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Abstract

Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by

Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories.

Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues

used in the clinic (poor cellular uptake, poor conversion to the 50-monophosphate form), the ProTide approach

has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer

activity. ProTides consist of a 50-nucleoside monophosphate in which the two hydroxyl groups are masked with

an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free

50-monophosphate, which is further transformed to the active 50-triphosphate form of the nucleoside analogue.

In this review, the seminal contribution of Chris McGuigan’s research to this field is presented. His technology

proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved

antiviral agents.
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A tribute to Chris McGuigan, “the Drug Hunter ”

In this issue, it is our immense privilege to pay tribute to

Professor Chris McGuigan, an extremely dedicated and

enthusiastic scientist who achieved remarkable success in

the antiviral field.

Professor Chris McGuigan’s achievements in the

development of ProTide technology are undoubtedly

extremely significant and remarkable. ProTide

technology is currently the most successful prodrug

strategy applied in the antiviral field, also demonstrating

promising results in other therapeutic areas.

As the remaining three members of his group, it will be

our mission to continue his legacy for many years to

come. We firmly believe that the best way to honor him

will be to put the same efforts and passion into research

for new medicines as he did.

Introduction

Nucleoside analogues

Viral infections represent a major problem to human
society. Viruses are often difficult to eradicate due to
the fact that they are easily spread, and are able to use
the host biochemical pathways to replicate. Therefore,
targeting viral machineries often presents the challeng-
ing task of reducing the viral load in the human cell
without damaging it.
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One of the most successful approaches to fight viral
infections is using nucleoside analogues (NAs).1 NAs
are synthetic compounds that exhibit structural simi-
larities to natural nucleosides. In the cell, they can
undergo the same physiological processes as the endog-
enous nucleosides from the uptake to the metabolism,
so that in their phosphate forms they can act on cellular
functions. Mono-, di-, and triphosphorylated nucleo-
sides are therefore the active forms of these drugs.
These compounds act by interfering with viral enzymes
as competitive inhibitors of their natural substrates as
well as by being incorporated into newly synthesized
viral DNA and RNA strands. Their incorporation into
nucleic acids may induce either the termination of
chain elongation or the accumulation of mutations in
the viral genome.2 Through these mechanisms NAs
interfere with the viral genome replication and thereby
work as antiviral drugs. However, human enzymes can
also recognize NAs, which act as antimetabolites.
Antimetabolites can have toxic effects on cells, such
as halting cell growth and division and/or inducing
apoptotic processes. Consequently, these NAs are spe-
cifically used as chemotherapy for cancer. NAs have
been in clinical use for almost 50 years and have
become cornerstones of the treatment for patients
with viral infections or cancer conditions.3

In the antiviral arena, NAs are commonly used in
the therapy of human immunodeficiency virus (HIV),
hepatitis B and C viruses (HBV and HCV), herpes sim-
plex virus (HSV), cytomegalovirus (CMV), and varicel-
la zoster virus (VZV) infections. These agents are
generally safe and well tolerated as they are recognized
by the viral, but not human polymerases in DNA rep-
lication. The NAs used to treat HIV infections are
often referred to as nucleoside reverse transcriptase
inhibitors (NRTIs), a viral DNA polymerase essential
for HIV replication. However, they have activity
against both DNA-dependent and RNA-dependent
DNA polymerases. They inhibit viral replication by
several mechanisms, either by competitive inhibition
of the viral polymerase or by DNA chain termination.
Many of the antiviral NAs either are missing or are
blocked at the 30-hydroxyl group, which results in fail-
ure of elongation of the nascent DNA molecule. Other
antiviral NAs are negative enantiomers (L-forms) of
the natural (D-forms) nucleosides and interfere with
replication, partially because of steric hindrance when
they are taken up by the viral polymerase or added to
the DNA molecule.

There are currently 14 approved cyclic NAs [1–14]
(Figure 1) that are used as antiviral agents for several
indications. The antiviral research field started with the
discovery of the NA idoxuridine (IdU, [1]),4 approved
in 1962 against herpes simplex keratitis,5 followed by
trifluridine (TFT, [2])6 licensed in 1980 for the topical

treatment of herpetic keratitis. Currently, these two
NAs are used in the topical treatment of herpetic
eye infections.

Vidarabine (AraA, [3])7 was approved later on in
1986 against HSV and VZV and is now used for the
treatment of acute keratoconjunctivitis, recurrent
superficial keratitis caused by HSV-1 and HSV-2 and
herpes zoster infections in AIDS patients. In many con-
ditions vidarabine, due to its lower selectivity, higher
inhibitory concentration and lower potency together
with a low aqueous solubility, which implies intrave-
nous dosing, has been replaced by the more powerful
and effective drug acyclovir (ACV) (see infra).

The combination of pegylated interferon-a with riba-
virin (RBV, [4]), approved in 1986, has for the last 10
years been the standard of care for the treatment of HCV
infections.8 In addition since RBV has a broad activity
spectrum including various DNA and RNA viruses, it
has been used (topically, as aerosol) in the treatment of
respiratory syncytial virus (RSV) infections.

Several other NAs were described as antiretroviral
agents and were later approved and marketed for anti-
viral therapy. Among them there are brivudine
(BVDU, [5]) approved in 1980 against VZV,9 zidovu-
dine (AZT, [6]) used since 1986 to prevent and treat
HIV infections,10 didanosine (ddI, 7) approved in
1991 to treat HIV infections in combination with
other medications as part of highly active antiretroviral
therapy (HAART)11 and stavudine (d4T, [8]) approved
in 1994 against HIV.12 Zalcitabine (ddC, [9]) was the
third antiretroviral drug to be approved in 1992 for the
treatment of HIV infections.11 Lamivudine (3TC, [10])
is an antiretroviral medication used since 1995 to pre-
vent and treat HIV infections and it is also used to treat
chronic HBV infection when other options are not pos-
sible.13 Other NAs approved include abacavir (ABC,
[11]) approved in 1998 against HIV,13 emtricitabine
(FTC, [12]),14 approved in 2004 in combination with
tenofovir disoproxyl fumarate (TDF) (see infra)
against HIV, entecavir (ETV, [13]),15 and telbivudine
(LDT, [14]),16 both approved against HBV in 2005 and
in 2006, respectively (Figure 1).

The clinical development of a second generation of
antiviral NAs, including at present six approved com-
pounds (Figure 2), started 35 years ago with the
discovery of the acyclic NA ACV [15], a selective
anti-herpetic agent used in the treatment of VZV and
HSV-1 and HSV-2 infections.17,18 ACV possesses ele-
vated selectivity of action, low cytotoxicity, and limited
side effects. Since it was originally described, until now,
ACV can still be considered as the “gold standard” for
the treatment of HSV and VZV infections. In the same
family is penciclovir (PCV, [16]),19,20 the guanine
analogue of ACV with similar activity spectrum and
mechanism of action. Currently, PCV is used as topical
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Figure 2. Acyclic NAs in clinical use as antiviral agents.

Figure 1. Cyclic NAs in clinical use as antiviral agents.
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cream against cold sores caused by the HSV infections.
Ganciclovir (GCV, [17]),21 is another guanine analogue
with an extended spectrum of activity. It has been
approved to treat CMV retinitis with a slow release
formulation and topical ophthalmic use for acute
herpes simplex keratitis. The pharmacokinetics and
the oral bioavailability of this second generation of
antiviral NAs were enhanced with valaciclovir
(VACV, [18]) and valganciclovir (VGCV, [19]), amino
acid ester derivatives of ACV and GCV, respectively
and with famciclovir (FCV, [20]),22 which is the diace-
tyl prodrug of PCV.20 VACV, the valine ester of ACV
was synthesized to increase the aqueous solubility and
to increase the oral bioavailability in order to use it in
eye drops or in intramuscular injections. VACV is used
for preemptive prophylaxis of CMV infections after
renal transplantation. FCV is used to treat shingles
(caused by reactivation of VZV), genital herpes
(HSV-2), and herpes labialis (HSV-1). After rapid in
vivo adsorption, FCV is converted into PCV through
selective deacetylation followed by final oxidation of
the nucleobase at the 6-position. VGCV, used in the
treatment of CMV and HSV, is the valine ester prodrug
of GCV, synthesized with the aim to increase oral
bioavailability and solubility in water. Following oral
administration, the ester is cleaved by esterases in
the intestines and in the liver to release the parent
nucleoside [17].

In order to exert their antiviral activity, NAs have to
be phosphorylated (in vivo) via three consecutive phos-
phorylations with the first one being usually the rate-
limiting step.23 However, if the first phosphorylation of
the nucleoside to its 50-monophosphate cannot take
place all these drugs are inactive. This happens when
the virus either does not induce a specific kinase or has
developed resistance to the compound through muta-
tions in this enzyme while the human cell fails to secure
phosphorylation. Thus, to overcome this issue and
improve therapeutic properties, nucleosides with a
phosphate group already present in the structure have
been targeted. The idea of replacing the phosphate
group by an isosteric and isoelectronic phosphonate
moiety was also investigated leading to the discovery
of nucleoside phosphonate analogues (NPs).24 Since
the CH2–P bond, unlike CO–P bond, is not susceptible
to esterase and phosphatase hydrolysis, the resulting
phosphonate compounds proved to be chemically and
enzymatically more stable than the phosphate ana-
logues. NPs are classified into major groups: cyclic
nucleoside phosphonates (CNPs) and acyclic nucleo-
side phosphonates (ANPs).25 CNPs are natural-like
NAs as they contain a nucleobase and a sugar
moiety. Compared to the large number of the ANPs
described in the literature, only a few examples of
CNPs with some antiviral activity have been

reported.24,26 This scarcity of examples is due the fact

that in general CNPs are characterized by weak (if

none) antiviral activity, which is generally explained

by their poor substrate properties for cellular and

viral kinases. For this reason until now, none of these

compounds have reached the clinic.
On the contrary, ANPs have acquired a prominent

therapeutic position.25 They exhibit a broad spectrum

of antiviral activities, particularly against DNA viruses

and retroviruses, which are ascribed to their ability to

undergo intracellular phosphorylation to the diphos-

phate forms and to be incorporated in the growing

nucleic acid strand. The common structural attribute

of ANPs is a nucleobase attached to an aliphatic side

chain containing a phosphonomethyl residue. A meth-

ylene bridge between the phosphonate moiety and the

rest of the molecule excludes the possibility of enzymat-

ic dephosphorylation; absence of the glycosidic bond in

the structure of ANPs further increases their resistance

to chemical and biological degradation. Flexibility in

the acyclic chain is assumed to enable these compounds

to adopt a conformation suitable for interaction with

active sites of different enzymes involved in DNA

replication.
This new family of marketed antiviral drugs,

includes cidofovir (CDV, [21])27 formally approved

only for the treatment of human cytomegalovirus

HCMV retinitis in AIDS patients, but also used suc-

cessfully off-label in the treatment of various other

DNA virus infections, particularly human papilloma

virus (HPV)-associated lesions (Figure 3).

