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In this paper, we present robust methods for automatically segmenting phases in a specified surgical workflow by using latent
Dirichlet allocation (LDA) and hidden Markov model (HMM) approaches. More specifically, our goal is to output an appropriate
phase label for each given time point of a surgical workflow in an operating room. The fundamental idea behind our work lies in
constructing an HMMbased on observed values obtained via an LDA topic model covering optical flowmotion features of general
working contexts, including medical staff, equipment, and materials. We have an awareness of such working contexts by using
multiple synchronized cameras to capture the surgical workflow. Further, we validate the robustness of our methods by conducting
experiments involving up to 12 phases of surgical workflows with the average length of each surgical workflow being 12.8 minutes.
The maximum average accuracy achieved after applying leave-one-out cross-validation was 84.4%, which we found to be a very
promising result.

1. Introduction

In recent years, with advancements in technology and
medicine, the operating room has evolved into a highly com-
plex and technologically rich environment. Unfortunately,
safety in such an environment remains not only unimproved
and incommensurate with quality, but also a political issue.
Errors are an inevitably integral part of human life, but errors
inmedicine are increasingly one of themost serious issues we
face in daily practice. Although numerous research projects
have focused on reducing medical errors and positive results
have been achieved, there are still no radical solutions to stop
such errors fromoccurring [1]. Aside fromdirectly impacting
patient safety, medication errors also significantly increase
treatment costs for patients and their families. In the long
term, they may affect patient mood as well as the mood of
medical staff who made the errors. Causes for medication
errors vary. In the operating room, although such errors can
be caused by mistakes or failures of surgical equipment and
devices, human mistakes are the most common. Examples
here include procedural error, lack of documentation, lack
of information of current state, miscommunication, lack

of anatomical knowledge, and inexperience due to lack of
training.

Moreover, in developed countries such as Japan, because
the population is aging and declining, additional problems,
such as a lack of medical staff, are occurring at increased rates
in hospitals. To compensate for lack of staff, it is required to
have either automated systems that can performdailymedical
work in place of staff, or medical education support systems
that can help to train larger numbers of staff in, among other
areas, surgical techniques.

Many concepts and research topics have been proposed
to solve the above medical problems using a step-by-step
approach. In the operating room, patient safety system
concepts, such as the context-aware operating room, which is
able tomonitor the safety of a surgical workflow in the operat-
ing room by having an awareness of all general working con-
texts within it, have been designed [2]. The context here
can involve medical staff, patients, equipment, and medical
materials. With its own awareness, context-aware patient
safety systems are able to provide meaningful and important
information, including current safety situations, and thus, if
any unusual events do occur, the systems will issue warnings.

Hindawi
International Journal of Biomedical Imaging
Volume 2017, Article ID 1985796, 17 pages
http://dx.doi.org/10.1155/2017/1985796

http://dx.doi.org/10.1155/2017/1985796


2 International Journal of Biomedical Imaging

Further, by using such a system, other processes are facili-
tated, including surgical decision-making and surgical train-
ing processes, thereby directly impacting patient safety. Such
systems can also help in anticipating patient positioning,
optimizing operating time, analyzing technical requirements,
and the like.

To realize such a system, we first need to have an
awareness of information regarding the current state of the
surgical workflow. In general, if the system cannot detect the
current state (i.e., phase), it will not be able to identify which
surgical instruments should be used and what the staff must
do in next phase; thus the system will not be able to issue
any warnings and the decision-making process is severely
hampered.

Because of the importance of such safety systems and
in light of the growing interest in this field, in this paper,
we propose new methods using latent Dirichlet allocation
(LDA) and hidden Markov model (HMM) approaches to
automatically segment the phases of a specified surgical
workflow based on the motion features of the working
contexts. Motion features are obtained by quantizing optical
flow (OF) vectors extracted from videos captured bymultiple
synchronized cameras in the operating room. Note that LDA
is a generative topic model that is widely used in natural
language processing. Further, HMM is a statistical Markov
model in which the system being modeled is assumed to be a
Markov process with unobserved (i.e., hidden) states. Actu-
ally, in our previous work [3], surgical phase segmentation
methods have been proposed. Although our previous work
and this work have the same target: to output an appropriate
phase label for each given time point of a surgical workflow
in an operating room, the proposed methods in these works
are almost different and the experiments are totally different.

In addition to this introductory section, this paper is
organized as follows. In Section 2, we review related work.
Details of our proposed methods are then described in
Section 3. In Section 4, we present our experiments and
results for evaluating the robustness of each method. Finally,
we conclude our paper and provide avenues for future work
in Section 5.

2. Related Work

Numerous methods have been developed for identifying
intraoperative activities, segment common phases in a sur-
gical workflow, and combine all gained knowledge into a
model of the given workflows [4–7]. In segmentation work
over surgical phases, various types of data were used, such
as manual annotations by observers [8], sensor data obtained
by surgical tracking tools based on frames of recorded
videos [9, 10], intraoperative localization systems [4], and
surgical robots [11]. In [4], Agarwal et al. incorporated patient
monitoring systems used to acquire vital signals of patients
during surgery. In [5], Stauder et al. proposed a method to
utilize random decision forests to segment surgical workflow
phases based on instrument usage data and other easily
obtainable measurements.

Recently, decision forests have become a very versatile
and popular tool in the field of medical image analysis. In [6],

Suzuki et al. developed the Intelligent Operating Theater,
which has a multichannel video recorder and is able to
detect intraoperative incidents. This system is installed in
the operating room and analyzes video files that capture
surgical staff motions in the operating room. Intraoperative
information is then transmitted to another room in real time
to provide support for the surgical workflow via a supervisor.
In [7], Padoy et al. used three-dimensional motion features
to estimate human activities in environments including the
operating room and production lines. They defined work-
flows as ordered groups of activities with different durations
and temporal patterns. Three-dimensional motion data are
obtained in real time using videos from multiple cameras. A
recent methodological review of the literature is available in
[12].

