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Abstract
Advances in the science of toxicogenomics have opened the door to major advances in our
understanding of the molecular basis of environmental pathogenesis and the role of environmental
factors in human disease. This report summarizes major findings in the laboratory defining the
molecular basis of L1 retroelement activation in mammalian cells and the architecture of gene
regulatory networks involved in phenotypic control.

Background
Mammalian retroelements are ubiquitous genetic ele-
ments that amplify themselves in the mammalian
genome via reverse transcriptase and that modify the biol-
ogy of cells by reinsertion and possibly by modulation of
RNA and microRNA biology. Eukaryotic retroelements
rely on reverse transcriptase to transpose via an RNA inter-
mediate to a different location. The general structure of a
"typical" retroelement includes two open reading frames
and 5' and 3' untranslated regions involved in regulation
of transcriptional activity and stability.

In mammals, up to 42% of the genome is believed to be
comprised of retrotransposons; this translates into mil-
lions of elements most of which are not able of self repli-
cation or so called "dead". Of particular interest are
members of the LINE-1 (L1) family, abundant elements in
the human and mouse genomes believed to have contrib-
uted extensively to genomic evolution and to participate
in reprogramming of genetic programs during the course

of development and pathogenesis. L1s are targeted for epi-
genetic silencing during early embryonic development
and remain inactive in most cells and tissues upon com-
pletion of cellular differentiation. Understanding how ret-
rotransposons and their host genomes have coevolved
and the molecular mechanisms that help to optimize
mutual survival is still in its infancy. The ENCODE Project
shows that protein coding DNA makes up barely 2% of
the overall genome, yet 80% of 30 million bases analyzed
to date show evidence of being expressed) [1].

Methods
Within the context of environmental disease, research in
my laboratory over the past 15 years has identified retroe-
lements as molecular targets of environmental carcino-
gens [1-8]. The ability of genotoxic agents to reactivate
mammalian retroelements has guided considerable
efforts to elucidate molecular mechanisms of genetic reac-
tivation and its implications in the onset and progression
of environmental diseases of cellular growth and differen-
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tiation such as atherosclerosis and cancer. Of relevance are
the possible roles of retroelements in mutagenesis (inver-
sions, duplications and insertions) as well as DNA repair.
In our studies, we have focused on the role of L1 in regu-
lating the transition of normal and disease phenotypes.
Our hypothesis is that reactivation of L1 by environmen-
tal carcinogens upsets the regulatory mechanisms
involved in fixation of cellular differentiation programs to
recapitulate early developmental programming and give
rise to altered phenotypes characteristic of atherosclerotic
vessels and cancer.

Results
Earlier studies focused on the transfection of HeLa cells
with a human L1 element tagged with a Neo cassette in
the 3' untranslated region in order to evaluate the L1
mobilization and reinsertion upon challenge with low
doses of benzo(a)pyrene, a widespread environmental
carcinogen and atherogen. The construct used has two
promoters; P1 and P2 drive transcription in opposite
directions, a β-globin intron inserted into Neo cassette in
opposite orientation, splicing donor and acceptor sites
and G418 resistance gene [9]. The specificity of these
interactions was assessed using a reverse transcriptase
mutant. Under these experimental conditions, antibiotic
resistance would only be achieved by activation of reverse
transcription, splicing and genomic integration. G418
resistant clones were found to contain an intact Neo cas-
sette integrated into their genome. In parallel experiments
it was shown that BaP induced the synthesis of L1 cDNA
in HeLa cells. Interestingly, L1 expression increased the
resistance of cells to G418 mediated apoptosis, a finding
consistent with the hypothesis that reactivation of L1 by
environmental carcinogens mediates genetic reprogram-
ming and modulates cellular phenotypes.

