai values as the same “injury”. Here we illustrate

the same injury in three different regimes of μ. Compare the common experimental case of ablation, in which only one neuron is injured very severely (as

opposed to our distributed injuries).

doi:10.1371/journal.pcbi.1005261.g001
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networks will be shown to fail to produce the low-dimensional output codes necessary for gen-

erating the optimal forward crawling limit cycle.

Modeling Injured Connectomic Dynamics

The robustness of the dynamical signatures (population codes) associated with behavior are

investigated in injured neuronal networks. Our injury statistics and FAS models are drawn

from state-of-the-art biophysical experiments and observations of the distribution and size of

FAS. Fig 2 shows prototypical FAS injuries from stretching [26] and TBI in the optic nerve of

mice [25]. Fig 2(d) shows a histogram of the probability of injury and size of the FAS. These

are used in our computational model [39].

In a simulated injury, we assign to each affected neuron an axonal swelling from the distri-

bution in Fig 1(b). Values are scaled by an (overall) injury intensity parameter μ, such that

1þ m / E
swollen axon area
healthy axon area

� �

ð1Þ

Fig 1(c) exemplifies different injury settings: μ = 0 reproduces the original (uninjured) net-

work, and lower/higher values of μ correspond to mild/severe injuries. The presence of axonal

swellings ultimately distorts the forward-motion limit cycle dynamics. Fig 3 shows dynamical

anomalies for different connectome injuries. Notice how they induce qualitatively different

changes to the closed orbit regarding location, size and shape. Fig 3(c) reproduces the specific

simulated ablations from [39], leading again to different dynamical effects.

A much larger ensemble of simulations (1,447 randomly-chosen injuries, as well as the

code necessary to generate more) and their corresponding effects to fundamental low-dimen-

sional structures are included in the Supporting Materials. Increasing values of μ typically

shrink and shift the limit cycles within the plane. In all simulations, there was always a

Fig 2. We draw swelling values from previously-measured experimental distributions. (a)

Immunofluorescent image of an injured and swollen cortical neuron of a rat, from [20] (other examples of

experimental neuron injury data can be found in [25, 26]). (b) It is equally simple to use any swelling

distribution under our approach. Since such data does not yet to our knowledge exist for C. elegans

specifically, we choose axonal swelling data from the optic nerve of Thy1-YFP-16 mice [25], taken 12hr. post-

injury, from which we calculate the above probability distribution for neuron swelling levels mi.

doi:10.1371/journal.pcbi.1005261.g002
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Fig 3. Response to PLM stimulation for two different distributed injuries in (a) and (b). Resultant trajectories were mapped onto

the two neural modes, which were then mapped onto the two behavioral modes to reconstruct theoretical body dynamics. Within

each panel, injury amplitude μ is increased in subsequent rows. Different injuries yield qualitatively different injury progressions as

μ is increased, and sufficiently high μ values lead to the cycle collapsing into a fixed point. (c) For comparison, consider the all-or-

nothing injury effects of isolated single-neuron ablations. Experimentally, ablating AIZR inhibits reversals [44], ablating AVA

Linking Behavioral Deficits to Connectomic Injury in C. elegans
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sufficiently high injury level in which

m� ¼ finjured limit cycle collapses into a stable fixed pointg ð2Þ

This occurs for instance, in Fig 3(b) when μ = 3.80. Recent blast injury studies on C. elegans
show that many of the nematodes display temporary paralysis before recovering to crawling

behaviors [45]. We would suggest that during the peak of the FAS, the injury levels on many of

the nematodes are above μ�, thus leading to a collapse of a limit cycle to a fixed point where no

motion is possible, i.e. it is in a paralyzed state.