For medical terms, HMM has been used successfully in
several research studies to model surgical activities for skill
evaluation [13–15]. In [13], Leong et al. recorded six degrees-
of-freedom (DOF) data from a laparoscopic simulator and
then used them to train a four-state HMM to classify subjects
according to their skill level. In [14], Rosen et al. constructed
an HMM using data from two endoscopic tools, including
such data as position, orientation, force, and torque. Here
the HMM was able to identify differences in the skill levels
of subjects with different levels of training. In [15], Bhatia
et al. segmented four phases, namely, a patient entering or
leaving the room, also the beginning and the end of a surgical
workflow by using a combination of support vector machines
(SVMs) and HMMs from video images.

3. Proposed Methods

As noted above, analyzing the surgical workflow, in particu-
lar, for surgical phase segmentation, is a research domain that
has seen increased interest in context-aware operating room
environments. The goal of our present work is to output an
appropriate phase label for each given time point of multiple
synchronized videos captured from a surgical workflow in
an operating room. The term phase in our paper indicates
a specified task or state in a surgical workflow. In each task
of any surgical workflow, staff perform surgery by doing
sequential actions. Therefore, using OF extraction to extract
motions from these actions can provide effective features.
Moreover, because each type of surgery has its own order
of phases that must be done and there is no switching of
this order between these phases, our approach is to construct
an HMM based on this characteristic with the number of
hidden states corresponding to the number of phases in the
surgical workflow.The observed value of the HMM at a given
time point will thus be calculated from normalized motion
features learned via OF extraction and LDA after using a
foreground detection method to reduce noise. The output
likelihood of the HMM will indicate the appropriate phase
corresponding to that time point. Figure 1 shows the flow of
our proposed system, with details explained in the following
subsections.

3.1. Foreground Detection. Foreground detection is a crucial
technique wherein a frame’s foreground, for example, a
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Figure 1: Overview of our proposed system.

person, an animal, and a vehicle, is detected before operating
further complex processes for segmentation, recognition,
tracking, and so forth. Like other computer vision tasks, after
a frame preprocessing stage (such as a Gaussian blur filter to
eliminate noise) is applied, foreground detection is applied in
our work to extract the area that contains staff performing
surgery, as well as the movements of surgical instruments
or materials, namely, the region of interest (ROI) from the
background of a frame sequence in the operating room.

Many FD methods have been designed, using such
techniques as frame difference, mean filter to statistical
methods using single ormultiple-Gaussianmodels, statistical
methods using color and texture features, fuzzy or neural
networks methods, and methods based on eigenvalues and
eigenvectors [16]. Each of these methods has its own benefits,
but a robust method should be able to handle scene and
condition changes caused by ambient lighting or nonstatic
background objects. In [16], Sobral and Vacavant compared a
wide range of state-of-the-art foreground detectionmethods.
The static frame difference method, which uses a manually
selected static background frame to compute the absolute

Table 1: Foreground detection methods.

Abbreviation Method name Authors
FrameDiff Frame difference —
MultiCue Multicue [17]

Table 2: Abbreviations for OF extraction methods.

Abbreviation Method name
GridIntersect Grid intersection
GridBlock Grid block

difference between it and each video frame, is the simplest
approach; however, a static frame is not the best choice
because the background may change over time and therefore
limit accuracy. Alternatively, we deem it better to use the
frame difference approach, which uses the previous frame
rather than a static frame to compute differences. By using
this method, background changes can be resolved, but if the
foreground object suddenly stops moving, the foreground
detection process will fail. Therefore, more robust methods
are needed to adapt to more complex environments.

In our work, we used two methods, namely, frame
difference andmulticue [17], to detect the foreground and then
obtain the ROI based on the characteristics in the detected
areas and the differences between their execution times. By
executing this step, we will ensure that only movements
of staff, surgical instruments, and materials are monitored.
Figure 2 shows an example of extracted OFs in Section 3.2
with or without foreground detection. The figure indicates
that OFs which were extracted without foreground detection
include a lot of noise, while OFs which were extracted
after detecting foreground have very less noise. Table 1
shows all applicablemethodswith respective authors,method
names, and abbreviations, the latter arbitrarily denoted for
convenience. Further, Figure 3 shows an example input frame
and the difference between the detection results obtained via
the two methods. We observe that FrameDiff is only able
to detect the contour of the moving staff, whereas MultiCue
tends to also detect the region inside the contour.

3.2. Optical FlowExtraction. OF is the pattern of the apparent
motion of objects, surfaces, and edges between two video
frames with a small time interval. Used in a variety of studies
[7, 18], OF extraction is used to extract OFs between two
consecutive frames in a frame sequence. In our present work,
we propose two methods for extracting motion features. The
first method is called grid intersection OF extraction, while
the other is called grid blockOF extraction. For convenience,
we use the abbreviations shown in Table 2 to refer to these
methods.

3.2.1. Grid Intersection OF Extraction. In this method, using
synchronized videos acquired from multiple cameras, we
extract OFs from each consecutive pair of Gaussian-blurred
frames at points (i.e., pixels) arranged on a grid with a spacing
of fixed pixels using the techniques described in [19]. First,
all extracted OFs are restricted within a predefined range
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(a) With foreground detection (b) Without foreground detection

Figure 2: An example of extracted OFs with or without foreground detection.

(a) Input frame (b) FrameDiff (c) MultiCue

Figure 3: An example of an input frame and corresponding foreground detection results.

of minimum (�̌�) and maximum (�̂�) values of its own vector
magnitude to eliminate noise. The remaining OFs are then
normalized into four directions, namely, up, down, left, and
right. After normalization is applied, all OFs have the same
size. Figure 4 shows an example of the outputs from all steps
of this method, with all OF vectors in the figure having
magnitudes 20 times larger than actual values. The final
output is a set of OFs at all time points (i.e., seconds) in the
surgical workflow videos at all grid intersection points (see
Figure 6(a)).