Nucleoside phosphate and

phosphonate prodrugs

NAs as hydrophilic molecules do not rapidly penetrate

cell membranes by non-facilitated diffusion. Instead,

they permeate the cell by carrier-mediated endocyto-

sis,28 which is an active or facilitated transport mecha-

nism that requires energy and a specific receptor or

protein on the cell surface. Unfortunately, carrier-

mediated transport often requires very close structural

resemblance to natural products.
As previously mentioned, nucleoside 50-monophos-

phates or 50-phosphonates bypass the slow first phos-

phorylation step performed by viral kinases. However,

these two classes of compounds are subject to poor cell

penetration as a consequence of the negative charges in

the phosphate and phosphonate groups, at physiolog-

ical pH. Similarly to NAs, they require active transpor-

tation to enter the cells, and might present a risk of

being deactivated in vivo by several cellular enzymes.

In addition, they are not ideal for oral administration,

an extremely desirable requisite for the treatment of
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chronic diseases. To overcome these limitations, several
prodrug structures of biologically active phosphate and
phosphonate analogues have been developed.29–37 The
rationale behind the design of such agents is to achieve
temporary blockade of the free phosphonic functional
group until their systemic absorption and delivery,
allowing the in vivo release of the active drug only
once at the target site. Such compounds have increased
lipophilicity and as such are capable of altering cell and
tissue distribution/elimination patterns of the parent
drug.38 Passive transcellular absorption is the most
general route for absorption of lipophilic molecules.
Many prodrug approaches have been utilized to over-
come the limitations of phosphate- and phosphonate-
containing drugs. Some of these approaches are
still under development and until now no clinical inves-
tigations as antiviral agents of compounds, belonging
to these classes of prodrugs, have been reported.
Among them, there are aryl and phenyl esters,39

cyclosaligenyl esters (CycloSal),40 bis-S-acylthioethyl
esters (Bis-SATE),41 and peptidomimetic prodrugs.42–44

Nevertheless, other approaches have been more success-
ful and include prodrugs that have reached the clinic for
antiviral therapy. An example of such a well-investigated
class of prodrugs is represented by the alkoxyalkyl ester
prodrugs of ANPs, designed by Hostetler group.45 These
include brincidofovir (CMX001, hexadecyloxypropyl-
CDV), an experimental antiviral drug in clinical develop-
ment by Chimerix for the treatment of CMV, adenovirus,
smallpox, and Ebola virus infections46 and CMX157
(hexadecyloxypropyl-tenofovir) another novel lipid
ANP that has completed a Phase I clinical trial in
healthy volunteers, demonstrating a favourable safety,
tolerability, and drug distribution profile.47 ContraVir

Pharmaceuticals is planning further clinical development
of this compound against HBV and HIV.

Cyclic 1-aryl-1,3-propanyl ester prodrugs
(HepDirect), are another example of phosphate
prodrugs effective as antiviral agents. This class of pro-
drugs features pradefovir, the 3-chlorophenyl
HepDirect prodrug of adefovir,48 which has been
advanced to human clinical trials for hepatitis B infec-
tion therapy. The clinical development of pradefovir, as
an oral prodrug for chronic HBV infection, although
discontinued in USA and Europe, is still progressing in
China by Chiva Pharmaceutical.49 Currently, IDX184,
a (SATE)-phosphoramidate diester prodrug of 20-C-
methylguanosine, is the only example of the successful
application of this prodrug technology to reach human
study. Unfortunately, the development of this antiviral
agent for HCV treatment was stopped in Phase IIb in
2012.50 Another example of a successful phosphate
prodrug approach is represented by the phosphonodia-
midate GS-9191,51 a double-prodrug of the ANP 9–(2-
phosphonylmethoxyethyl)guanine (PMEG).52 In 2011,
GS-9191 has completed Phase II clinical trials by
Gilead Sciences as a topical prodrug to treat external
genital warts due to HPV infections.53 After that,
Gilead Sciences has granted Graceway pharmaceuticals
an exclusive worldwide license to GS-9191 for topical
use,54 but since then no further development has been
reported to date. The Pharmasset agent PSI-352938, a
novel cyclic phosphate prodrug of b-D-20-deoxy-20-
a-fluoro-20-b-C-methylguanosine,55 was first-in-class
prodrug to be clinically evaluated for the treatment of
HCV infection. It progressed up to Phase II clinical
trial56 but after that its clinical development was
discontinued due to observed hepatotoxicity.57

Figure 3. Nucleotide analogues in clinical use as antiviral agents.
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Two examples of prodrug approaches (Figure 3)
applied to ANPs represented by the acyloxy and alkox-
ycarbonyl esters, were very effective and led to com-
pounds that entered clinical trial studies and further
obtained Food and Drug Administration (FDA)
approval. Such compounds currently marketed
for antiviral therapy are: adefovir dipivoxil [22],58 the
bis-pivaloyloxymethyl ester of adevofir, approved in
2002 for the treatment of HBV infections; and tenofo-
vir disoproxil fumarate [23]59 the bis-diisopropyloxy-
carbonyloxymethyl ester of tenofovir fumarate licensed
in 2001 for the treatment of HIV infections, and in 2008
also approved to treat chronic HBV infections.

Finally, the ProTide approach, invented almost 25
years ago by Chris McGuigan has recently been
proven very successful in the intracellular delivery of
nucleoside monophosphate into the cell, improving the
activity of the parent drug.36,60,61 During these 25 years,
the ProTide technology was applied to a vast array of
nucleosides and these studies have paved the way to the
discovery of sofosbuvir (phosphoramidate of 20-a-C-
fluoro-20-b-C-methyl uridine, [24])62 and tenofovir alafe-
namide (TAF, phosphoramidate of tenofovir, [25])63

(Figure 3), both launched in the market by Gilead
Sciences for the treatment of HCV (2013) and HIV
infections (2015), respectively.63 A year later, TAF
was approved for the treatment of HBV infections.
To further confirm the success of this phosphate pro-
drug approach in the antiviral arena, it is important to
mention that several other phosphoramidates of NAs
are in clinical or preclinical development to treat viral
infections (see infra).

Given the tremendous importance of phosphor(n)-
amidate prodrugs in the antiviral arena and beyond,
after the approval of sofosbuvir [24] and TAF [25],
the application of the ProTide technology has
increased considerably. We herein attempt to report
the ProTide development from its discovery to the
recent application in the antiviral arena. After the
brief introduction on the topic in the following

sections, we will focus our attention on the ProTide
approach, first discussing the synthetic methodology
toward phosphor(n)amidates and summarizing the
studies performed to prove their metabolic activation
pathway. We will then report in details on the applica-
tion of this approach to antiviral nucleosides starting
from McGuigan’s pioneering studies until the most
recent use of his technology. We will give a full account
on sofosbuvir [24] and TAF [25] and on those ProTides
that are currently in clinical development.

Aryloxyphosphor(n)amidate

prodrugs (ProTides)

McGuigan and his team at Cardiff University
researched design of novel chemically protected phos-
phate prodrug groups or motifs, which later became
known as “ProTide” technology. A ProTide (pronu-
cleotide) is a nucleoside aryl phosphate or phosphonate
masked with an amino acid ester promoiety linked via
P–N bond (Figure 4). Such a prodrug is able to enter
the cell via facilitated passive diffusion through the cell
membrane and when cleaved, it delivers the nucleoside
monophosphate or monophosphonate releasing the
two masking groups. The amino acid motif is normally
selected from a range of natural and unnatural amino
acids, although usually L-alanine is found to be pre-
ferred one and is featured by all ProTide drugs that
have reached the clinic. In fact, in vitro study of d4T
ProTides with b-amino acids as phosphoramidate
moiety revealed an almost complete lack of anti-HIV
activity in comparison with their a-amino acid deriva-
tives.64 Short linear (methyl, ethyl, pentyl) or branched
alkyls (isopropyl, neopentyl) and benzyl esters are usu-
ally employed. The tert-butyl is usually excluded due to
its poor bioactivation.65 Phenyl and 1-naphthyl are
commonly used as aryl components and are indeed
those incorporated in the drugs in clinical use or devel-
opment. However, the 5,6,7,8-tetrahydronaphthyl
group has more recently appeared as a valid and

Figure 4. General structure of ProTide scaffold.
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effective moiety.66,67 Although the potency of ProTides

varies with all the individual components of the phos-

phoramidate core, amino acid ester has been proven to

drive predominantly the antiviral activity of the pro-

drugs, as it is closely linked with their stability and

metabolic activation. Therefore, an extensive struc-

ture-activity relationship (SAR) study of amino acid

ester and aryl moieties is generally performed to find

an optimal combination of the promoieties for biolog-

ical activity.
The ProTide approach as a strategy to circumvent

an impeded 50-monophosphate formation was exten-

sively applied also to anticancer NAs.66,68–80 An

Edinburgh-based clinical-stage pharmaceutical

company NuCana, is currently pioneering this technol-

ogy in the oncology setting in collaboration with our

laboratories.
The established position of the ProTide approach in

the antiviral and anticancer nucleotide prodrug

field provided a foundation for its further expansion

into additional research area and/or non-nucleoside

type compounds. These include phosphoramidates

of carbohydrates such as N-acetyl-D-glucosamine

for the treatment of osteoarthritis,81,82 2-fluoro-2-

deoxyribose-1-phosphate,83 2,2-difluoro-2-deoxyri-

bose-1-phosphate,83 2-deoxy-D-ribose-1-phosphate,84

and phosphonamidates of 2-deoxy-D-ribose-1-phos-

phonate85 as antivirals. More recently, application of

the ProTide technology to N-(3–(5-(20-deoxyuridine))
prop-2-ynyl)octanamide, the Mycobacterium tuberculo-

sis thymidylate synthase X inhibitor86 and to

fingolimod, an immunomodulating drug used for treat-

ing multiple sclerosis disease87 was reported. Other

research groups have also explored this prodrug

approach in different areas of medicinal chemistry.88–91

Synthetic methods

Aryloxyphosphoramidates

There are three methods for the preparation of arylox-

yphosphoramidates as highlighted in the retrosynthetic

approaches presented in Scheme 1. These procedures

differ in the way the phosphoramidate moiety is intro-

duced at the 50-hydroxyl group of a NA. Method A is

based on a coupling reaction of a NA with a diary-

lphosphite to form a NA-50-monoaryl-H-phosphonate

intermediate [I] suitable for subsequent oxidative ami-

nation.92 In method B, a nucleoside aryl phosphate [II]

is coupled to an amino acid. Method C employs a

phosphorylating agent [III] which is coupled to a NA

in the presence of either N-methylimidazole (NMI)

or tert-butyl magnesium chloride (Grignard reagent,

t-BuMgCl).93 Over the past two decades, method C

has been recognized as the most common strategy for

the synthesis of aryloxyphosphoramidates and it has

been applied to a wide number of antiviral and anti-

cancer NAs. The choice of base for the coupling reac-

tion largely depends on the presence and susceptibility

of other free hydroxyl groups in the substrate. These

additional groups might compete with the 50-OH

toward phosphorylation. The key phosphorylating

Scheme 1. General retrosynthetic approaches for the conventional synthesis of aryloxyphosphoramidates.
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agents [III], obtained as a pair of diastereoisomers at
the phosphate centre (1:1 Rp: Sp ratio) are formed
from an amino acid ester (HCl or tosyl salt) and
dichlorophosphate upon the reaction with triethyl-
amine at low temperature.94,95

The Grignard reagent is not selective thus when used
for the coupling reaction, the formation of undesired 30-
phosphoramidate and 30,50-bis-phosphoramidate is usu-
ally observed. This methodology suffers some limitations
such as the need of extensive purification from a complex
mixture of 30,50-bis-phosphorylated by-products, which
is not suitable in case of large-scale synthesis.