Distinguishing Signatures of Different Behavioral Deficits

Despite their common statistical distribution, randomly drawn injuries induce qualitatively dif-

ferent changes in the shape of the limit cycle. Additional distorted sets are shown in the rows of

Fig 4 (along with 1,447 random-injury simulation sets in the Supporting Materials). Thus, ran-

dom injuries of equitable strength can lead to significantly different behavioral deficits. Impor-

tantly, the deformation of the two-dimensional limit cycle can be used to characterize such

functional differences. To distinguish dynamical signatures of potentially different functional

deficits, we evaluate the Procrustes Distance (PD) between healthy and injured limit cycles. The

PD is an important tool from statistical shape analysis to measure the similarity between two

shapes after discounting effects due to translation, uniform scaling, or rotation. Fig 4 depicts

PD values for pairs of healthy/injured limit cycles as a function of injury level μ. All curves are

plotted until the injured limit cycle collapses into a fixed point (μ = μ�), and the colored dots in

the rightmost plots correspond to the same-colored limit cycles on the left plots.

Procrustes Distance Classes and Behavioral Dynamics

Recent experimental work which induced mild TBI in C. elegans found that increasing the

number of shock waves to which the worm was exposed reduced the worm’s average speed

and, in many cases, led to temporary paralysis [45]. The results of our simulations can be com-

pared to these results:

• Speed Reduction: In our model, injury tends to slow the oscillation of the limit cycle. Specifi-

cally, the temporal frequency of the limit cycle was reduced by an average of 17% in the

highly-injured interval (0.9μ�, μ�). However, a slower limit cycle frequency does not neces-

sarily imply slower movement. As the frequency changes, so does the amplitude and shape

of the limit cycle, and these will also affect the forward movement speed. Without a coupled

mechanical model for the body movement of the worm and for the environment in which it

moves, we are unable to calculate how these trajectory distortions affect forward movement

speed.

• Temporary Paralysis: Simulated neural patterns are static at the fixed point when μ> μ�.
Neglecting extra-connectomic effects (e.g. electrical coupling within muscles themselves)

this may imply that the worm is not moving. The point at which the trajectory ends (the

“endpoint”) should correspond to the fixed shape of the worm (note that this depends on the

full-dimensional location of the point, not simply our plane projection). Thus the endpoint

is posited to carry information about the paralyzed body shape of the worm, and we can

causes backwards motion to become uncoordinated while preserving forward motion [43], and ablating AVB causes forward

motion to become uncoordinated while preserving backwards motion [43]. Consistently, our simulated “forward motion” cycle is

severely distorted by simulated AVB ablation but not by AIZR or AVA ablation, as shown.

doi:10.1371/journal.pcbi.1005261.g003
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investigate the relationship of the endpoint to both the PD curve and to the structure of the

injury.

In Fig 5 we plot the location of the fixed points into which limit cycles collapse (the “end-

points”, occurring at injury level μ = μ�). We consider the following question: does the location

of this endpoint (and thus the behavioral outcome of the injury) relate to the PD curve, and

does it relate to the structure of the injury itself? Towards this end, we construct two simple

classes of behavioral outcomes: endpoints which end in either the “upper” or “lower” part of

the distribution (for which we label the endpoints as red and green, respectively).

Fig 4. Each row (a),(b),(c) and (d) depicts projected neural responses for different injuries with increasing intensity μ. Distortion of each cycle is

quantified via the Procrustes Distance (PD), which compares shapes ignoring translation, rotation or uniform scaling. The PD curves terminate when μ =

μ*, level for which the cycle collapses into a fixed point (i.e. paralysis). Colored dots on the rightmost plots correspond to the same-colored limit cycles on

the left plots.

doi:10.1371/journal.pcbi.1005261.g004
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Panel (b) of Fig 5 shows the average PD curve for the two classes. They are qualitatively dif-

ferent: the average PD curve of “upper” endpoints is smoothly rising, whereas the average PD

curve of “lower” endpoints has an extended declining region. Shown also are the average scal-

ing factor and translation distance of the distorted cycles. Unlike the average PD curves, these

change monotonically and are not distinct between classes. This suggests that the shape of the

PD curve carries information about the functional outcome of the injury. We quantify this by

fitting a classification tree to predict the endpoint class from the shape of the PD curve: this

was found to predict endpoint class with a cross-validation error of 22.0%. By comparison,

randomly shuffling the labels leads to nearly double the cross-validation error, with an average

of (44.6 ± 1.4)%.