3.2.2. Grid Block OF Extraction. After the frame preprocess-
ing stage, for example, using aGaussian blur filter to eliminate
noise, vertical and horizontal lines, the same as the above
GridIntersect method, are used to divide each frame into
a grid of equal blocks; however, in the GridBlock method,
OFs at all points in each block are extracted rather than
at the intersection points between lines. In particular, from
all extracted OFs, we ignore OFs that have own magnitudes
outside of the given threshold range (�̌� and �̂�). Next, we count
the remaining OFs in each block to ignore blocks with the
number of OFs inside smaller thanminimum threshold value
�̈�. We then calculate an average OF from the OFs in every
remaining block and then finally normalize along the four
directions, just as with theGridIntersectmethod. An example
of the outputs from all steps is shown in Figure 5, with all OF
vectors havingmagnitudes 20 times larger than actual values.
The final output of the GridBlockmethod is a set of OFs at all

Table 3: Combined methods constructed from all foreground
detection and OF extraction methods.

Combined abbreviation Foreground detection OF extraction
FrameDiff GridIntersect FrameDiff GridIntersect
MultiCue GridIntersect MultiCue GridIntersect
FrameDiff GridBlock FrameDiff GridBlock
MultiCue GridBlock MultiCue GridBlock

time points (i.e., seconds) in the surgical workflow videos at
all grid blocks (see Figure 6(b)).

3.3. Foreground Detection and OF Extraction Combinations.
As mentioned in Section 3.1, in this work, we use the two
methods shown in Table 1 to detect the foreground of the
surgical workflow videos in the operating room. Using these
methods, OFs extracted at points not in the foreground are
ignored. Here, by combining the two foreground detection
options with the two OF extraction methods, as described in
Section 3.2, we construct a total of four methods to extract
motion features, as summarized in Table 3.

3.4. OF Quantization. After extracting OFs between each
pair of consecutive frames, all OFs are quantized in terms
of words, which will be used in Section 3.5. A word here
indicates a normalized OF direction at a specified position,
namely, either a grid intersection point or grid block. To see
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(a) Grid of vertical and horizontal (red) lines (b) Intersection points of the grid, shown as blue
points

(c) Extracted OFs at intersection points, shown as
yellow lines

(d) Noise removed from theOFs, shown as yellow lines

(e) Quantized OFs, shown as yellow lines

Figure 4: Example outputs of all steps in the GridIntersect method.

this, we assume that the number of synchronized cameras 𝜍 is
two, each frame is divided into a grid of 10 × 10 intersection
points or 10 × 10 blocks, and the number of normalized OF
directions is four (i.e., up, down, left, and right). The number
of words in the corpus in this case, also known as vocabulary
size, is therefore 2 × 10 × 10 × 4 or 800.
3.5. Latent Dirichlet Allocation (LDA) Topic Model. As
described in [20], LDA is a generative model widely used in
natural language processing. As with other statistical models,
topic models such as LDA use statistical inferences to learn
topics that appear inside documents of a corpus. In LDA, each
document can be understood simply as a set of words with its
own ratio of all topics assumed to be inside it. The graphical

model of LDA is shown in Figure 7. Here,𝑀 represents the
number of documents, 𝑁 denotes the number of words in a
document, and𝐾 represents the number of topics. Further, 𝛼
is the parameter of the Dirichlet prior on the per-document
topic distributions, 𝛽 is the parameter of the Dirichlet prior
on the per-topicworddistributions, 𝜃𝑖 is the topic distribution
for document 𝑖, 𝜙𝑘 is the word distribution for topic 𝑘, 𝑧𝑖,𝑗 is
the topic for the 𝑗th word in document 𝑖, and 𝑤𝑖,𝑗 represents
a specific word.

Although LDA, document, and word are well-known in
natural language processing, these terms are abstract here
and should not be limited to normal text documents; as
such, these terms can also be applied to other kinds of data,
including images and speech. In our present work, LDA is
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(a) Grid of vertical and horizontal (red) lines (b) Extracted OFs at all points in each grid block,
shown as yellow lines

(c) Noise removed from theOFs, shown as yellow lines (d) Averaged OFs of grid blocks, shown as yellow lines

(e) Quantized-averaged OFs, shown as yellow lines

Figure 5: Example outputs of all steps in the GridBlockmethod.

[[[[[[[[[[
[

(x1, y1, d1) : n1,1
(x1, y1, d2) : n1,2
(x1, y1, d3) : n1,3

...

(xn, yn, d4) : nn,4

]]]]]]]]]]
]

1 Sec

(a) Grid intersection

[[[[[[[[[[
[

(x1, y1, d1) : n1,1
(x1, y1, d2) : n1,2
(x1, y1, d3) : n1,3

...

(xn, yn, d4) : nn,4

]]]]]]]]]]
]

1 Sec

(b) Grid block

Figure 6: An example of OF extraction outputs. (𝑥, 𝑦) denotes the coordinate of grid intersection point or block. 𝑑 is one of four directions,
namely, up, down, left, and right. 𝑛 is the number of OFs acquired in one second.
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used to infer topics that appear inside each time point of a
surgical workflow; these inferences are based on the motion
features represented by OFs extracted from the movements
of staff and any surgical instruments or materials in the
operating room. The main purpose of using LDA in this
work is to learn not only the appearance of OFs, but also
the dependencies among them. Without LDA, OFs which
were extracted in Section 3.4 can be used directly as the
input of one of feature normalization methods in Section 3.6.
Unfortunately, in this way, only the appearance of OFs is
covered; the dependencies among them are omitted.

First, all synchronized videos captured by multiple cam-
eras are divided into a sequence of 𝜍 one-second clips, where
𝜍 is the number of synchronized cameras. Indeed, each clip
corresponds to a document in LDA, while each document is
represented by the words accumulated over its entire set of
frames (see Section 3.4). The final output of LDA is shown
in Figure 8, which is the distribution of all topics over each
one-second clip, which we present as (1) below, and the
distribution of all words over each topic, presented as (2)
below.