Coupling mediated by NMI, which forms a labile
imidazolium intermediate with phosphorylating agent,
favors the selective phosphorylation of the primary
hydroxyl group at the 50-position of the nucleoside.
However, the final outcome in terms of regioselectivity
and yield with NMI or tert-BuMgCl is difficult to pre-
dict. The comprehensive review by Pradere et al.96 sum-
marizes these results for a wide range of NAs.

To avoid the formation of undesired 30,50- and 30-
phoshoramidates, usually the selective protection of the
free 30-hydroxyl group in the sugar part of a NA prior
to the coupling reaction with a phosphorylating
reagent [III] is often necessary. This methodology
requires further deprotection of the 30-position at the
phosphoramidate stage. In the case of ribonucleoside
analogues, commonly used protecting strategies
include 20,30-diol protection with isopropylidene or
cyclopentylidene moieties as reported by McGuigan
and colleagues for b-20-C-methylguanosine (20-
MeG),97 and b-20-C-methyladenosine (20-MeA)98 and
5-substituted uridine-based NAs such as 5-iodouridine
(5-IU) and 5-bromouridine (5-BrU).99 The tert-butox-
ycarbonyl (Boc) and silyl-containing groups such as
tert-butyldimethylsilyl (TBDMS) are often used to pro-
tect either 30-OH100 or 20- and 30-OH functional groups
in the 20-deoxy-, 20-modified-20-deoxyribonucleoside or
ribonucleoside analogues,101,102 respectively. The selec-
tive removal of these protecting groups at the phosphor-
amidate stage is usually performed under acidic
conditions. Isopropylidene or cyclopentylidene moieties
are normally removed using 60% acetic acid at 90–95�C,
or 80% formic acid at room temperature.97–99 Whereas,

tert-butoxycarbonyl (Boc) and silyl-containing groups
are detached using a mixture of formic acid/water (1:1
v/v) or trifluoroacetic acid/water/THF (1:1:4) as
described for gemcitabine and pseudoisocytidine-based
ProTides.76,80 In general, the yields of deprotection
under acidic conditions are rather low, despite the some-
what acid-stable nature of ProTides. Although, yields of
the coupling reaction are generally significantly improved
using 20,30-protected nucleoside, the overall yields of the
protection–deprotection sequence remain moderate.
The benzyloxycarbonyl (Cbz) group can be efficiently
employed to protect hydroxy- and amino-groups in
both sugar and nucleobase moieties as reported by Cho
et al., for cytidine, uridine, adenosine, and guanosine
analogues.103 The ease with which the Cbz is introduced
on both the sugar and the nucleobase, coupled with its
facile and clean removal via hydrogenation under neutral
conditions, make this protecting group particularly
attractive. To mask a competitive site such as NH2 in a
nucleobase unit of NAs and to significantly improve gen-
eral solubility of NAs, temporary protection of this func-
tional group with either benzoyl or dimethylformamidine
groups can be introduced prior to coupling reaction as
reported for pyrimidine methylenecyclopropanes104,105

and the anti-HSV agent ACV, respectively.106 A more
straightforward method toward the 50-regioselective syn-
thesis of phosphoramidates was recently published by
Simmons et al.,107 consisting of a direct and highly selec-
tive 50-phosphorylation reaction, mediated by dimethy-
laluminum chloride without employing 30-protection
manipulations. Moreover, when using the single isomer
of 2,3,4,5,6-pentafluorophenyl-bearing phosphorochlori-
date (Sp-[26]),

100 both stereoselectivity (see infra) and
regioselectivity of resulting prodrugs can be achieved.
This method, reported in Scheme 2, was successfully
applied to a wide number of modified NAs leading to
pharmaceutically relevant compounds such as anti-HCV
clinical agents sofosbuvir and INX-08189 with
good yields.

When the key phosphorylating agents are used as a
pair of diastereoisomers at the phosphorus centre (1:1
ratio RP and SP), formation of two diastereoisomeric
aryloxyphosphoramidates in the same ratio is achieved.
Such diastereomeric mixtures are often very difficult to

Scheme 2. Regioselective synthesis of 50-O-phosphoramidates.
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separate by standard chromatographic methods,
including reverse-phase chromatography or crystalliza-
tion.108,109 Therefore, a lack of stereoselectivity repre-
sents one of the major limitations of these approaches.

Over the past 10 years, the main focus of researchers
was concentrated on the development of diastereoselec-
tive strategies toward phosphoramidates obtained as a
single isomer. Demand for efficient diastereoselective
methods appeared to increase particularly after the
discovery of a significant difference in the antiviral
activity between SP and RP isomers as reported for
SP-isomer of TAF [25], and Sp-isomer of sofosbuvir
[24] (Figure 3), which showed a 10-fold increase in
potency against HIV110,111 and an 18-fold difference
in HCV activity versus the corresponding Rp
isomer,62 respectively.

A diastereoselective method to obtain phosphorami-
dates using a chiral auxiliary-bearing phosphoramidat-
ing reagent [30] was developed by Meier and colleagues
(Scheme 3).112 In this approach, (S)-4-isopropylthiazo-
lidine-2-thione [27]113 acts as a chiral auxiliary and
introduces the stereochemistry at the phosphorus
atom in the intermediate [29], which is formed follow-
ing the reaction of phosphorodichloridate [28] with aryl
derivatives (1-naphthol or substituted phenols) at
�91�C in the presence of 1,8-diazabicyclo[5.4.0]
undec-7-ene (DBU) for 25–75 min. The ratio (up to
14:1 Sp:Rp) of the two diastereoisomers Sp-[29] and
Rp-[29], obtained in this step, where the chirality trans-
fer is taking place, is dependent on the phenol deriva-
tive used in the reaction. The (SP)-configured

diastereomer is assumed to be preferentially formed
as the result of an addition/elimination mechanism.114

When diastereomerically enriched mixtures of phos-
phorochloridates [29] are reacted with L-alanine
methyl ester hydrochloride, the phosphorodiamidates
[30] are obtained as a mixture of chromatographically
separable RP and SP diastereoisomers (de> 95%).
The diastereoselectivity ratio is achieved irrespectively
of the variations in the amino acids.115 In the final
SN2-type reaction each of the diastereoisomer [30]
(configuration of [30]-RP isomer confirmed by X-ray
crystallography) was separately reacted with NAs
to give phosphoramidate prodrugs as single RP and
SP-isomers. In particular, this procedure was reported
for d4T [8] ProTides obtained in 11–50% yield with
85–95% diastereomeric excess (Scheme 3).

A novel approach to develop a diastereoselective syn-
thesis of aryloxyphosphoramidates was reported more
recently by Ross and colleagues.100 In this approach, a
diastereomerically pure phosphoramidating agent with
substituted phenolic leaving groups such as p-nitro-
phenyl or 2,3,4,5,6-pentafluorophenyl (Scheme 4), was
isolated by crystallization with additional supercritical
fluid chromatography and subsequently used in the cou-
pling reaction with two NAs, yielding ProTides as a
single isomer. Among a series of different phosphorami-
dating reagents investigated in these studies, the reagent
with 2,3,4,5,6-pentafluorophenyl as the aryl moiety [26]
was identified as the optimal reagent and its SP-isomer
was used to prepare the HCV clinical agent PSI-7977
(sofosbuvir) in multi-gram scale.100

Scheme 3. Asymmetric synthesis of phosphoramidates via chiral auxiliary.
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A diastereoselective method for the synthesis of
P-chirogenic phosphoramidate prodrugs via copper-
catalyzed reaction in the presence of a base was recent-
ly developed by Pertusati and McGuigan in the
McGuigan group.116 Among several catalysts screened
in this study, Cu(OTf)2 and CuOAc proved to be the
most effective when used in the synthesis of purine-
based and pyrimidine-based ProTides, respectively.
An assessment of the effect of the base and solvent
on the stereoselectivity and yield of the coupling reac-
tion showed that diisopropylethylamine (DIPEA) and
dimethoxyethane (DME) are able to provide the phos-
phoramidates with good diastereoselectivity and

moderate yields (diastereomeric ratio 1:8.3 RP/SP; 40–

60% yield) (Scheme 5).
Another catalytic stereoselective method that attains

high selectivity for nucleoside phosphoramidation was

reported in 2017 by researchers at Merck. In this meth-

odology a metal free small-molecule catalyst [32]

enabled the phosphoramidation of different 20-modi-

fied nucleosides with high stereoselectivity at the phos-

phorus center towards RP configuration (Scheme 5).117

When using this methodology to optimize the synthetic

route to the therapeutic anti-HCV agent, the desired

RP-isomer MK-3682 was obtained in high diastereo-

meric ratio of 99:1 (RP:SP) in 92% yield.

Scheme 4. Diastereoselective synthesis of aryloxyphosphoramidates using a single isomer of 2,3,4,5,6-pentafluorophenyloxy or
para-nitrophenyloxy phosphorylating agents.

Scheme 5. Catalyst-mediated diastereoselective synthetic approaches to phosphoramidates.
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All aryloxyphosphoramidates synthetic strategies
described above are based on the phosphoramidation
process performed at the level of either protected or
unprotected NAs. A different synthetic approach,
involving the preparation of an aryloxyphosphorami-
date ribose derivative as the key building block was
recently testified by Gao et al.118 This aryloxyphos-
phoramidate ribose bearing L-aspartic acid diisoamyl
ester can be further coupled with a number of nucleo-
bases under Vorbrüggen conditions to afford the
desired products. The presence of a 2-acyloxy-group
in the sugar moiety is a prerequisite for the neighbour-
ing group participation, which allows N-glycosylation.
However, the exclusive formation of the nucleotide
analogue with b-configuration is obtained only in
certain cases and it depends on the sugar and nucleo-
base (pyrimidine vs. purine) used for N-glycosylation
reaction. Moreover, basic conditions required for the
deacetylation (at the ProTide level) might not always
be compatible with promoieties other than L-aspartic
diisoamyl ester.