Of even greater interest is any possible relationship between injury structure and behavioral

output which could, given a specific pattern of distorted dynamics, make predictions about the

class of neural injury. To this end, we fit a classification tree to predict the endpoint class from

the injury. Fig 6 shows a classification tree which predicts endpoint class with a cross-validation

Fig 5. The Procrustes curves carry information about the functional outcome of an injury. (a) Plotted on our neural plane are the locations of the

fixed points into which injured cycles eventually collapse (the “endpoints”), for sufficiently high μ. We classify the injury’s functional outcome by dividing the

distribution along its major axis (into “upper” and “lower” endpoints). (b) The average Procrustes curve within each class is qualitatively distinct. This

indicates that analyzing the shape of the Procrustes curve as μ increases may help predict the form of paralysis resulting from that specific injury. In

contrast, the translation and scaling of the distorted cycles are monotonic and not distinct between classes.

doi:10.1371/journal.pcbi.1005261.g005
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error of only 14.6%. This is much less than the error from a random class, suggesting that we

can meaningfully relate the structure of a specific injury to a specific behavioral outcome. Clas-

sification trees provide a highly interpretable and predictive method for making this connec-

tion, and make specific experimental predictions for the injuries corresponding to functional

deficits.

Methods

Governing Equations

The dynamic model for the C. elegans connectome simulates its neuronal responses to stimuli

with a number of simplifications aimed at keeping the number of parameters at a minimum:

we use a fairly standard and simple single-compartment membrane equation, and treat all

neurons as identical save for their connectivity. Many neurons in the network are nearly isopo-

tential [46, 47], and it is a common and reasonable simplification to model neurons via single-

compartment membrane equations, with membrane voltages as the state variables for each

neuron. Given this, Wicks et al. constructed a single-compartment membrane model for neu-

ron dynamics [48], which we later extended to incorporate connection data for the full somatic

connectome [39]. We assume that the membrane voltage dynamics of neuron i is governed by:

C _Vi ¼ � G
cðVi � EcellÞ � IGapi ð~VÞ � ISyni ð~VÞ þ IExti ð3Þ

The parameter C represents the whole-cell membrane capacitance, Gc the membrane leak-

age conductance and Ecell the leakage potential of neuron i. The external input current is given

Fig 6. (a) Classification tree which predicts, for a given injury vector ~m, whether the injured dynamics will fall into a “paralyzed” fixed point in the upper or

lower part of the plane (as in Fig 5). The cross-validation accuracy exceeds 85%. (b) Cross-validation error as a function of minimum leaf size. We choose

a minimum leaf size of 40. (c) The neurons implicated as most important for determining functional outcome of the injury, given these behavioral classes. A

classification tree and implicated subset of neurons could be generated via this method for any feature of injured dynamics which we wished to explore.

doi:10.1371/journal.pcbi.1005261.g006
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by IExti . Note that this is, essentially, a fairly standard single-compartment membrane equation

[49], and its governing equations are formally identical to that used by Wicks et al. [48] except

for our use of the full somatic connectome, our simplifying parameter assumptions, and

minor differences in the treatment of synaptic dynamics taken from [50].

In all simulations within this paper, we set IExti to be constant for the PLM neuron pair and

zero for all other neurons. This assures that densely connected interneurons will stimulate the

motorneuron subcircuits responsible for forward crawling behavior. Neural interaction via

gap junctions and synapses are modeled by the input currents IGapi ð~VÞ (gap) and ISyni ð~VÞ (syn-

aptic). Their equations are given by:

IGapi ¼
X

j

Gg
ijðVi � VjÞ ð4Þ

ISyni ¼
X

j

Gs
ijsjðVi � EjÞ ð5Þ

We treat gap junctions between neurons i and j as ohmic resistances with total conductivity

Gg
ij. We assume that ISyni is also modulated by a synaptic activity variable si, which represents

the conductivity of synapses from neuron i as a fraction of their maximum conductivity. This

is governed by:

_si ¼ ar�ðvi; b;VthÞð1 � siÞ � adsi ð6Þ

Here ar and ad correspond to rise and decay time, and ϕ is the sigmoid function

ϕ(vi; β, Vth) = 1/(1 + exp(−β(Vi − Vth))). This form of sigmoidal activation is taken from [50].

Note that it can be shown (by setting _s ¼ 0) that, as in [48], the equilibrium value of si depends

sigmoidally upon Vi.