𝜃𝑖 ∼ Dir (𝛼) , 𝑖 {0, . . . ,𝑀 − 1} , (1)

𝜙𝑘 ∼ Dir (𝛽) , 𝑘 {0, . . . , 𝐾 − 1} . (2)

3.6. Feature Normalization. As explained in Section 3.1
above, the output of LDA is the distribution of all topics over
all 𝜍 one-second clips (i.e., documents), which is actually the
ratio of all topics for each document. This output can be
understood simply as the motion features learned by both
OF extraction and LDA; thus we can represent each second
of the surgical workflow by a 𝐾-dimensional feature vector,
presented as follows:

𝜃𝑖 = (𝜃𝑖,0, 𝜃𝑖,1, . . . , 𝜃𝑖,𝐾−1) ,
𝐾−1

∑
𝑗=0

𝜃𝑖,𝑗 = 1.
(3)

Here, 𝐾 represents the number of topics.
Before training an HMM from all motion feature vectors

of the training surgical workflow videos, we use a feature
normalization method to translate these feature vectors
into a more familiar range; we also construct a faster and
more accurate HMM. We achieve this because we not only
eliminate noise, but also facilitate faster convergence of the
iterative parameter estimation method that is part of the
HMM.

Table 4: Abbreviations for feature normalization methods.

Abbreviation Method name
Top Top as One, Another as Zero
𝐾means 𝐾-means

In this subsection, we therefore introduce two methods
to normalize the features. While the first method is rather
simple, called Top as One, Another as Zero, the second
method uses a 𝑘-means approach, which is a hard clustering
method to yield new feature vectors. Like other sections, for
convenience, we denote the abbreviations for our methods
as shown in Table 4. Equation (4) shows an example of
the feature normalization output for a one-second clip (OF
extraction output, LDA topic distribution, and normalized
feature for 𝑖th one-second clip).

[[[[[[[[[
[

(𝑥1, 𝑦1, 𝑑1) : 𝑛1,1
(𝑥1, 𝑦1, 𝑑2) : 𝑛1,2
(𝑥1, 𝑦1, 𝑑3) : 𝑛1,3

...
(𝑥𝑛, 𝑦𝑛, 𝑑4) : 𝑛1,4

]]]]]]]]]
]

→
[[[[[[[[[
[

topic1 : 𝜃𝑖,0
topic2 : 𝜃𝑖,1
topic3 : 𝜃𝑖,2

...
topic𝐾 : 𝜃𝑖,𝐾−1

]]]]]]]]]
]

→

[[[[[[[[[[[[[[[[[[[
[

...
1
...
0
...
0
...

]]]]]]]]]]]]]]]]]]]
]

, (4)

where (𝑥, 𝑦) denotes the coordinate of grid intersection point
or block. 𝑑 is one of four directions, namely, up, down, left,
and right. 𝑛 is the number of OFs acquired in one second. 𝜃𝑖,𝑗
is the ratio of 𝑗th topic in 𝑖th document. 𝐾 is the number of
LDA topics.

3.6.1. Top as One, Another as Zero. In this method, each 𝐾-
dimensional feature vector 𝜃𝑖 is assigned to a new binary-
based 𝐾-dimensional vector, namely, 𝜃∗𝑖 , in which only the
dimensionwith themaximumvalue in the old vector takes on
values of one, whereas the others are set to zero, summarized
as follows:

𝜃∗𝑖,𝑗 =
{
{
{
1, if 𝑗 = argmax

𝛼
(𝜃𝑖,𝛼) ,

0, otherwise, 𝑗, 𝛼 ∈ [0, 𝐾) . (5)

3.6.2. 𝐾-Means. 𝐾-means clustering is a method for vector
classification that solves the well-known clustering problem
in data mining. In unsupervised learning, 𝑘-means is one
of the simplest algorithms in that its procedure follows a
straightforwardmethod for classifying a given set of 𝑛 feature
vectors into a certain number of clusters (i.e., 𝑐 clusters) in
which each feature vector belongs to the cluster with the
nearest mean.

The main idea behind 𝑘-means is to define 𝑐 centers,
with each center corresponding to a cluster. Because the
different locations of these centers cause different results,
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[[[[[[[[[[
[

(x1, y1, d1) : n1,1
(x1, y1, d2) : n1,2
(x1, y1, d3) : n1,3

...

(xn, yn, d4) : nn,4

]]]]]]]]]]
]

[[[[[[[[[[
[

topic1 : 𝜃i,0

topic2
topic3

: 𝜃i,1

: 𝜃i,2

...

topicK : 𝜃i,K−1

]]]]]]]]]]
]

Figure 8: OF extraction output and LDA topic distribution for 𝑖th one-second clip. (𝑥, 𝑦) denotes the coordinate of grid intersection point
or block. 𝑑 is one of four directions, namely, up, down, left, and right. 𝑛 is the number of OFs acquired in one second. 𝜃𝑖,𝑗 is the ratio of 𝑗th
topic in 𝑖th document. 𝐾 is the number of LDA topics.

it is better to place them as far away from one another as
possible. The first step is to associate each feature vector to
the nearest center and then achieve an early group age. In
the next step, the 𝑐 centers must be recalculated based on the
associated results from the previous step. After 𝑐 new centers
are generated, each feature vector is reassociated with the
nearest new center. These actions are repeated until there are
no more changes in the location of the 𝑐 centers.