Aryloxyphosphonamidates

The preparation of phosphonamidate prodrugs of
ANPs is generally accomplished from the correspond-
ing phosphonic acid via two general procedures A and
B (Scheme 6).

Method A, developed in McGuigan’s laboratory119

consists of the formation of the nucleoside phosphor-
odichloridate [IV] by treatment of the phosphonic
acid with thionyl chloride, followed by reaction
with the desired aryloxy-compound and amino acid
ester to obtain the corresponding prodrug. During
the first step, partial hydrolysis of the second P–Cl
bond has been reported. For this reason, before the
reaction with the appropriate amino acid, the interme-
diate must be treated again with thionyl chloride.
Under these conditions, tenofovir and adefovir

aryloxyphosphonamidate prodrugs were obtained in

very low yields (5–10%). Modification of this method

was reported by Gilead Sciences.120 In the first step, a

mixture of DMF/sulfolane is replaced by dichlorome-

thane, whereas trimethylsilyl phenolate is instead used

as the nucleophile. The temperature is also increased up

to 100�C. In this case, the intermediate monochloride is

intentionally hydrolyzed with sodium hydroxide and

isolated from the reaction mixture. Next, the amino

acid ester is introduced via prior chlorination of the

mono-acid. This method was further modified

for the industrial synthesis of TAF [25].120–122 The

introduction of the aryl alcohol is accomplished by its

coupling with the free phosphonic acid using N,N’-

dicyclohexylcarbodiimide (DCC) as a coupling

agent in the presence of an organic base, usually

triethylamine. The reaction is generally performed in

N-methyl-2-pyrrolidinone (NMP) at 100�C. The ary-

loxy phosphonic acid is then isolated and transformed

to the corresponding chloride with thionyl chloride in

acetonitrile. The chloride is then reacted at low temper-

ature (�30�C) with the appropriate amino acid ester.

In comparison with method A, yields for the formation

of phosphonate prodrugs improved up to 25% over

two steps.
Method B is based on a modified methodology for

the synthesis of symmetrical bis-amidate prodrugs of

ANPs, which was reported first by Janeba and col-

leagues.123 This latter procedure consists of the synthe-

sis of the silyl ester of the phosphonic acid via the

reaction of a selected ANP with an excess of trimethyl-

silylbromide (TMSBr) in acetonitrile. The silyl ester

was not isolated but immediately reacted with the

desired amino acid ester in pyridine and triethylamine

used as a coupling reagent with a mixture of triphenyl

phosphine and 2,20-dipyridyldisulfide (Aldrithiol-2).

Phosphonodiamidates of several ANPs were obtained

in high yields. This method is operatively simpler when

Scheme 6. Retrosynthetic analysis for the conventional synthesis of phosphonamidates.
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compared to the procedures described above and offers
the advantage that either the free phosphonic acids or
the corresponding alkyl esters can be used as a starting
material. This is of a great advantage, considering the
difficulties generally encountered in the purification of
free phoshonic acids. McGuigan’s group adapted this
methodology to the synthesis of phosphonamidate
ANPs prodrugs.66 To accomplish that, the silyl ester
[V] must be treated with a 1:1 mixture of aryl alcohol
and amino acid ester hydrochloride. Under these con-
ditions, both adefovir and tenofovir phosphonamidates
were isolated in moderate yields.66 Later, the same
authors discovered that under this protocol for
C5-pyrimidine ANPs, functionalized with a but-
2-enyl-chain, only traces of the desired phosphonami-
date were detected with the phosphonodiamidate being
the major product. To circumvent this problem, the
addition of an excess (6 equivalents) of aryl alcohol
with respect to the amino acid ester (1 equivalent)
was essential.67

Metabolic activation pathway

The biological activity of aryloxyphosphor(n)amidate
prodrugs is expressed after their metabolic activation
to the intracellularly released corresponding mono-
phosph(on)ate nucleoside, further phosphorylated to
the corresponding active di– and –triphosphate forms
by nucleotide kinases.124

The early reports on the phosphoramidate activa-
tion pathway date back to the late 1990s.64,125 In
these preliminary investigations, the metabolism of
d4T phosphoramidates with pig liver carboxylesterase
(CES) was studied125 using in situ 31P NMR analysis, a
technique following that is now routinely employed in
McGuigan’s laboratories as a predictive tool for the
likely in vitro biological activity as well as for SAR
establishment. The original protocol of this enzymatic
experiment was later adapted to study the ProTide first
activation step with carboxypeptidase Y enzyme, to
prove the nucleoside monophosphate release in biolog-
ical matrix such as cell lysate126 or to test the prodrug
stability in human serum.76

Over the same period, these investigations were then
extended to AZT phosphoramidates, where stability
was tested with pig liver CES and different biological
media such as human lymphocyte CEM cell extract,
human serum, and mouse serum.64,125

The results of these studies suggested that the car-
boxylester group linked to the amino acid moiety has
pronounced influence on the pharmacokinetics of the
prodrugs and their associated stability. Introducing a
tert-butyl ester was shown to lead to a significant
reduction in antiviral potency due to a poor esterase-
mediated activation. The metabolism of the prodrug

was found to be markedly dependent on the amino
acid moiety, with a-amino acids necessary for biologi-
cal activity. Although compounds bearing longer
amino acids (b–amino acids) showed efficient ester
cleavage, they were found biologically inert and dis-
played no phenyl loss. L-Alanine was identified as
the preferred amino acid, thus fully agreeing with the
superior antiviral activity of the L-alaninyl-containing
phosphoramidates of d4T seen at that time and consis-
tently observed for other nucleosides analogous in fol-
lowing programmes. These results clearly suggested
three key points for the metabolic activation of this
class of prodrug: (1) the amino acyl liberation is neces-
sary for biological action, (2) an a-amino acid is neces-
sary for the phenyl cleavage (by intramolecular
cyclization), and (3) phenyl loss proceeds after ester
cleavage. Based on these findings, for the first time
McGuigan proposed the metabolic pathway of the
phosphoramidate prodrug,127 which is commonly
accepted and considered valid also for phoshonamidate
prodrugs. A general scheme representing metabolic
activation of phosphor(n)amidate ProTides is depicted
in Figure 5. The mechanism involves an initial carbox-
ylic esterase or carboxypeptidase-mediated hydrolysis
of the carboxylic ester of the amino acid leading to
intermediate [A]. As evidence of this first step Gilead
Sciences was able to show that cathepsin A is the pri-
mary enzyme that activates TAF [25] and GS-9131 (see
infra) in human lymphatic tissues.127 The ester cleavage
is followed by an internal nucleophilic attack of the
acid residue on the phosphorus centre, displacing
the aryloxy group and giving the transient formation
of the putative five-membered cyclic intermediate [B].
This cyclic mixed anhydride is rapidly hydrolyzed to
the corresponding aminoacyl phosphor(n)amidate [C].
The intermediate [C] is then believed to undergo P–N
cleavage, mediated by an enzyme with phosphorami-
dase activity128 or may result from simple hydrolysis in
a more acidic subcellular compartment, to eventually
release the parent drug [D]. Phosphoramidase-type
enzyme belongs to the human histidine triad
nucleotide-binding protein (Hint)129 and its enzymatic
efficiency and substrate specificity is believed to deter-
mine the eventual activity of ProTides.130–132 The pos-
tulated mechanism of activation of ProTides was
supported by the cellular metabolism study of PSI-
7851, a phosphoramidate prodrug of 20-deoxy-20-
a-fluoro-b-C-methyluridine-50-monophosphate, in clone
A and primary human hepatocytes. Murakami and col-
leagues isolated and characterized the metabolites of
PSI-7851 and its diastereoisomer PSI-7977 (sofosbuvir),
including the intermediate metabolite [C] formed upon a
stereospecific hydrolysis of the carboxyl ester (catalyzed
by cathepsin A and CES1), and subsequent rapid chem-
ical reaction (steps a–c). The succeeding cleavage of the
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P–N bond (catalysed by Hint1) lead to a formation of a
50-monophosphate intermediate further phosphorylated
to di- and triphosphate forms (steps d–f).133

A detailed mechanism of the hHint1-catalyzed
hydrolysis of nucleoside phosphoramidates (in particu-
lar sofosbuvir) was recently proposed on the basis of
crystallographic studies using a combination of more
slowly hydrolyzed substrates and a catalytically
inactive mutant enzyme.134 Molecular modeling of
phosphoramidates and their corresponding amino
acyl intermediate [C] in the catalytic site of a model
of either carboxypeptidase135 or hHint128 are often
employed to analyze the data.

ProTide approach application to antiviral

nucleosides

Chris McGuigan’s work: From early reports to his
latest investigations

The first prototype of phosphoramidates of a nucleo-
side, reported by McGuigan et al., in 1990, displayed
two alkyl amines masking the monophosphate group
on AZT.136 AZT suffers from an absolute dependence
on host cell kinase-mediated activation, which can lead
to poor activity, emergence of drug resistance, and clin-
ical toxicity. In order to address AZT limitations,
McGuigan designed the above-mentioned compounds
as membrane-soluble prodrugs of the bioactive nucle-
otide, capable to bypass the first phosphorylation step.
Among different compounds, terminal substituted
alkyl amines showed pronounced anti-HIV effect in
vitro, which was observed to decline when increasing
the length of the methylene spacer. These results were
considered consistent with a mechanism of action

involving intracellular cleavage of the phosphorami-
date P–N bond, and the release of the nucleotide, or
a derivative thereof. Thereafter, phosphate triester
derivatives of AZT were designed and evaluated
against HIV-1 in vitro.137 During these studies, it was
found that simple dialkyl phosphate derivatives of
AZT as well as other NAs such as d4T, were inactive
as anti-HIV agents, whereas substituted dialkyl phos-
phates were active. In particular, compounds bearing at
the phosphorus centre a trichloro- or trifluoroethyl
group and a carboxyl-protected, amino-linked amino
acid displayed potent anti-HIV activity and low
host toxicity.

Continuing to explore different structures, the phos-
phorus center was then masked with an ester-
containing group in combination with either a simple
alkyl moiety or a trichloroethyl group or another ester-
containing group.138 The results of these investigations
revealed the presence of two ester-substituted groups
enhances activity relative to having only one substitut-
ed group. Furthermore, suggesting that a trihaloethyl
group may substitute for an ester-containing group but
with reduced potency. In several cases, these phosphate
derivatives were found to be more selective in their
antiviral activity than AZT due to their low toxicity
in comparison to the parent nucleoside. Overall, the
data supported the conclusion that these phosphate
derivatives exert their biological effects via intracellular
release of the nucleotide form.