We keep all parameter values from [39] (see Table 1. The Connectome data, consisting of

the number of gap junctions Ng
ij and number of synaptic connections Ns

ij, are taken from

Varshney et al. [35] (as available on WormAtlas [51]). As in that study, we consider only the

279 somatic neurons which make synaptic connections (excluding 20 pharyngeal neurons,

and 3 neurons which make no synaptic connections).

Each individual synapse and gap junction is assigned an equal conductivity of g = 100pS

(such that Gg
ij ¼ g � Ng

ij and Gs
ij ¼ g � Ns

ij). The values of cell membrane conductance and capaci-

tance are affected by injuries, but in the uninjured case are set as equal for all neurons with

Table 1. Parameter values assigned within the model.

Parameters (from [39]) Value

Uninjured Mem. Conductance Gc 10pS

Uninjured Mem. Capacitance CH 1pF

Leakage Potential Ec −35mV

Gap Junction Conductivity g 100pS

Synaptic Conductivity g 100pS

Reversal Potential Ej (Excitatory) 0mV

Reversal Potential Ej (Inhibitory) −45mV

Sigmoidal Width β 0.125mV−1

Synaptic Rise Constant ar 1 s−1

Synaptic Decay Constant ad 5 s−1

doi:10.1371/journal.pcbi.1005261.t001
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values of Gc = 10pS and C = 1pF. Note that in uninjured simulations, all neurons are modeled

as identical except for their connectivity and the assignment of them as excitatory or inhibitory

(where Ej will have one of two values corresponding to these classes).

Calculation of the PLM Response Plane

The model is valuable because it generates a low-dimensional neural proxy for behavioral

responses. Specifically, constant stimulation of the tail-touch mechanosensory pair PLM cre-

ates a two-mode oscillatory limit cycle in the forward motion motorneurons [39]. This same

dynamical signature was revealed in video analysis of the body-shape of the crawling worm

[37]. Thus the model is consistent with the observed biophysics. Specifically, we calculate this

plane by first simulating the forward-motion motorneuron membrane voltages (class DB,VB,

DD,VD) in response to a PLM Input of IPLML, IPLMR = 2 × 104 Arb. Units for the uninjured

model. We take time snapshots these membrane voltages ~VMðtÞ, collect them into a matrix V,

and take that matrix’s singular value decomposition. That is:

V ¼ ½~VMðt0Þ; ~VMðt1Þ . . .� ¼ P � S � QT ð7Þ

where P and Q are unitary and S is diagonal. The columns of P are the principal orthogonal

modes. As in [39], the first two of these modes (the first two columns of P) almost entirely cap-

ture the dynamics of the system within this subspace under constant PLM stimulation. Projec-

tion of the full-system dynamics onto this plane consists of projecting the system’s

motorneuron dynamics onto these modes.

Modeling FAS in Neuronal Network Simulations

Note that the single-compartment model which we employ ignores the spatial extent of neu-

rons and specific location of each connection. Our simplified injury model therefore must

treat injury as a whole-cell effect. Focal Axonal Swellings (FAS) increase the volume of an

axon, which in turn, should alter the cell’s capacitance and leakage conductance within our

model. If we approximate a neuron by a single cable of length l and constant cross-section a,

we may assume that the circuit parameters will scale with the axonal volume, i.e.,

C / a � l ð8aÞ

Gc / a � l ð8bÞ

When an axon swells, its healthy cross-sectional area aH will increase to some swollen value

ai> aH. Thus we assume that the healthy values for capacitance C and conductance Gc will

also change according to

Ci ¼ C � ðai=aHÞ ¼ C � ð1þ m �miÞ ð9aÞ

Gc
i ¼ Gc � ðai=aHÞ ¼ Gc � ð1þ m �miÞ ð9bÞ

We define the individual damage mi to neuron i as proportional to the relative excess area

from swelling, i.e., mi/ (ai − aH)/aH. Values of mi are computed from the experimentally

derived distributions in Fig 2. Specifically, we construct FAS from the axonal swelling data of