More specifically, given set 𝜃𝑖 of 𝐾-dimensional feature
vectors, with 𝑖 = 0, . . . , 𝑛 − 1, 𝑘-means classifies the 𝑛 feature
vectors into 𝑐 (≤𝑛) clusters 𝑆 = 𝑆0, 𝑆2, . . . , 𝑆𝑐−1 by finding
positions 𝜇𝑖, 𝑖 = 0, . . . , 𝑐 − 1, of the cluster centers that
minimizes the within-cluster sum of squares, which serve
as the distances from feature vectors to the clusters centers,
namely,

argmin
𝑆

𝑐

∑
𝑖=1

∑
𝜃∈𝑆𝑖

𝜃 − 𝜇𝑖2 . (6)

Using this normalization method, instead of using (5),
each 𝐾-dimensional feature vector 𝜃𝑖 is assigned to a new
binary-based 𝑐-dimensional, 𝜃∗𝑖 , which corresponds to 𝑐
clusters, using (7) below. Only dimension 𝑗 in 𝜃∗𝑖,𝑗 that
corresponds to index 𝛼 of the nearest center 𝜇𝛼 is set to one,
whereas the other values are set to zero.

𝜃∗𝑖,𝑗 =
{
{
{
1, if 𝑗 = argmin

𝛼

𝜃𝑖 − 𝜇𝛼 ,
0, otherwise, 𝑗, 𝛼 ∈ [0, 𝑐) . (7)

3.7. Hidden Markov Model (HMM). TheHMM approach is a
statistical Markov model in which the system being modeled
is assumed to be a Markov process with unobserved (i.e.,
hidden) states or phases [18]. Each state has a state transition
probability distribution that defines the transition proba-
bilities to other states, an emission probability distribution
that defines output probabilities for all observed values in
the state, and an initial state probability distribution that
represents the probability that this state is the starting state
of the HMM. Because each kind of surgery has its own order
of phases that must be performed and there is no switching of
the order of these phases, a left to right HMM is appropriate

Phase 1 Phase 2 Phase 3

Figure 9: Left to right HMM graphical model.

for our work here. A left to right HMM is limited in terms of
transition probability distribution in that all states are able to
transition to themselves or the next state and are not able to
return to previous states (see Figure 9).

First, the transition probability from state 𝑞 to state 𝑞 is
calculated via

𝑇𝑞,𝑞 =
𝑁𝑞→𝑞
𝑁𝑞→− , (8)

where𝑁𝑞→𝑞 represents the number of transitions from state
𝑞 to state 𝑞 and − indicates all states. Because of the charac-
teristics of the left to right HMM, the transition probability
distribution can then be expressed as the following matrix:

[[[[[[[[[[[[[[
[

𝑇0,0 1 − 𝑇0,0 0 ⋅ ⋅ ⋅ 0 0

0 𝑇1,1 1 − 𝑇1,1 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 𝑇𝑄−2,𝑄−2 1 − 𝑇𝑄−2,𝑄−2

0 0 0 ⋅ ⋅ ⋅ 0 1

]]]]]]]]]]]]]]
]

(9)

Here, 𝑄 represents the number of states in the HMM.
Second, the initial state probability distribution, which

represents the probability that a state is the starting state of
the HMM, is defined as

𝜋𝑞 = {{
{
1, if 𝑞 = 0,
0, otherwise. (10)
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Third, from the normalized feature vectors 𝜃∗𝑖 , 𝑖 =
0, . . . , 𝑛 − 1, obtained in Section 3.6, the emission probability
distribution of state 𝑞 is calculated using

𝐸𝑞,𝜃∗ = ∑𝑖 (𝑖 ∈ 𝑞 | 𝜃
∗
𝑖 = 𝜃∗)

∑𝑖 (𝑖 ∈ 𝑞) + 𝜖. (11)

Here, ∑(𝑖 ∈ 𝑞) is the number of documents in state 𝑞,
∑(𝑖 ∈ 𝑞 | 𝜃∗𝑖 = 𝜃∗) is the number of documents in state 𝑞
with normalized feature vectors, also known as observation
value 𝜃∗, and 𝜖 is a smoothing term. Note that ∑𝑞∑𝑖(𝑖 ∈ 𝑞)
will simply be 𝑛, the number of documents in the surgical
workflow.

The HMM is initialized with all parameters calculated
above. These model parameters are then estimated with the
goal ofmaximizing the likelihood of the data given themodel.
We accomplish this via the Baum-Welch algorithm [21],
which is actually an instance of the well-known Expectation-
Maximization algorithm for missing data problems in statis-
tics [22, 23]. The process is iterative and hence we call it
reestimation.

3.8. Phase Segmentation. After theHMMhas been built from
training videos captured by multiple synchronized cameras
in the operating room for a specified surgical workflow, each
test video of a surgical workflow for the same surgery type
is divided into a sequence of one-second clips. Foreground
detection, OF extraction, and OF quantization are applied in
the same way as in the training process (see Sections 3.1, 3.2,
3.3, and 3.4). The distribution of all topics over each one-
second clip is then calculated based on the quantized OFs
using the topicmodel constructed in the training process (see
Section 3.5). Next, each calculated distribution is normalized
by usingTop in Section 3.6.1 or 𝑘-means in Section 3.6.2 based
on the estimated 𝑐 cluster centers 𝜇. Normalized feature of
each one-second clip is finally used to estimate phase label
for that clip based on probabilities in (8) and (11), which
are calculated from the estimated HMM parameters in the
training process (see Section 3.7).

4. Experiments

In this section, we describe experiments that we conducted to
evaluate the performance of our proposedmethods (Table 6).
We first describe the general setting in which we performed
the experiments and then present detailed results and a
discussion in Section 4.2.

4.1. Experimental Settings. The surgical workflow used in
our experiments was cholecystectomy, which is a typical
laparoscopic surgery. This surgical workflow has a basic flow
assumed to consist of the 12 phases shown in Table 5. Cur-
rently, it is difficult to prepare cameras in a hospital to record
real surgical workflows due to human rights and privacy
issues. Therefore, in this paper, we describe a simulation of
the operating room that we constructed in our laboratory
in which we recorded surgical workflow videos under con-
ditions that were as similar to a realistic surgical workflow
as possible. To accomplish this, we prepared real equipment,

Table 5: The 12 phases of the cholecystectomy surgical workflow.