In this report McGuigan stated: “If these in vitro
findings could be translated into a demonstrable in
vivo advantage, such phosphate pro-drugs could have
merit as candidates for clinical development.”138

This was clearly an anticipation of what would have
happened 25 years later. His investigations underlaid

Figure 5. General metabolic pathway for phosphor(n)amidate ProTides.
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the importance of the masked phosphate approach,

and had significant implications for what became the

future design of chemotherapeutic NAs.
The ProTide series of AZT is the earliest example of

aryloxyphosphoramidate technology reported by

McGuigan’s group in the early 1990s.139,140

In vitro evaluation revealed these compounds had a

pronounced, selective anti-HIV activity in CEM cells;

the magnitude of the biological effect varied consider-

ably depending on the nature of the phosphate-

blocking groups. Moreover, several of the compounds

retained marked antiviral activity in TK- (thymidine

kinase-deficient) mutant CEM cells in which AZT

was virtually inactive. Diaryl phosphate derivatives of

the anti-HIV NA AZT were also investigated as poten-

tial prodrugs of the bioactive free nucleotide.

The compounds were shown to be inhibitors of HIV

replication in several cell lines, and show reduced cyto-

toxicity in vitro, by comparison to the parent nucleo-

side. However, in contrast to the previously reported

aryloxyphosphoramidate derivatives, the diaryl

phosphates of AZT showed to be poorly active in

HIV-infected TK-deficient CEM cells. The results

clearly pointed to the aryloxyphosphoramidate as

the most promising structure for the delivery of the

nucleotide and paved the way for the development of

this class of prodrugs.
Thereafter, the ProTide technology was extensively

and successfully applied to a high number of nucleoside

phosphates with antiviral activity. In particular, follow-

ing AZT studies, extensive SAR studies investigating

the aryl, amino acid, and ester moieties were carried

out on d4T phosphoramidates.141–145 In these reports,

the preliminary results on the activation mechanism of

such prodrugs were also described.125,146 The nature of

the amino acid appeared to be extremely important for

the eventual antiviral action. Among the amino

acids studied, L-alanine was the most efficacious,

whilst L-proline and glycine were particularly

poor. However, an unnatural amino acid moiety, dime-

thylglycine, was shown to be able to substitute for

L-alanine with little or no loss of activity.
As part of research project (sponsored by

GlaxoSmithKline in Research Triangle Park North

Carolina) devoted to discover anti-HIV and anti-

HBV agents, McGuigan’s team applied the ProTide

approach to 20,30-didehydro-20,30-dideoxyadenosine
and other 20,30-dideoxy nucleosides including 20,30-
dideoxyuridine, -adenosine, -30-fluoroadenosine, -uri-

dine147–153 and also to the carbocyclic nucleoside

ABC [11] with significant enhancement of its antiviral

activity.154 Phosphoramidates of other carbocyclic

nucleosides were also explored such as carbocyclic

adenosine derivatives and 20,30-dideoxy-2030-

didehydro-7-deazaadenosine and they were shown to
possess potent antiviral activity against HIV
and HBV.155,156

The phosphoramidate technology was also applied
to uridine-based NAs. Although their triphosphate
forms were found to posses inhibitory activity on uri-
dine triphosphate (UTP) incorporation into RNA of
influenza virus, in general they are characterized by
poor antiviral activity which may be related to their
inefficient phosphorylation.99 However, in this case
the ProTide approach was not very successful leading
to compounds with weak antiviral activity. The slow
release of the active monophosphate species of these
compounds observed in cell lysate, as well as inefficient
di- or triphosphorylation of 50-monophosphate forms
were considered as possible explanations for their weak
antiviral activity.

A different outcome was instead obtained with
ProTides of 6-modified 20-fluoro-20-deoxyguanosines,
which showed marked antiviral activity in vitro
assays proving that this class of prodrugs can be pur-
sued for influenza virus therapy.157 Rapid metabolic
activation in enzymatic assays with yeast carboxypep-
tidase Y or crude cell lysate supported the antiviral
results. Evidence for efficient removal of the 6-substit-
uent on the guanine part was provided by enzymatic
studies with adenosine deaminase, and by molecular
modeling of the nucleoside 50-monophosphates in the
catalytic site of a model of this enzyme (ADAL1), thus
indicating the utility of the double prodrug concept.

No improvement or broadening of the antiviral
activity of the parent nucleoside RBV was obtained
with a family of ProTides.158 Again, a likely explana-
tion for this lack of activity was attributed to their poor
activation to the free 50-monophosphate, as evidenced
by cell lysate incubation studies. While enzymatic stud-
ies with carboxypeptidase Y indicated that the first step
in the activation of RBV ProTides was efficient, molec-
ular modeling data with the Hint enzyme suggested
that subsequent amino acid cleavage to liberate the
necessary free 50-monophosphate was most probably
impeded in this case.158 Other examples in which the
ProTide technology showed a lack of significant improve-
ment of the antiviral activity versus the parent com-
pounds are the phosphoramidates of 2-fluoro
derivatives of the bicyclic NA Cf1743, the most potent
anti-VZV agent reported to date,159 and of 20-deoxy-20,20-
difluoro-5-halouridine.160

A collaboration between McGuigan’s group
(Cardiff University, UK) and Van Calenbergh’s labo-
ratories (Ghent University, Belgium) led to the investi-
gation of a-L-20-deoxythreofuranosyl nucleosides with
A, T, C, and U as nucleobases.161 Unfortunately, the
ProTide of the T NA, included in these studies was
devoid of antiviral activity.
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More recently, the phosphoramidate approach was
applied by the same authors to the family of apionu-
cleosides162 such as 20,30-dideoxy-b-D-apio-D-furanonu-
cleosides (ddANs), which, synthesized in the early
1990s as potential antiviral agents, were found inac-
tive.163,164 In 2014, Van Calenbergh and colleagues dis-
covered that the 30-O-phosphonomethylated adenine
and thymine phosphonate exhibited promising anti-
HIV properties. Since these phosphonates act as bio-
isosteres of the corresponding phosphorylated species,
the authors reinvestigated the biological activity of
such ddANs and in collaboration with McGuigan’s
group designed and synthesized nucleosides and their
corresponding ProTides, respectively.

While all target nucleosides failed to show significant
antiviral activity, the authors demonstrated that the tri-
phosphate of 20,30-deoxy-D-apio-D-furanoadenosine was
readily incorporated into a DNA template by HIV
reverse transcriptase to act as a DNA chain terminator.
The ProTides of this nucleoside were found active
against HIV-1 and HIV-2, indicating that the lack of
activity of the parent nucleoside, and possibly also of
other members of the D-apio-D-furanose nucleoside
family needed to be sought in the inefficient cellular
conversion to the 50-monophosphate form.

Application of the ProTide approach to ACV was
also extensively investigated in the McGuigan labora-
tories. Although ACV makes an important contribu-
tion to the therapy of herpes infections, it has some
limitations such as low oral bioavailability and drug
resistance caused by mutation in either the TK or
DNA polymerase.17,18 Though the oral bioavailability
can be increased by the amino acid prodrugs of ACV,
these compounds can be cleaved in the gut and the liver
by hydrolase enzymes. Interestingly, ACV was reported
to inhibit HIV in human herpes virus (HHV) co-
infection in tissue cultures.165 This activity was found
to be correlated with the phosphorylation of the parent
drug to the monophosphate form mediated by HHV-
encoded kinase(s), whereas further phosphorylation
steps provided the active triphosphate form of ACV
able to inhibit HIV-RT. Because, HIV does not
encode an enzyme that recognizes ACV as a substrate
for its activation (phosphorylation) step, the HHV
coinfection is needed for ACV to exhibit activity.
ACV was therefore a perfect substrate for the applica-
tion of ProTide technology. Based on these observa-
tions, McGuigan and colleagues presented the
synthesis and initial biological evaluation (against
HSV-1 and HSV-2 and against HIV-1 and -2) of a
series of ACV ProTides.135,166,167 The application of
this strategy was efficient to overcome two main
issues associated with ACV: to bypass its poor efficien-
cy of diffusion through intact cell membranes and the
first limiting phosphorylation step. SAR studies

showed that in general ester and aryl variations were
well tolerated, whereas the variation of the amino acid
moiety seemed to be tolerated only in the case of HSV.
Regarding in vitro HIV screening, good results were
obtained only for the L-alanine and L-phenylalanine
derivatives. Differences in the activity demonstrated
by these prodrugs may be due to different substrate
specificities and/or different intracellular levels of
enzyme necessary for the activation of these com-
pounds. Although the compounds lacked any improve-
ment in activity against HSV-1 and -2 compared to the
parent, they retained activity against the TK-deficient
HSV-1 strain while ACV showed loss in activity.

In the absence of HHV infection, the prodrug com-
pounds showed antiviral activity, demonstrating their
nucleoside kinase independence. These findings were
also supported by a different study, where ACV phos-
phate prodrugs showed a full retention of antiviral
activity against HSV-1 and VZV TK-deficient strains.
Enzymatic and molecular modeling studies were per-
formed to better understand the antiviral behavior of
these compounds. These indicated that ProTides with
diminished biolability toward carboxypeptidase trans-
late to poor anti-HIV agents and vice versa. Given that,
this enzymatic assay became a predictive tool regularly
used to assess potential activity of phosphoramidate
prodrugs of other NAs. To overcome the cytotoxicity
observed with these prodrugs, very recently a virtual
screening on a library of ACV derivatives was
reported.168 Docking experiments with a database of
3600 compounds against three different enzymes encom-
passing HIV reverse transcriptase, adenylate or guany-
late kinase, and a model of DNA polymerase c resulted
in the selection of five NAs as potentially strong RT
inhibitors and weak cellular DNA polymerase inhibitors
including GCV, PCV, 6-Cl-PCV, 6-OMe-PCV and 20-
SH-GCV. Several phosphoramidate prodrugs of the
selected NAs were synthesized and assessed for their
potency against HIV, HSV, VZV, and HCMV. Most
of the compounds exhibited inhibitory activity against
HIV with activity in the low micromolar range, but
again some toxicity was observed.

As reported before, over the last 20 years, ANPs
have emerged as a novel class of clinically effective
antiviral agents.168 Explorations of various types of
nucleoside phosphonate prodrugs have also led to the
design and development of their aryloxyamidate
prodrugs. ProTides originally designed to deliver nucle-
oside monophosphates, have also been successfully
applied to nucleoside phosphonates. McGuigan’s
group was the first to report the synthesis and biolog-
ical evaluation of ProTides based on adefovir and teno-
fovir.119 Results of these studies indicate similar
SARs for such prodrugs as earlier noted for NAs like
d4T (L-alanine containing ProTides being the most
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potent compounds).142 In vitro enzymatic studies and
structure–activity relationships indicate that the activa-
tion mechanism of phosphonamidate prodrugs may be
the same as that described for the phosphoramidate
triesters of NAs.