Wang et al. [25], which used confocal microscopy to measure injury-induced swellings in the

optic nerve of Thy1-YFP-16 mice. Taken together, these define an “injury vector” ~m, which we

then normalize to jj~mjj2 ¼ 1. After normalizing, the injury vector is then scaled by a global
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injury intensity defined as follows:

m ¼
hai=aHi � 1

hmii
ð10Þ

Mild traumatic brain injuries yield small values of μ indicating that the average area of swol-

len axons is small. Severe brain injuries yield high values of μ, indicating that large swellings

are more common. We leave the PLM pair of neurons receiving input uninjured. All other

neurons have their mi values assigned from the experimental statistical distributions. The gov-

erning equation for an injured neuron is now

C _Vi ¼ � G
cðVi � EcellÞ � ðI

Gap
i ð~VÞ þ ISyni ð~VÞÞ=ð1þ m �miÞ ð11Þ

We can readily interpret the limiting cases: when μ �mi = 0, the original governing equation

is recovered, and thus μ = 0 corresponds to the healthy case. When μ �mi is large, gap junction

and synaptic currents have no effect. The neuron’s voltage decays exponentially to its leakage

potential, effectively isolating it from the network.

Note that our random assignment of swelling values neglects any spatial structure of the

injury. This could be easily modified by using a distribution which depends on the spatial loca-

tion of the neuron. Furthermore, this is a very simple model for neuronal swelling, in keeping

with our simple model for neurons. It necessarily neglects the actual geometry of swelling. The

use of a multi-compartment model would enable this in future studies. Ultimately, there is cur-

rently limited biophysical evidence for making more sophisticated models. As such, we have

tried to capitalize on as many biophysical observations as possible so as to make a model that is

consistent with many of the key experimental observations.

Numerical Simulations and Convergence Criteria

We use MATLAB (version R2013a) to solve the system of neuronal dynamical equations via

Euler’s method, using a timestep of 10−4s. We consider an ensemble of 1,447 different types of

injury (set of targeted neurons), for which the global intensity μ may vary from 0 (uninjured)

to a critical value μ�. When the intensity exceeds μ� (found by a bisection algorithm), the limit

cycle collapses to a fixed point. To obtain intermediate values, we perform five simulations lin-

early spaced throughout (0, 0.9μ�) and ten additional simulations throughout (0.9μ�, μ�).
We classify the resulting injured trajectories as a Fixed Point or a Periodic Orbit according

to the following criteria:

1. Fixed Point: when the trajectory is always confined to a circular region of radius of 0.01

(about three orders of magnitude below the uninjured radius).

2. Periodic Orbit: when the trajectory escapes the circular region but re-enters it periodically.

Note that these criteria classify very small periodic orbits as fixed points, since their behav-

iors are very similar. The method may also classify sufficiently slow, long-timescale oscillatory

transients as periodic. These tests ignore the first 5 seconds of simulation time (50,000 time-

steps), chosen heuristically as a typical timescale of transient decay. After this initial wait, we

check the criteria at the end of each subsequent 5 seconds of simulation time until convergence

is detected. The results were not observed to be sensitive to the length of this interval.

Artificial Mapping of Dynamical Signatures to Behavioral Modes

Stephens et al. [37] found that the forward crawling motion of C. elegans is well described by

two principal component body-shape modes called eigenworm modes. When moving
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forward, the modes alternate within its phase space forming a limit cycle. Kunert et al. [39]

also found a two-dimensional limit cycle, but for the collective motorneuron activity after

PLM stimulation. They interpret this similar dynamical signature as a neuronal analog to the

observed behavioral pattern.

To interpret the distorted neural activity caused by our simulated injuries, we construct a

map from the neuronal activity plane onto the eigenworm plane. The body-shape modes were

extracted from Figure 2(c) of [37]. We first calculate the optimal linear mapping of the healthy

trajectory onto a circle (see Fig 3a). We then use this calibration for all other trajectories. This

artificially translates anomalous neuronal responses to anomalous body motions. Our proce-

dure has a number of limitations, for which we list a few:

1. The behavioral limit cycle in [37] is approximately circular, but the relative rotation

between the two planes is unknown. This parameter could be inferred by observing the

motion of injured or ablated worms.

2. It is unclear that the mapping would hold for injured worms, especially without accounting

for body-shape modes (eigenworms) from impaired crawling behavior.