Phase index Phase name
1 Materials preparation
2 CO2 inflation
3 Trocar insertion
4 Dissection
5 Clipping cutting
6 Gallbladder detaching
7 Liver bed coagulation
8 Packaging of gallbladder
9 External cleaning
10 Trocar retraction
11 Abdominal suturing
12 Materials return

Ra
ck
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1

EntranceN Camera

3

Surgical table
1

2

3

Figure 10: Simulated setting for our experiments, plus sample
camera images.

medical materials, including a laparoscope, which is an
elongated rod with a miniature camera attached on the top
of the rod to observe inside a patient’s abdomen, monitors,
trocars, forceps, and a carbon dioxide inhalator.

Figure 10 shows the overall setting of our simulated oper-
ating room. We placed three cameras on three different walls
far enough away from the operating area, which is marked
“surgical table” in the figure.The cameras were synchronized
by sending and receiving synchronization messages between
them and a host computer.Therefore, despite the existence of
cameras in the operating room, all staff, including surgeons,
do not notice the presence of such cameras; thus there is no
risk for the surgical workflow to be negatively impacted due to
their existence.This is a substantial advantage as compared to
other sensors. All cameras had a resolution of 640 × 480; the
figure also shows example frames captured by the cameras.

We recorded the surgical workflow 28 times with seven
different participants, each participant being recorded four
times by the three different cameras; thus we obtained a total
of 84 videos. The average length of surgical workflows was
12.8 minutes. The frame rate of all video cameras was 24
frames per second. The average number of frames of each
video was then 18432. The participants in our experiments
are normal people who imitate surgery operation. For each



10 International Journal of Biomedical Imaging

Table 6: Combined methods constructed from all foreground detection, OF extraction, and feature normalization methods.

Combined abbreviation Foreground detection and OF extraction Feature normalization
FrameDiff GridIntersect Top FrameDiff GridIntersect Top
MultiCue GridIntersect Top MultiCue GridIntersect Top
FrameDiff GridBlock Top FrameDiff GridBlock Top
MultiCue GridBlock Top MultiCue GridBlock Top
FrameDiff GridIntersect 𝐾means FrameDiff GridIntersect 𝐾means
MultiCue GridIntersect 𝐾means MultiCue GridIntersect 𝐾means
FrameDiff GridBlock 𝐾means FrameDiff GridBlock 𝐾means
MultiCue GridBlock 𝐾means MultiCue GridBlock 𝐾means

Table 7: Maximum average accuracy of all methods with 𝐾 ranging from 10 to 100 and 𝑐 ranging from 10 to 400.

Method Max average accuracy 𝐾 𝑐
FrameDiff GridBlock Top 82.7% 80 —
FrameDiff GridBlock 𝐾means 84.4% 20 230
MultiCue GridBlock Top 61.4% 80 —
MultiCue GridBlock 𝐾means 63.8% 30 270
FrameDiff GridIntersect Top 81.1% 100 —
FrameDiff GridIntersect 𝐾means 83.2% 20 260
MultiCue GridIntersect Top 52.3% 70 —
MultiCue GridIntersect 𝐾means 59.5% 20 250

parameters setting, of the 28 recorded surgical workflows,
27 were used for training; the remaining surgical workflow
recordings were used to test the accuracy of our proposed
methods. We used this approach such that every set of videos
was used for testing once in a leave-one-out cross-validation
strategy. From this, all results shown in Section 4.2 are then
the average accuracy after repeating this process 28 times and
all parameter values were fixed. By using average accuracy
to evaluate methods, we can find out which method works
well in almost every surgical workflow. More specifically, the
average accuracy of a method for a fixed parameters setting
was calculated as follows: First, ratio of the amount of time
in which phase label was estimated correctly and the true
phase length in second unit was calculated in each phase of a
test surgical workflow. Next, the average ratio of all phases
in the test workflow was calculated. This is defined as the
accuracy in a test workflow. Finally, the average accuracy was
obtained by averaging all accuracies in all 28 test workflows.
In addition, the true length for each phase in every surgical
workflow was manually decided by us before constructing
HMM, because the true phase length affects how HMM is
constructed.

The size of the Gaussian filter used to smooth frames was
7 × 7, and the grid size related to the vertical and horizontal
lines described in Section 3.2 was 64×48.We set parameters �̌�
and �̂� to two and 20, respectively, while �̈�was set to five. From
Section 3.5, the number of topics,𝐾, was increased from 10 to
100 by a step of 10. Parameters 𝛼 and 𝛽 for the LDA were set
to 50/𝐾 and 0.1, respectively. Smoothing term 𝜖 in (11) was
set to 0.0001, and the number of clusters 𝑐 for 𝑘-means from
Section 3.6 ranged from 10 to 400 by a step of 10.

Moreover, to calculate average elapsed time for a test
surgical workflow with the average workflow length being

12.8 minutes, we used a 2.30GHz Intel Core i7-4712HQ
central processing unit without graphics processing unit
implementation.

4.2. Experimental Results

4.2.1. Accuracy. Figures 11, 12, and 13 show the average accu-
racy of each method when parameters 𝐾 and 𝑐 changed. As
described above, while the segmentation results of all meth-
ods using 𝑘-means feature normalization method depend on
both parameters 𝐾 and 𝑐, the results of methods using Top
depend only on 𝑐. Therefore, in the figures, we used two
different types of figures to show the results.