Little is understood about the complex biology of L1 ele-
ments. To begin to elucidate genetic interactions of L1
computational biology studies have been initiated to elu-
cidate the structure of L1 gene networks and to define bio-
logical interactions of relevance to the regulation of
cellular phenotypes. Given the abundance of retroele-
ments in the mammalian genome and the extensive
redundancy associated with elements that are no longer
active, our initial studies focused on the study of an L1 ele-
ment previously identified in the mouse genome and
localized to chromosome 4 as a "unique" element [10].
The discretization of genetic networks was achieved using
a Coefficient of Determination (CoD) algorithm
employed in previous studies to elucidate biological net-
works that mediate induction of atherogenic phenotypes
in cultured vascular smooth muscle cells [11]. CoD relies
on Boolean logic to define binary or ternary functions that
describe genetic interactions within a biological system.
DNA microarray experiments from the public domain

database were employed to identify predictors of L1 as a
target. The results of these analyses identified a member of
the PAS homology domain superfamily as a central node
within the predicted L1 regulatory network. Given that
other members of this superfamily, namely the aryl
hydrocarbon receptor (AHR), had been previously identi-
fied as regulators of L1 activity, biological experiments
were carried out to define the integrity of computation-
ally-predicted relationships and the nature of biological
interactions.

In these experiments, AHR was downregulated using a
specific silencing (si)RNA specific and the relative expres-
sion of genes within the network was measured by RT-
PCR in cells treated with BaP to reactivate L1. siRNA tar-
geting the AHR blocked L1 inducibility and modified the
expression of other genes within the predicted biological
network. These findings established a role for members of
the PAS superfamily of proteins in the regulation of retro-
element reactivation profiles in mammalian cells. The
specificity of these interactions was confirmed in subse-
quent experiments showing that genetic or pharmacolog-
ical targeting of the AHR blocks L1 inducibility in
multiple cell types [8]. In other computationally-based
experiments we found that the connectivity of genes with
the discrete network defined by CoD, was not accounted
for by physical proximity within the genome and that the
network shared multiple components and inputs. More
recently, we have turned our attention to elucidation of
transcriptional regulatory mechanisms that define physio-
logical connectivity within the L1 network. Earlier we had
established a relationship between an AP-1-like respon-
sive element activated by redox stress and the transcrip-
tional activation of L1 in murine cells [5].

Gene transcription is controlled via sequence elements
that are recognized and bound by transcription factors
and by chromatin modifications at the DNA and histone
levels. Transcriptional regulation is often combinatorial
in nature and therefore a major goal in studies of genetic
regulation is the identification of combinatorial interac-
tions that cooperate in the regulation of gene expression
and that constitute a recurrent regulation motif for envi-
ronmental interference. Work by others established that
global hypomethylation of CpG islands leads to L1 reacti-
vation, chromosomal instability and elevated mutation
rates and that the E2F/Rb macromolecular complex binds
CpG islands to regulate gene expression. Of interest to the
regulation of L1 is that the E2F/RB complex associates
with histone methyltransferases and histone deacetylases
to regulate gene expression. On the basis of these impor-
tant biological relationships we have hypothesized that L1
reactivation by environmental stress is associated with
modulation of DNA and histone methylation and differ-
ential recruitment of chromatin modifying complexes
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onto the L1 DNA template. Preliminary studies support
this hypothesis and shown enrichment of L1 DNA ampli-
fication in mouse and human cells using E2F1 and E2F4
antisera compared to non-specific antibody. In fact, Rb-
deficient cells appear to exhibit exacerbated L1 expression
upon chemical stress.

Conclusion
Studies of L1 biology using toxicogenomics approaches
have shed light into the complex biology of retroelements
within the human and murine genomes. These studies are
helping to bridge the gap by taking advantage of mathe-
matical models to achieve a formal and unified descrip-
tion of biophysical phenomena. Our approach also
emphasizes the importance of biological validation of
theory and computation and the need for experimenta-
tion to rely upon, and be guided by, theory and computa-
tion.

The CoD algorithm has been successfully used to define
structural and functional determinants of a genetic regula-
tory network of L1. RNA Pol II and a per homolog were
identified computationally as primary attractors within
the L1 network, and AHR found to predictably regulate
genes within the L1 regulatory network. E2F/Rb com-
plexes may participate in epigenetic regulation of L1 via
nucleosomal histone modifications and recruitment of
HDACs 1 and 2. As such, L1 reactivation may be due to
failure of co-repressor protein recruitment by Rb reflecting
loss of histone epigenetic marks and histone acetylation.

Functional genomics approaches can help unravel the
complexity of biological systems. The integration of tech-
nological advances in the fields of genomics, computa-
tional biology and mathematics has led to emergence of
systems biology as a means of mapping and managing the
complex interactions that govern biological systems and
the discovery of novel biomarkers with diagnostic and
clinical applications.
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