This early work was followed by investigation into
the synthesis and antiviral evaluation of a broad family
of phosphonamidates of adefovir and tenofovir.66

ProTides, synthesized with a more efficient methodol-
ogy, showed improved in vitro anti-HIV activity, com-
pared to previously reported data for the parent ANPs.
Phosphonamidates bearing 5,6,7,8-tetrahydro-1-naph-
thol unit which was for the first time introduced
as hydrolysable aryl unit in the ProTide motif
displayed an improved antiviral activity compared to
the “common”-naphthyl and phenyl ProTide units.
Enzymatic studies showed that this novel aryloxy
group was processed through the “standard” metabolic
pathway. In this view 5,6,7,8-tetrahydro-1-naphthol
was considered as a good aryl group for future
improvement of the ProTide motif and thus was
subsequently used by the same authors to design phos-
phonamidates of C5-substituted pyrimidine acyclic
nucleosides functionalized with but-2-enyl-chain.67

In the search of anti-HCV agents, McGuigan’s
group started a project (funded by Roche Palo Alto),
involving application of the ProTide technology to
the ribonucleoside analogues 40-azidouridine,169 40-azi-
doadenosine,170 and 40-azidocytidine.171 Although 40-
azidouridine and 40-azidoadenosine did not inhibit
HCV, their triphosphate forms showed potent inhibi-
tory activity against HCV RNA polymerase. Several
phosphoramidates of these NAs were prepared, includ-
ing variations in the aryl, ester, and amino acid regions.
Among a number of 40-azidouridine and -adenosine
prodrugs with sub-micromolar inhibition of HCV rep-
lication in cell culture, the 1-naphthyl L-alanine benzyl
ester phosphoramidates of both of the two NAs were
the most active compounds in the replicon assay with-
out detectable cytotoxicity. On the contrary, no signif-
icant improvement in the activity was observed with
the 40-azido cytidine family versus the parent nucleo-
side. Phosphoramidate ProTides derived from 40-azi-
doinosine were also reported to be active at low
micromolar levels in the replicon assay against HCV,
whereas the parent NA was inactive in this assay.172

These results confirmed that the ProTide technology
allows delivery of ribonucleoside 50- monophosphate,
suggesting a potential path to the generation of novel
antiviral agents against HCV infections. As a continu-
ation of this anti-HCV programme, the ProTide
approach was also applied by McGuigan’s team to
b-20-C-methylpurine.98 For this type of NAs, the anti-
viral activity is usually expressed through their corre-
sponding intracellular triphosphate forms that are

potent and competitive inhibitors of NS5B viral RNA
polymerase. Although, the phosphoramidate of b-20-
methylguanosine containing L-alanine benzyl ester
and 1-naphthyl group was found to be the most
active, it suffered from rodent plasma instability.
The variation of amino acids with the lead benzyl
ester moiety led to enhanced stability in rodents, how-
ever this resulted in significant reduction in HCV
replicon activity. Extensive modification of the ester
functionality demonstrated no significant improvement
in HCV potency.97 Following these results modifica-
tions at the C-6 of the purine base as a means of poten-
tially affecting potency without changing the inherent
plasma stability of phosphoramidates were carried
out.173 These investigations led to the discovery
of the aryloxyphosphoramidate double-prodrug of
O-6-methyl-20-C-methyl-guanosine bearing L-alanine
neopentyl and 1-naphthyl as an amino acid ester and
aryloxy moiety (INX-08189, BMS-986094, [33], Figure
6). This prodrug was licensed out to Inhibitex, the
start-up company in Atlanta, and later acquired by
Bristol Myers Squibb to continue the development of
this compound and its analogues.

INX-08189 exhibited nanomolar activity in vitro in
HCV replicon assay, with EC50s of 10 nM against
genotype 1b, 12 nM against genotype 1a, and 0.9 nM
against genotype 2a after 72 h of exposure.174 It was
also tested in the S282T mutant replicon and showed
reduced activity with a 10-fold change in the EC50 yet
still being capable to complete inhibition of HCV rep-
lication with EC90 value of 344 nM. In the replicon
inhibition studies in which INX-08189 was used in
combination with RBV, a high degree of synergy
against the wild-type (WT) and S282T mutant repli-
cons was observed. Intracellular metabolism of INX-
08189 and its conversion to the active 50-triphosphate
form was investigated in the HCV genotype 1b replicon
assay, showing an intracellular concentration of the tri-
phosphate form (20-C-MeGTP) of 0.84� 0.36 and 2.43
� 0.42 pmol/1� 106 cells were able to achieve 50% and
90% inhibition of viral application, respectively.
The assessment of the mitochondrial toxicity in
14-day tissue culture studies demonstrated INX-08189
to be devoid of any mitochondria-specific toxicity in a
liver-derived HepG2 and lymphocyte CEM human cell
lines. Based on these advantageous properties, INX-
08189 was advanced into in vivo studies supporting
its further selection as a clinical candidate for the
treatment of HCV infections. Pharmacokinetics and
pharmacodynamics properties of INX-08189 were
investigated in rats and cynomolgus monkeys by mea-
suring the generation of the parent nucleoside 20-MeG,
along with the active triphosphate form (20-C-
MeGTP). The data for rats and monkeys were consis-
tent in the linear relationship between the 20-MeG
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Figure 6. Antiviral phosphor(n)amidates in clinical use or in clinical development.
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AUC0–24 values and the concentration of 20-C-MeGTP

in the liver at 24 h. In addition, in vivo results indicated

also that 20-C-MeGTP concentrations in the liver

equivalent to the EC90 could be reached after a single
dose of 3 mg/kg and 25 mg/kg in rats and monkeys,

respectively.174 The overall in vitro and in vivo data led

to further progression and clinical development of

INX-08189 as a highly potent HCV inhibitor. A

safety and pharmacokinetics Phase Ia study in healthy
volunteers, revealed INX-08189 administrated in a

range of doses (3–100 mg) to be well tolerated at all

doses with a lack of drug-associated serious adverse

events.175,176 In a following Phase Ib study in the

treatment-naive genotype 1 HCV patients, a mean
HCV RNA reduction of �0.71 and �1.03 log10
IU/mL was observed when patients were dosed once

daily with 9 mg or 25 mg, respectively. However, due to

severe adverse events including heart failure and acute

kidney injury, a further clinical development of INX-
08189 was halted.177 A broad bioanalysis assays for the

active nucleoside triphosphate, the prodrug INX-08189

and its metabolites in multiple target (diaphragm,

heart, kidney, liver), and nontarget (lung) tissue

were performed in order to evaluate the potential
mechanism of the toxicity observed for INX-08189 in

a Phase II clinical study. The triphosphate form (20-C-
MeGTP) was persistent in the heart and kidney in high

levels after the treatment-free period (week 6 in 3 week-

þ 3 week recover study) and thus appeared to be cor-
related with potential toxicities in these two organs.178

ProTides in clinical use or in clinical

development as antiviral agents

The research undertaken in McGuigan’s laboratories
during the last 25 years was of great inspiration for

many scientists all over the world. Nowadays ProTide

technology is recognized as a prodrug strategy with

proven capacity to generate new drug candidates for

nucleoside-based antiviral indications. In fact, a poten-
tial of this prodrug approach was confirmed with the

discovery of agents that are currently in clinical use

(sofosbuvir and TAF), or in clinical development as

antiviral drugs including stampidine [34], MK-3682

[35], GS-6620 [36], and GS-5734 [37] (Figure 6).
Furthermore, the indisputable potential of the

ProTide approach in the antiviral field continuously

encourages many research groups to design and devel-

op novel phosphoramidate-type agents based on vari-

ous structurally modified NAs. Currently, several
academic groups and pharmaceutical companies have

more ProTide compounds in the pipeline undergoing

preclinical studies for the treatment of viral infec-

tions.55,179–185

Sofosbuvir

During the time of McGuigan’s research on HCV,
phosphoramidate prodrugs of the 50-phosphate b-D-
20-deoxy-20-a-fluoro-20-b-C-methyluridine nucleoside
were developed by Sofia et al., (Pharmasset)62 leading
to the discovery of the clinical antiviral agent sofosbu-
vir, which was launched in the market by Gilead
Sciences. Sofosbuvir (Sovaldi

VR

, GS-7977, PSI-7977)
represents the first-in-class phosphoramidate-type
inhibitor of NS5B RNA polymerase with FDA
approval for the treatment of chronic HCV in patients
infected with multiple HCV genotypes. Sofosbuvir (in
2009 entry to first-in-man Phase I trial) expresses high
barrier of resistance186 and currently is recognized as
the gold standard of care for HCV-infected patients.
Moreover, sofosbuvir is also FDA-approved for HIV
coinfected patients and those awaiting liver transplant.
Although originally synthesized via conventional
method as a 1:1 diastereomeric mixture (PSI-7851),
sofosbuvir was further clinically developed as a single
isomer with SP stereochemistry (PSI-7977) at the phos-
phorus atom as confirmed by X-ray structure determi-
nation. Biological evaluation of two individual isomers
following separation by high-performance liquid chro-
matography (HPLC chromatography), was reported in
the WT replicon cells and shown �18-fold difference in
anti-HCV activity between PSI-7977 (Sp isomer EC90:
0.42 mM) and PSI-7976 (Rp isomer, EC90: 7.5 mM).
When the two isomers were tested against replicons
containing known nucleoside resistant mutants S282T
and S96T, the �13-fold activity difference was
observed for PSI-7977 (EC90 7.8 mM in S282T) versus
PSI-7976 (EC90: >100 mM in S282T). In the replicon
cells containing S96T NS5B polymerase mutation, the
two inhibitors PSI-7977 and PSI-7976 showed similar
antiviral activity (EC90 0.23 mM vs. 3.3 mM in WT and
0.11 mM vs. 1.3 mM in S96T), with no cross-resistance
detected for both isomers.62 Additional studies for the
ability to generate intracellular levels of the active 50-
triphosphate shown that SP isomer (PSI-7977) pro-
duced 10-fold greater levels of triphosphate form in
comparison with RP isomer (PSI-7976) in clone A rep-
licon cell lines, and 1.1-fold in human hepatocytes,
respectively. An in vitro study confirmed that sofosbu-
vir undergoes the common metabolic pathway sug-
gested for other phosphoramidate prodrugs to form
the 50-monophosphate metabolite which is further
phosphorylated subsequently to the corresponding 50-
triphosphate active form first by uridine-
monophosphate-cytidine-monophosphate kinase
(UMP-CMP) and second by nucleoside diphosphate
kinase. Mimicking the natural substrate of NS5B
RNA-dependent RNA polymerase, sofosbuvir induces
a chain termination process by being incorporated into
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the growing RNA. In vivo preclinical pharmacokinet-
ics study shown that sofosbuvir was well-absorbed and
metabolized to its intermediate metabolite (corre-
sponding to the achiral intermediate [C] in Figure 5)
and NA.187 A comprehensive characterization of phar-
macokinetic, pharmacodynamics, and drug-interaction
profile of sofosbuvir was reported by Gilead
Sciences.188 The pharmacokinetics of single and multi-
ple ascending doses of this agent administrated to
HCV-infected patients revealed, similarly to single-
doses studies in healthy subjects, that sofosbuvir and
its parent nucleoside exhibited time-independent, near-
linear pharmacokinetics within all evaluated doses.188