Figure 15 and Table 7 show a comparison between the
maximum average accuracies of different existing methods
with different values of topics number𝐾 and 𝑘-means clusters
number 𝑐. More specifically, from results of eachmethod (i.e.,
Figure 11(a)), we select the parameters setting which yielded
the best average accuracy (i.e., 84.4% in Figure 11(a)) as
the best-suited setting for parameters. The average accuracy
which corresponds to the best-suited parameters setting is the
maximum average accuracy of the method. The purpose of
Figure 15 and Table 7 is to compare proposed methods after
fixing parameters to their own best-suited values. Because
the Top feature normalizationmethod has no parameter 𝑐, all
methods using Top are denoted as—in column 𝑐 of the table.
In addition, Figure 16 and Table 8 show an example of phase
segmentation outputs for a test surgical workflow using our
proposed FrameDiff GridBlock Kmeansmethod.

In Figures 11 and 12, we observe that for all numbers
of topics, when the number of clusters increased, the phase
segmentation results were more accurate; however, the accu-
racy tended to decrease as the number of clusters grew too
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Figure 11: Average accuracy of (a) FrameDiff GridBlock Kmeans and (b)MultiCue GridBlock Kmeans, with 𝐾 ranging from 10 to 100 and 𝑐
ranging from 10 to 400.

Table 8: An example of phase segmentation outputs for a test surgical workflow using FrameDiff GridBlock Kmeansmethod.

Phase index Start time (seconds) Actual phase length (seconds) Deviation (seconds)
1 1 13 0
2 14 68 3
3 82 80 5
4 162 76 0
5 238 72 6
6 310 93 2
7 403 81 6
8 484 61 8
9 545 83 5
10 628 76 7
11 704 81 2
12 785 15 5
Average 66.6 4.1
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Figure 12: Average accuracy of (a) FrameDiff GridIntersect Kmeans and (b)MultiCue GridIntersect Kmeans, with 𝐾 ranging from 10 to 100
and 𝑐 ranging from 10 to 400.

large.The best choice for 𝑘-means clusters in our experiments
was therefore between 200 and 300. We also observe that
changes in the number of clusters significantly impacted
segmentation results, whereas the number of topics yielded
nearly equivalent results except forwhen the number of topics
was 10; however, this value of 10 for parameter 𝐾 was too
small to express the features of all motions for this surgical
workflow. Figure 14 is similar to Figures 11 and 12 but only
shows results when 𝐾 was from 200 to 300 to make these
results easier to see.

Table 7 and Figure 13 indicate that the methods using Top
tended to be more accurate when the number of topics𝐾was
large; conversely, Table 7 and Figures 11 and 12 indicate that in
methods using 𝑘-means a large enough number of 𝑘-means
clusters 𝑐 and a small number of topics 𝐾 (but not less than
20) yielded better accuracy.

We also observe in Figure 15 that methods using 𝑘-means
were always better than ones using Top. Further, the use of
GridBlock OF extraction yielded higher levels of accuracy
than that of GridIntersect OF extraction, but the differences
here are not entirely clear. We note for these results that
GridIntersect extracts only OFs at a fixed number of points,
namely, at the intersection of vertical and horizontal lines;
thus it is easy to lose important motion features. On the other
hand, GridBlock uses averaged OFs; thus it is able to learn
more important movements.

Figure 15 also indicates that using FrameDiff to detect the
foreground was far better than using MultiCue in terms of
both maximum average accuracy and error. While FrameDiff
detects only the contour of moving contexts,MultiCue tends
to also detect the region inside the contour (see Figure 3),
indicating that extracting OFs only at the points connecting
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Figure 13: Average accuracy of (a) FrameDiff GridBlock Top, (b) MultiCue GridBlock Top, (c) FrameDiff GridIntersect Top, and (d)
MultiCue GridIntersect Top, with 𝐾 ranging from 10 to 100 and 𝑐 ranging from 10 to 400.

foreground and background provides more robust features
than at all points within the foreground. Moreover, because
FrameDiff is a very simple foreground detection method, its
execution time is substantially less than that of MultiCue. In
summary, FrameDiff is well-suited in this case.

Finally, the maximum average accuracy achieved in our
experiments was 84.4% when using FrameDiff foreground
detection, GridBlock OF extraction, and 𝑘-means feature
normalization.Thenumbers of topics and 𝑘-means clusters in
this case were set to 20 and 230, respectively. Figure 17 shows
details about the accuracy of each of 28 experimental surgical
workflows in this case. In the figure, the yellow line indicates
the average accuracy, and the blue and green dots indicate
surgical workflows with their own accuracy being not less
than 70%, while surgical workflows having level of accuracy
lower than 70% are shown as red dots. If we select the value
of 70% for accuracy as criteria to evaluate all staff, we observe
that staff that performed 20th and 21st surgical workflows
have low level of experience and performance; such staff

should therefore be trained more. In case of danger, unusual
eventsmay have occurred in such surgical workflows, and the
staff must be given warnings in all such situations to avoid
medical errors, which directly impact patient safety. On the
other hand, all staff that performed surgical workflows with
their own accuracy being not less than 90% can be seen as
experts. In summary, these experiments demonstrate that our
proposed methods are able to achieve very promising results.
Moreover, our present work can be further used for training
medical staff, issuing warnings during surgical workflow, and
so forth.

4.2.2. Calculation Time. Table 9 shows the average
calculation time of all methods for a test surgical
workflow with the average workflow length being 12.8
minutes (18432 frames). We observe that, although using
FrameDiff GridBlock methods was slightly better than using
FrameDiff GridIntersect methods in terms of accuracy
(see Figure 15), FrameDiff GridIntersect methods were
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Figure 14: Average accuracy of (a) FrameDiff GridBlock Kmeans, (b)MultiCue GridBlock Kmeans, (c) FrameDiff GridIntersect Kmeans, and
(d)MultiCue GridIntersect Kmeans, with 𝐾 ranging from 10 to 100 and 𝑐 ranging from 200 to 300.

far faster than FrameDiff GridBlock methods, with just
4.0-minute calculation time for a 12.8-minute workflow.
FrameDiff GridBlock methods had a speed of 55.7 minutes
per 12.8-minute workflow, which is an acceptable speed.
Unfortunately, although MultiCue GridIntersect methods
were very fast, their accuracies were worst in 8 methods.
MultiCue GridBlock methods were not good in both terms
of calculation time and accuracy.