3. We consider only the first two (healthy) behavioral modes. Thus, lack of motion within this

plane does not necessarily imply that the worm is not moving. The injured body-shape

dynamics could evolve along different modes leaving no traces on the original two.

The lack of direct neuronal analogs for injured network modes limits our ability to interpret

arbitrary impaired behavioral responses. Further computational work could also find neuronal

proxies for additional behavioral modes so as to enable a more complete mapping. Recent

work on blast injuries of worms [45] could potentially help extend the analysis by providing

injured eigenworm mode projections.

Procrustes Shape Analysis

Procrustes Distance (PD) measures the dissimilarity between shapes, and in our context, we

wish to compare the shape of the trajectories of the healthy neural responses (circular orbits in

the phase plane) with the distorted ones produced after simulated injuries. For that, we use the

function procrustes.m from MATLAB’s Statistics and Machine Learning Toolbox. We

collect N data points from each trajectory and annotate their (x, y) coordinates in a (2 × N)

shape matrix S. The PD between two distinct shapes SA and SB is given by

PD ¼ min
b;R;c
k SB � b � SA � Rþ~c k2 ð12Þ

In other words, it finds the optimal (2D) rotation matrix R, scaling factor b> 0, and transla-

tion vector~c to minimize the sum of the squares of the distances between all points. Intuitively,

it compares shapes discounting translation, rotation, or scaling. To calculate the PD curves as

in Fig 4, we use the uninjured (μ = 0) limit cycle as our first shape SA. The second shape SB is

the limit cycle calculated for each injury at the indicated value of μ.

We pre-process the trajectories to extract data points only within a single period. Since inju-

ries usually distort the trajectory length, we use MATLAB’s spline.m function to interpolate

them and collect the same number of data points. Both limit cycles must also be phase-aligned,

which we achieve by finding the phase that minimizes the Procrustes Distance.

Classification of Deficient Behavioral Responses

We hypothesize that both the injury itself and the PD curves contain meaningful signatures of

behavioral outcomes of a given injury. For example, there is always a critical injury level μ = μ�
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in which the injured response collapses into a fixed point. Our artificial map suggests that this

endpoint location corresponds to the shape of a paralyzed worm. We thus wish to relate end-

point location to (1) the shape of the PD curve, and to (2) the injury vector ~m.

For these purposes, we classified the endpoints simply by dividing the endpoint distribu-

tion along its major axis. Specifically, we take the distribution of endpoints in Fig 5, calculate

the leading principal orthogonal mode (via taking the Singular Value Decomposition, as

mentioned earlier), and classify the points by the value of their projection onto this mode

(where we arbitrarily classify projection values� −0.01 as the “upper plane” and < −0.01 as

the “lower” plane). Given this definition, 63.2% of the points lie within the upper plane, and

36.8% lie in the lower plane. Note that all of the forthcoming analysis could be equally well

applied to any other output feature, and so we choose this classification for its relative

simplicity.

We calculate the average PD curve within each class. Since the PD curves may have a dif-

ferent number of points, we first pre-process them. Specifically, we normalize the maximum

μ and Procrustes Distance to 1 for all curves, and then interpolate them using MATLAB’s

spline.m such that all curves have the same number of points. We then simply take the

average and standard deviation to obtain the average curves shown within Fig 5. This figure

also plots the average scaling and translation curves as a function of injury level, for each

class. Scaling factors (i.e. the factor by which the size of the distorted limit cycle has

decreased from the original cycle) are given as an output of MATLAB’s procrustes.m as

used above. Translation distance is found by calculating the location of the mean of each dis-

torted cycle, and then calculating the distance by which this mean is displaced from the ori-

gin. These curves are then normalized, interpolated and averaged, yielding the average

curves in Fig 5. Note that, unlike the PD curves, translation and scaling are monotonic and

not distinct between classes, and thus they do not carry the same information about the func-

tional outcome of the injury.

Classification Trees

We use the ClassificationTree class from MATLAB’s Statistics Toolbox (version

R2013a). Fitting and cross-validation are performed using the included methods

ClassificationTree.fit and kfoldLosswith default settings (10 folds). The

minimum leaf size was set by calculating cross-validation error over a range of minimum

leaf sizes (see Fig 6b). For both PD curves and Injuries, cross-validation errors are optimal

at a minimum leaf size of around 40. We use this minimum leaf size for all fits.