Following several clinical trials,186 a global Phase III
clinical trial study with sofosbuvir/RBV therapy was
initiated. This trial indicated, that 12 weeks treatment
was efficient for patients with HCV genotype 2 and 3-
infection (without previous interferon-based therapy)
and resulted in high rates of sustained virologic
response (>90% and >60% for patients infected with
genotype-2 and 3, respectively). However, for patients
with HCV genotype 3-infection (associated with possi-
bly a greater risk of hepatocellular carcinoma), treat-
ment extended up to 16 weeks was more beneficial than
12 weeks.189–191 On the basis of these results, an addi-
tional descriptive study was designed in which
250 patients with genotype 3-infection underwent treat-
ment with sofosbuvir/RBV regimen for 24 weeks. The
response rates in this subgroup were 91% and 68%
among those patients without and with cirrhosis,
respectively. Among total of 73 patients with genotype
2-infection treated for 12 weeks with sofosbuvir/RBV,
68 patients had a sustained virologic response 12 weeks
after closure of study. Although with some limitations,
the overall results of this study shown that the oral
sofosbuvir/RBV regimen can be effective for both
genotype 2 and 3-infected patients and also can offer
an alternative to a pegylated interferon-based regimen
for HCV patients.192 Following these results sofosbuvir
was approved in December 2013 to treat chronic hep-
atitis C193 and in April 2017 for the same infections in
paediatric patients 12 years and older.194

Tenofovir alafenamide (TAF)

As mentioned above, one of the most successful exam-
ple of ANP prodrug is represented by TDF ([23],
Figure 3), sold under the trade name Viread, and
used in the treatment of chronic hepatitis B and to
prevent and treat HIV/AIDS. Viread was found to
have considerably improved cell permeability and
anti-HIV activity in in vitro screening,195 increased
oral bioavailability in animals,196 and more efficient
loading of peripheral blood mononuclear cell
(PBMC) relative to parenteral tenofovir observed in

vivo.197 However, while TDF therapy is generally
well tolerated it has negative effects on the renal func-
tion and on the bone mineral density. Different studies
have demonstrated greater loss of kidney function and
a higher risk of acute renal failure in patients receiving
TDF-based therapies versus non-TDF regimens.198

Renal adverse events have been associated with the
higher levels of tenofovir in the plasma observed
when TDF was given with HIV protease inhibitors or
pharmaco-enhancers, inhibitors of the intestinal efflux
of TDF199,200 suggesting a link between plasma teno-
fovir exposure and the effect on proximal tubule func-
tion.201 In addition to renal disfunction patients
receiving TDF, antiretroviral therapy showed a larger
reduction in bone mineral density than regimens with-
out TDF.202

To circumvent these major problems, Gilead
Sciences developed TAF (TAF, [25]) fumarate, the iso-
propylalaninyl monoamidate phenyl monoester pro-
drug of tenofovir.203 TAF was initially synthesized as
1:1 mixture of diastereoisomers (GS-7171), which were
then separated by chromatography. The antiviral activ-
ities of the diastereomeric mixture (GS-7171), as well as
those of the individual diastereomers (RP isomer GS-
7339 and SP isomer GS-7340), were evaluated in vitro
in MT-2 cells infected with HIV-1 virus. When com-
pared to the activity of tenofovir (EC50: 5.0� 2.6 mM)
in the same test, the two single isomers GS-7339 (RP

isomer, EC50: 0.06� 004 mM) and GS-7340 (SP isomer,
EC50: 0.005� 002 mM) were found to be 83- and 1000-
fold more active. Again, also in this case it is worth to
highlight that the SP-diastereoisomer is much more
active that the Rp-diastereoisomer suggesting that
intracellular metabolism is sensitive to stereochemistry
at the phosphorus.203 In addition, when the D-alanine
was incorporated as promoiety, the resulting prodrug
(GS-7485), showed similar activity to tenofovir. Given
that, the two prodrugs (GS-7171 and GS-7485) release
the same pharmacologically active metabolite, the con-
siderably reduced activity of the D-alaninyl analogue
(GS-7485), versus the L-alaninyl analogue (GS-7171)
might be explained by a strong metabolic preference
inside the cells for the natural amino acid. TAF (GS-
7340) was also found to show a greater selectivity index
than TDF. The higher initial intracellular concentra-
tion of tenofovir achieved with TAF, relative to
TDF, was considered as to be able to differentially
affect antiviral potency and cytotoxicity.203 The key
properties that made TAF so successful were its stabil-
ity in biological matrices, including plasma, and its
selective intracellular cleavage. In vitro metabolism
and accumulation in PBMCs studied in tissue culture
showed that in MT-2 cell extract, GS-7340 was metab-
olized three times faster than in plasma, whereas TDF
was metabolized 170-fold faster in plasma.203 This

Slusarczyk et al. 19



stability accounts for prolonged systemic exposure to
intact prodrug and the accumulation of higher intracel-
lular levels of the pharmacologically active metabolite
tenofovir diphosphate relative to TDF. In MT-2 cells
incubated with 10 lM GS-7340, the formation of the
diphosphate metabolite was linear for 24 h with a con-
centration inside the MT-2 cells at 24 h exceeding the
initial extracellular concentration of GS-7340 by
250-fold.203

In preclinical animal studies, TAF exhibits enhanced
distribution of tenofovir into PBMCs and the lymphat-
ic organs after oral administration, in comparison to
tenofovir disoproxil fumarate. Twenty-four hours
after a single dose of TAF in dogs, the concentration
of tenofovir in lymphatic organs is between 5- and
15-fold greater than an equivalent dose of TDF.
Intracellular tenofovir concentrations, measured by
AUC0–24, in PBMCs after a single oral dose of TAF
in dogs are �38-fold greater after an equivalent oral
dose of TDF and �100-fold greater than those
observed after subcutaneous administration of
tenofovir. These in vivo pharmacokinetics studies
showed also that both (GS-7340 and GS-7339) were
rapidly eliminated in plasma relative to tenofovir with
the SP-isomer cleared more rapidly than its Rp-coun-
terpart.203 Pharmacokinetic study in dogs demonstrat-
ed that TAF is taken up efficiently by the liver. Further
in vitro studies showed that TAF is a substrate for the
hepatic transporters OATP1B1 and OATP1B3.
Although this might explain the high concentration of
TAF in the liver, it is more likely that the high passive
permeability of the phosphonamidate prodrug is the
major vehicle of the drug into the liver.204

Moreover, intracellular activation and antiviral
activity of TAF are adversely non-affected by other
medications (often administered in combination) such
as HIV and HCV protease inhibitors,205 except for
telaprevir and boceprevir that non-specifically inhibit
cathepsin A, the key enzyme responsible for the activa-
tion of the prodrug.127

Furthermore, the rapid intracellular cleavage step
catalyzed by cathepsin A in HIV- and HBV target
cells, coupled with the formation of poorly permeable
metabolites (the charged phosphates) effectively
trapped in cells, accounts for the substantial accumu-
lation of the pharmacologically active metabolite teno-
fovir diphosphate and increased therapeutic efficacy of
TAF with respect to other prodrugs. Because of this
accumulation inside the infected cells, TAF can be
administered in lower therapeutic doses in comparison
to TDF. Phase I/II clinical study to asses the pharma-
cokinetics, safety and anti-HIV activity of TAF showed
that administration of 40 mg of TAF for 14 days in
HIV-infected patient resulted in lower tenofovir Cmax

and lower systemic exposures compared with subjects

who received TDF. Higher intracellular concentrations
of tenofovir in PBMCs were detected with two doses
(40 mg and 120 mg) of TAF then with 300 mg TDF.
TAF had the same resistance profile as tenofovir and
TDF (in vitro) with no resistance mutations detected
for both of them.206 Phase III studies were then under-
taken to confirm the following observations and to
further define the safety and efficacy profile of TAF.
Results of these studies revealed TAF to be as effective
as TDF in much lower dose and with lower occurrence
of adverse side effects such as impaired kidney func-
tion.207 In November 2015, the TAF-based regimen
(elvitegravir/cobicistat/emtricitabine/TAF) was FDA-
approved for treatment of HIV-1.208

TAF was also investigated for the treatment of HBV
infections. In particular, Phase III clinical trials studies
evaluating investigational use of once-daily 25 mg dose
of TAF in treatment-naive and treatment-experienced
adults with HBeAg-negative and HBeAg-positive
chronic HBV infections, demonstrated again that
TAF was non-inferior to TDF based on the percentage
of patients having low HBV DNA levels after 48 weeks
of therapy. In addition to high efficacy, the results of
these studies reflect improved renal and bone safety
parameters similar to those seen in clinical studies eval-
uating TAF-based regimens for HIV. In November
2016, TAF received FDA approval for the treatment
of chronic HBV.209

Stampidine

Stampidine [34] is a rationally designed phosphorami-
date derivative of stavudine (d4T, [8]). developed as an
anti-HIV agent to overcome the dependence of [8] on
intracellular nucleoside kinase-mediated activation to
the nucleoside 50-monophosphate. Stampidine was
shown to inhibit the replication of HIV-1 strain
human T-lymphotrophic virus (HTLV)-IIIB in
human PBMCs at nanomolar 50% inhibitory concen-
tration with IC50 value being 20 times lower than its
parent nucleoside [8] and selectivity index >100,000.
Stampidine was found to be active also against pheno-
typically and/or genotypically NRTI-resistant HIV
strains, including 20 primary clinical HIV-1 isolates
resistant to AZT. A similar nanomolar inhibitory activ-
ity was demonstrated by stampidine against primary
clinical HIV-1 isolates with non-nucleoside RT inhibi-
tor (NNRTI) binding site mutations and/or phenotypic
NNRTI-resistant profiles. Moreover, among 12 stavu-
dine substituted-phenyl phosphoramidates, stampidine
was found to be the most effective in the inhibition of
adenovirus-induced plaque formation in human fore-
skin fibroblast with no cytotoxicity up to 100 mM and
selectivity index >4000.210 In the in vivo pharmacoki-
netics and metabolism studies reported by Chen
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et al.,211 stampidine demonstrated favorable pharma-
cokinetics and rapid hydrolysis to L-ala-d4T-MP (the
key precursor of the d4T triphosphate metabolite) as
well as its parent nucleoside d4T following i.v. injection
and oral administration in mice, rats, dogs, and cats.212

In fact, the unique ability of stampidine to quick
hydrolysis is correlated with the presence of p-Br
substituted-phenyl part of the phosphoramidate pro-
drug, which in turn translates into rapid formation of
L-ala-d4T-MP.212,213 L-Ala-d4T-MP is considered as an
intra- and/or extracellular source of d4T and/or d4T-
MP, which might explain the superior antiretroviral
activity of stampidine over d4T in cell culture.214

In the postulated activation pathway for ProTide [34]
(as well as other RP or SP phosphoramidates of stavu-
dine), lipases are also involved in the hydrolysis of ester
moiety in the amino acid side chain showing clear pref-
erence for the L-amino acid configuration as reported in
the experimental and modelling studies.215–217 Phase I
randomized, placebo controlled study performed with
the aim to investigate early safety, tolerability and
activity data in 30 therapy-naive HIV-infected patients
showed that stampidine did not cause dose-limiting
toxicity at single dose levels ranging from 5 to
25 mg/kg.218 Pre-exposure prophylactic therapy studies
for stampidine are ongoing.219 Despite the encouraging
data, there are no reports available on further progres-
sion of this agent in clinical trials.