In addition, Table 10 shows more details about average
calculation time of each step in all methods for a test
surgical workflow.The table indicates that, in total time spent
to segment phases of the test workflow, almost time was
used to detect foreground and extract OFs. LDA, feature
normalization, and HMM took very small time and they
were trivial. In foreground detection step, we observe that
FrameDiff was about 4 times faster than MultiCue. This can



International Journal of Biomedical Imaging 15

Top
Kmeans

0

10

20

30

40

50

60

70

80

90

100

M
ax

 av
er

ag
e a

cc
ur

ac
y 

(%
)

Fr
am

eD
i�

_G
rid

Bl
oc

k

M
ul

tiC
ue

_G
rid

Bl
oc

k

Fr
am

eD
i�

_G
rid

In
te

rs
ec

t

Method

82.7% 84.4%

61.4% 63.8%

81.1% 83.2%

52.3%
59.5%

M
ul

tiC
ue

_G
rid

In
te

rs
ec

t

Figure 15: Maximum average accuracy of all methods with 𝐾
ranging from 10 to 100 and 𝑐 ranging from 10 to 400.
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Figure 16: An example of phase segmentation outputs for a test
surgical workflow using FrameDiff GridBlock Kmeansmethod.

be explained by the fact that FrameDiff which only calculates
the absolute difference between two consecutive frames to
detect foreground is a very simple approach. On the other
hand, MultiCue uses more complex approaches (i.e., code-
book) to obtain characteristics of pixel texture, pixel color,
and local image appearance for detecting foreground. In OF
extraction step, we observe that GridBlock was far slower
than GridIntersect. It can be explained because GridBlock
calculates OFs at all foreground pixels in each block, while
GridIntersect calculates them at only the intersection pixels
between lines (see Section 3.2).

Table 9: Average calculation time of all methods for a test surgical
workflow (12.8 minutes of length).

Method
Average

calculation time
(minutes)

FrameDiff GridBlock Top 55.7
FrameDiff GridBlock 𝐾means 55.7
MultiCue GridBlock Top 334.3
MultiCue GridBlock 𝐾means 334.3
FrameDiff GridIntersect Top 4.0
FrameDiff GridIntersect 𝐾means 4.0
MultiCue GridIntersect Top 9.3
MultiCue GridIntersect 𝐾means 9.3

5. Conclusions

In this paper, we described new methods that use LDA
and HMM approaches to automatically segment phases of a
specified surgical workflow.The input to these methods con-
sists of multiple videos acquired from multiple synchronized
cameras. After all processes, including foreground detection,
OF extraction, and topics modeling, using both LDA and
HMMconstruction are completed, we are able to estimate the
appropriate phase at a given time point of the workflow. Our
proposed methods accomplished the following:

(i) They retained a high accuracy even for large datasets.
In our experiments, we showed the robustness of our
methods as having a maximum average accuracy of
84.4% for a dataset consisting of up to 28 surgical
workflows with seven different participants.

(ii) They ran at a high speed (in cases of
FrameDiff GridIntersect, MultiCue GridIntersect,
and FrameDiff GridBlock).

(iii) They used camera sensor, which not only is easy to set
up, but also has a substantial advantage as compared
to other sensors; that is, despite the existence of
cameras in the operating room, all staff do not notice
the presence of such cameras; thus there is no risk for
the surgical workflow to be negatively impacted due
to their existence.

(iv) They used OF extraction for acquiring motion fea-
tures of all general working contexts; thus not only
medical staff motions, but also information about
equipment and materials being used is covered.

For our future work, we plan to recognize the use of sur-
gical instruments and improve upon our phase segmentation
algorithm to obtain higher levels of performance. As a next
step, we will further develop an automatic moving camera
system, in which cameras can automatically move on the wall
and ceiling to positions that can acquire the most meaningful
and important information, via human and object tracking
algorithms. This means that, in case of more complex and
realistic operating room, namely, if there are multiple staff
performing surgery, our system can automatically separate
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Table 10: Average calculation time of each step in all methods for a test surgical workflow (12.8 minutes of length).

Method

Foreground
detection

(milliseconds per
frame)

OF extraction
(milliseconds per

frame)

LDA (seconds per
workflow)

Feature
normalization

(milliseconds per
workflow)

HMM
(milliseconds per

workflow)

FrameDiff GridBlock Top 4.7 176.3 4.7 61.0 7.6
FrameDiff GridBlock 𝐾means 4.7 176.3 4.7 57.0 23.1
MultiCue GridBlock Top 17.7 1070.0 10.1 79.0 9.7
MultiCue GridBlock 𝐾means 17.7 1070.0 10.1 74.0 24.6
FrameDiff GridIntersect Top 4.7 8.4 0.9 54.0 14.2
FrameDiff GridIntersect 𝐾means 4.7 8.4 0.9 57.0 20.5
MultiCue GridIntersect Top 17.7 12.2 6.3 71.0 12.6
MultiCue GridIntersect 𝐾means 17.7 12.2 6.3 69.0 24.2
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Figure 17: Accuracy in each surgical workflow of FrameDiff GridBlock Kmeans when 𝐾 was 20 and 𝑐 was 230.

targets for each camera, and each camera can then track,
focus on, and acquiremotion information fromonly one staff.
As a result, the phase segmentation becomes more accurate.
Next, we plan to extend our proposed system for constructing

(i) unusual event detection system to reduce medical
errors,

(ii) medical education support system to train larger
numbers of staff,

(iii) automated system that can perform daily medical
work in place of staff,

(iv) surgical decision-making system to recommend or
prompt the appropriate actions during surgical work-
flow,

(v) documentation generation system to automatically
generate documents, reports, and so forth, after each
surgical workflow.
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