The classification tree that uses normalized PD Curve Shapes to predict the endpoint class

yield a cross-validation error of 22.0%. We can compare this to the random case (i.e. the case

where PD Curve Shape has no relationship to the class) by repeating this analysis with ran-

domly shuffled class labels. For 100 trials with randomly-shuffled labels, the observed cross-

validation error was 43.8 ± 1.4%. Injury vectors were also used to fit classification trees for pre-

dicting endpoint classes (see Fig 6). The cross-validation error of 14.6% was significantly lower

in this case, while the randomly-shuffled labels analysis returned a error of 44.6 ± 1.3% (consis-

tent with the random error above). In both cases we observe that the cross-validation error is

far below what we would expect if the data had no relation to the classes.

Thus we can predict (with cross-validated accuracy exceeding 85%) the region into which

the endpoint will fall given a specific injury. Moreover, the classification tree in Fig 6 is very

simple to interpret and depends on only three neurons: ALML, AVM and SDQL. As per Wor-

mAtlas [51], all three of these neurons have sensory functions (ALML and AVM are mechano-

sensory; SDQL is an interneuron but is oxygen-sensing).

Linking Behavioral Deficits to Connectomic Injury in C. elegans

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005261 January 5, 2017 15 / 21



Discussion

This study introduces a tractable framework for analyzing how biophysically-inspired inju-

ries distributed across a physical neuronal network induce behavioral deficits. The specific

injuries we consider arise from FAS which has been implicated in most leading neurode-

generative diseases, aging and TBI. By identifying low-dimensional population codes

within our model which correspond to a known behavior, a proxy metric for cognitive defi-

cit can be constructed. Specifically, limit cycles in our dominant features serve as a neural

proxy for actions such as forward motion in the C. elegans. Such trajectories can be artifi-

cially mapped onto experimental body-shape modes, and suggests a behavioral interpreta-

tion of the distorted limit cycles resulting from an injury. Our analysis also suggests that

there is a diversity of functional deficits that arise from the same level of injury on a connec-

tomic network.

The ability to provide a theoretical understanding of functional, cognitive and behavioral

deficits due to connectomic injuries is a the forefront of TBI and neurodegenerative disease

studies. Both have an enormous societal impact and implications. Specifically, TBI is annu-

ally responsible for millions of hospitalizations [52, 53], with reports estimating that 57 mil-

lion people worldwide experienced some form of TBI [14]. It was also manifest in around

15% of all veterans of the Iraq and Afghanistan wars, with blast injuries being the signature

wound of these conflicts [14, 53]. Numerous studies show that even mild concussions, if

induced repeatedly, can lead to permanent brain damage; the issue is constantly debated in

the sports media, but especially in football [54]. Neurodegeneration affects orders of magni-

tude more people than TBI through diseases such as Alzheimer’s disease [10, 11], Creutz-

feldt-Jakob’s disease [15], HIV dementia [16], Multiple Sclerosis [17, 18] and Parkinson’s

disease [19]. Thus, any study that can help understand how FAS compromises cognitive

function is of great value.

Diagnostic Tools

Simulated injuries distort dynamical signatures in the network’s activity, such as limit cycles.

Our Procrustes Distance metric quantifies how much the shape of the limit cycle is distorted,

compared to the healthy cycle. Our results indicate that as different injuries evolve, this met-

ric follows qualitatively different trends (as in Fig 4). In all trials, a sufficiently high injury

level μ = μ� collapses the limit cycle into a stable fixed point. The shape of the PD curve helps

inform the location of this fixed point (as in Fig 5). This suggests that the shape of the PD

curve, as the injury evolves, may help predict the eventual behavioral outcome (e.g., the

body shape the worm will assume during temporary paralysis). Thus we have prescribed a

method to monitor the dynamics of the injured worm and the implications of the injury as it

evolves. Finally, our classification trees divides neural injuries into two distinct classes of

functional outcomes (i.e. endpoints in the “lower” or “upper” portions of the distribution).