Uprifosbuvir

Uprifosbuvir (MK-3682, IDX-21437, [35]) is the RP-
isomer of D-amino acid–based phosphoramidate pro-
drug of 20-C-methyl-20-chloro-uridine-based NA117

that reached clinical trial as anti-HCV agent. In the
in vitro Huh-7 cell based HCV replicon assay, MK-
3682 demonstrated weak activity, however when
tested in vivo very high levels of nucleoside triphos-
phate were observed in mouse liver (6200 and 3750
pmol h/g for MK-3682 and its SP counterpart isomer,
respectively). Interestingly, this may indicate that MK-
3682 undergoes different metabolic activation or differ-
entiated kinetics of the ester hydrolysis between two
diastereoisomers as suggested for the 20-b-C-Me-20-
a-C-F-uridine series.134 In fact, in vitro metabolic
study performed ffor MK-3682 and its SP analogue
and sofosbuvir by purified CES1 and cathepsin A
(CatA) showed clear substrate preference of CES1 for
RP isomer (94% of MK-3682 hydrolysed whereas only
4.5% of SP isomer hydrolysed over 21 h). Incubation of
these three compounds with CatA for 18 h resulted
with no hydrolysis of MK-3682 and SP isomer and
complete metabolism of sofosbuvir.220 The most
recent data from the two Phase II studies on efficacy
and safety of uprifosbuvir together with grazoprevir

and ruzasvir, a HCV nonstructural protein 5A inhibi-
tor, either with or without RBV for 16 and 24 weeks,
respectively in patients who had previously failed an
NS5A inhibitor-containing treatment, showed that
this triple-combination therapy was safe and highly
effective.221 Several other clinical trials Phase I/II stud-
ies for MK-3682 were on-going in a combination ther-
apy with RBV or non-nucleoside agents such as
grazoprevir, elbasvir, and ruzasvir.222–224 In 2017, fur-
ther clinical evaluation of uprifosbuvir in a combina-
tion therapy was discontinued.225

GS-6620

A single SP-isomer GS-6620 [36] represents a family
of phosphoramidate prodrugs based on 20-C-methyl-
7,9-dideaza-4-aza-adenosine containing 10-cyano and 20-
C-Me groups with inhibitory activity against NS5B poly-
merase.226 The presence of the 20-C-Me group in natural
ribonucleoside analogues once incorporated to the
primer position was reported to arrest an incoming nucle-
oside triphosphate from binding to active site of NS5B
polymerase and therefore causing inhibition of further
RNA elongation and viral replication.227 GS-6620 is a
double-prodrug with L-alanine-isopropyl and phenyl
moieties attached at the 50-hydroxyl as a phosphorami-
date part, and isobutyryl ester added into the 30-postion
on the ribose ring with the aim to improve its permeabil-
ity and oral bioavailability. Like other phosphoramidate
agents, GS-6620 was initially synthesized via convention-
al method and obtained as a part of diastereomeric mix-
ture further separated by chiral column
chromatography.226 The preliminary in vitro results
revealed the SP-diastereoisomer to be 6-fold more
potent, and two times more efficient in the formation of
triphosphate in primary human hepatocytes than its RP

analogue. The antiviral activity in the panel of HCV rep-
licon assay including stable replicons (GT1b, 1a, 2a) and
chimeric replicons (2b, 3a, 4a, 5a, and 6a) was also dem-
onstrated by GS-6620 with EC50 ranging between 0.068
and 0.43 mM. In the additional cytotoxicity studies, GS-
6620 showed detectable toxicity in erythroidmarrow pro-
genitor cells (CC50 15 mM), a minimal cytotoxicity in cell
lines such asHuh-7 (CC50 67 mM),HepG2 (CC50 66 mM),
and PC-3 (CC50 40 mM), and no cytotoxicity in the pri-
mary hepatocytes, PBMCs (quiescent and stimulated) at
the highest concentration tested (100 mM).228 In the mito-
chondrial toxicity study, no inhibition of mitochondrial
DNA level at the highest concentration tested (20 mM) in
HepG2 and PC-3 cells, as well as no inhibition of mito-
chondrialDNA contentwas observed.Moreover, no spe-
cific inhibition of mitochondrial protein synthesis and no
inhibition of host DNA or RNA polymerases were
detected at the highest concentration (up to 500 mM).
In the cross-resistance studies GS-6620 showed reduced
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activity only against genotype 1b (GT1b) replicons with
the S282T NS5B mutation. In order to inhibit HCV

RNA polymerase in hepatocytes, GS-6620 needs to be
first activated to the free 50-monophosphate that is sub-
sequently phosphorylated to its 50-triphosphate deriva-

tive. The postulated activation pathway is aligned with
the conventional metabolic activation route for ProTides
(Figure 5) and consists of an additional 30-isobutyryl ester
hydrolysis catalysed by CES2 at first, followed by the

hydrolysis of the isopropyl ester group on the 50-
ProTide moiety catalysed by CatA or CES1.229 The com-
pound was clinically developed and evaluated for its anti-

viral activity, safety and tolerability in first-in-human
Phase I clinical study in the treatment-naive patients
chronically infected with HCV genotype 1.230 GS-6620
was well tolerated up to 900 mg when given twice a day

for five days and shown the greatest antiviral activity with
median viral load reductions of 1.73 and 1.63 log10 IU/
mL from baseline with 900mg (administrated as a tablet)

and 450 mg (administrated as a solution), when given
twice daily, respectively. Although,GS-6620 demonstrat-
ed potent antiviral activity, its clinical efficacy and utility
turned to be limited due to observed high levels of sub-

stantial intra- and intersubject pharmacokinetic and
pharmacodynamic variability.231

GS-5734

GS-5734 [37] is the single SP isomer of the 2-ethylbutyl-
L-alaninate monophosphate prodrug of 10-cyano-
substituted adenosine C-NA with enhanced activity
against a number of filoviruses including Marburg virus

and several variant of ebola virus EBOV in cell-based
assay.232 A comprehensive report on structure–activity
relationship, lead optimization, and robust diastereose-

lective synthesis of GS-5734 was recently published by
Gilead Sciences following their focused library screening

of �1000 diverse nucleos(t)ide analogues with antiviral
properties.233 The outcome of this work and the discov-
ery of GS-5734 coincided with the most recent Ebola
outbreak inWest Africa. The prodrug GS-5734 expressed
high selectivity for the viral polymerase as compared to
host polymerases. In vivo efficacy evaluation of GS-5734
(conducted in rhesus monkeys as the most relevant
animal model of EVD) demonstrated its rapid elimina-
tion with appearance of parent nucleoside in systemic
circulation. The triphosphate levels in PBMCs were ele-
vated to a maximum within 2 h. A maximally efficacious
dose of the prodrug was determined in the preclinical in
vivo efficacy study performed on an EBOV-infected
rhesus challenge model.232 Further safety and pharmaco-
kinetics study of GS-5734 (Phase I, once-daily i.v. infu-
sion in single and multiple dose) have shown no serious
adverse effects associated with the drug. GS-5734
was administered under compassionate use to two
Ebola patients including a newborn infant with ebola
virus disease (EVD).234 Currently, Phase II clinical
study (PREVAIL IV) is ongoing.235

Conclusion

The idea of phosph(on)ates prodrugs with aryloxyphos-
phoramidates (ProTides) in particular, was extensively
investigated over the last three decades. Designed and
pioneered by McGuigan and his group, the ProTide
approach was successfully applied to a great variety of
modified NAs with antiviral and anticancer activity. In
this review, we presented a summary of the “ProTide
technology” development commencing from its discov-
ery to the most recent applications in the antiviral field.
We outlined a discovery and clinical development of
recently FDA-approved sofosbuvir (Sovaldi

VR

), one of
the best-selling drugs for treatment of hepatitis C infec-
tion. We highlighted all synthetic methodologies towards

Table 1. Prodrugs in clinic and clinical development.

Drug name Originator/developer Phase Disease Viral Target Mechanism of action Ref

Sofosbuvir

(Sovaldi, [24])

Pharmasset/

Gilead Sciences

Approved 2013 HCV NS5B RNA-dependent RNA

polymerase inhibition

62

Tenofovir alafenamide

(TAF, [25])

Gilead Sciences Approved 2016

Approved 2015

HBV

HIV

HBV reverse transcriptase inhibition

HIV reverse transcriptase inhibition

63

INX-08189 [33] Inhibitex/BMS Discontinued HCV NS5B RNA-dependent RNA

polymerase inhibition

175

Stampidine [34] Paradigm Pharmaceuticals,

Parker Hughes Institute

I HIV RNA-directed DNA

polymerase inhibition

213

MK-3682 [35] Merck Discontinued HCV NS5B RNA-dependent

RNA polymerase inhibition

223

GS-6620 [36] Gilead Sciences I HCV NS5B RNA-dependent

RNA polymerase inhibition

231

GS-5734 [37] Gilead Sciences II Ebola V Viral RNA-dependent

RNA polymerase inhibition

235
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aryloxphosphor(n)amidates including the latest, more
sophisticated regio- and stereoselective procedures.
Given its increasing interest in the scientific community,
as well as a significant commercial impact, the ProTide
technology will continue to be used as a strategy to
improve the efficacy profile of nucleoside and also non-
nucleoside existing and/or novel therapeutics. Certainly,
McGuigan’s discovery and extensive research on the
phosphoramidate approach has provided an inspiration
and the solid foundation for bringing the ProTide con-
cept into the clinical success.
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