Its cross-validation predictive accuracy is over 85% and implicates only three specific neu-

rons (ALML, AVM, and SDQL). This relationship between injury structure and behavioral

outcome is simple, interpretable and testable. Such trees can be fit for arbitrary injured

behaviors and could be used more broadly for any given model of injured full-Connectome

dynamics.

The metrics and methods described in this work can potentially be used to construct diag-

nostic tools capable of identifying a variety of cognitive deficits. Moreover, the severity of a

TBI injury and/or neurodegenerative disease can be quantified by measuring its metric dis-

tance from the normal/healthy performance. Our work gives clear mathematical tools capable

of formulating such diagnostic tools for assessing injuries and functional deficits.
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Limitations

The present study has many limitations, many due to the lack of biophysical evidence required

to build better models. For example, though we treat all neurons as identical passive, linear

units, it is known experimentally that different neurons appear to exhibit different behaviors

(for example, some neurons appear to be functionally bistable [55] and could be modeled as

such, as in [56]). We predict the results of injuries only on the two “forward-motion” motor-

neuron modes, ignoring other modes potentially associated with impaired behaviors. Further-

more, the exact mapping of our motorneuron voltage modes onto these body-shape modes is

ambiguous. The model lacks muscles and body features of the worm which limits our ability to

make more general predictions. We also neglect external feedback mechanisms required for

sustained and spontaneous forward motion, and assume that tail-touch neurons are constantly

stimulated. It is uncertain how such feedback mechanisms would alter the trajectory. The

order-of-magnitude parameter estimates of our model parameters also make direct quantita-

tive comparisons difficult.

Future Work

We believe the merit of this study lies not so much on the specific results presented, but on the

new directions and methodologies it opens for future work. In fact, computational and experi-

mental studies on the effects of network injury are still at their infancy for C. elegans and other

models. Many limitations of this work could be overcome with a more detailed model for the

C. elegans neuronal network both before and after injury. Coupling this with an external,

mechanical model would allow for more general predictions. This could be accomplished with

simplified mechanical models for locomotion (such as in [56]) or with more complete, future

“in-silica” models such as OpenWorm [57]. The development of such models, which do not

ignore the spatial extent and shape of neurons, would allow for the study of the effects of injur-

ing individual connections, or the effect of injuring individual neurons non-homogeneously.

This study suggests that such modeling work should also consider how to model neural inju-

ries, after which our analysis techniques could be applied directly.

Experimental studies would not only test our model, but also in, in conjunction with our

work, provide a new testbed for models of injured connectomic dynamics. Our Procrustes Dis-

tance metric, shown here to carry information about the eventual outcome of an injury, may

also be useful in the real-time analysis of injury progression. Thus our study provides a way

forward in monitoring behavioral outcomes of injured networks.

Ultimately at present, limitations in biophysical measurements and neural recordings make

it extremely difficult to identify more sophisticated underlying mechanisms responsible for

dysfunctions in neural networks, especially when circuits display intrinsically complex behav-

ior and functional activity. We believe the rapid advancement of recording technologies in

neuroscience will significantly help refine the model presented here.

Given that the modeling of neuronal networks is one of the most vibrant fields of computa-

tional neuroscience [49, 58, 59], our contribution provides a comprehensive study of how the

effects attributed to FAS jeopardize the network functionality, opening new possibilities and

objectives for the study of network architectures.

Supporting Information

S1 Source Code. Simulation source code. A .zip file of the MATLAB code used to both con-

duct simulations for a random injury, calculate the PD curves, and visualize the injured trajec-

tories.

(ZIP)
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S1 Figures. Figures for 1,447 injuries. Figures similar to the rows of Fig 4, for all 1,447 trials

conducted.

(ZIP)

S1 Videos. Visualization videos. Videos of injured trajectories mapped onto body shape

modes. We include three examples of distorted trajectories along with the healthy trajectory.

Similar videos can be created with the included source code.

(ZIP)

S1 Initial Conditions. Injury distributions for 1,447 injuries. MATLAB data file containing

injury distributions for all 1,447 trials. Can be used in conjunction with the above source code

to recreate the injuries simulated within this manuscript.

(MAT)
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