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Abstract

Genetically encoded pH indicators (GEpHI) have emerged as important tools for investigat-

ing intracellular pH (pHi) dynamics in Drosophila. However, most of the indicators are based

on the Gal4/UAS binary expression system. Here, we report the generation of a ubiqui-

tously-expressed GEpHI. The fusion protein of super ecliptic pHluorin and FusionRed was

cloned under the tubulin promoter (tpHusion) to drive it independently of the Gal4/UAS sys-

tem. The function of tpHusion was validated in various tissues from different developmental

stages of Drosophila. Differences in pHi were also indicated correctly in fixed tissues.

Finally, we describe the use of tpHusion for comparative analysis of pHi in manipulated

clones and the surrounding cells in epithelial tissues. Our findings establish tpHusion as a

robust tool for studying pHi in Drosophila.

Introduction

Perturbations in intracellular pH (pHi) affect many cellular processes including cell growth,

proliferation, differentiation, and metabolism [1]. Under normal conditions, pHi is main-

tained within a narrow physiological range, and deregulation of pHi is observed in various dis-

ease states. In contrast to regular physiology, a state of higher pHi than the extracellular pH

(pHe) is conducive to the survival of tumor cells and metastatic progression [2]. Alterations in

cytosolic pH have also been implicated to cause neurodegenerative diseases [3]. Exploration of

pH dynamics can provide a better understanding of the fundamental cellular processes and

help develop strategies for the prevention or treatment of human pathologies.

Over the last few decades, several techniques for pHi measurement have been established.

These include the use of proton-permeable microelectrodes, NMR and fluorescence spectros-

copy [4,5]. The pH-sensitive fluorescent dyes offer easy-to-use tools for pHi measurement.

Although the generation of ratiometric pH probes could address certain shortcomings such as

dye leakage, photobleaching and uneven loading of dyes, the application of these dyes is lim-

ited in specific cases including pHi analysis in whole-mount tissues because of heterogeneous

dye uptake. Construction of the pH-sensitive GFP variant, pHluorin [6], has led to the devel-

opment of genetically encoded pH indicators (GEpHIs) for pHi measurements in various cell

types and organelles. In Drosophila, GEpHIs are typically based on the Gal4/UAS system-

driven expression of the pH-sensitive superecliptic pHluorin (SEpHluorin) [7] and the pH-

insensitive mCherry [8] in the region of interest [9–11]. Improved modifications of the sensors

have also been described [12] but an organism-wide expression has not been exploited. This
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restricts the ability to examine pHi during developmental processes or in clonal situations

within the same tissue, which is one of the major benefits of using Drosophila as a model

system.

Overexpression of the Drosophila Na+-H+ exchanger, Nhe2, increases pHi in the retina

[13]. However, the absence of an internal GEpHI expression and imaging control necessitates

the generation of fluorescence ratio to pH calibration curves for every experiment. Ubiquitous

expression of the GEpHI with a ubiquitously-expressed Gal4 in combination with other means

to produce clonal manipulations (FLP/FRT, LexA or Q system) could provide ‘in-tissue’ con-

trol for a more accurate interpretation of results. However, this approach can be complicated

by the prevalent use of the Gal4/UAS system and its possible toxicity [14]. To address these

issues, we developed a Gal4/UAS-independent and ubiquitously-expressed GEpHI, called

tpHusion. We describe its application for evaluation of pHi dynamics in living and fixed tis-

sues, as well as for clonal analysis.

Materials and methods

Generation of tpHusion Act>CD2>Gal4 chromosome

The tubulin-3’-trailer was excised from the pKB342 plasmid (gift from Konrad Basler) using

restriction sites XhoI and XbaI, and subcloned in-line with the pHusion-HRas sequence (gift

from Gregory Macleod, [15]) in pJFRC14 vector [16] using BamHI and XbaI sites. The result-

ing pHusion-HRas-tubulin-3’-trailer sequence was excised by restriction digestion with NotI

and XbaI and used to replace the Gal4 sequence under the tubulin promoter sequence in the

pT2-attB-Gal4 vector (gift from Konrad Basler) using Acc65I and XbaI sites. The resulting

plasmid tpHusion was injected into the fly line FX-86Fb [17]. The 3xP3-RFPattP landing site

sequence was removed using Cre recombinase-mediated excision. The Act>CD2>Gal4 con-

struct was recombined on the resulting 3R chromosome arm to generate the tpHusion
Act>CD2>Gal4 chromosome.

Fly husbandry

All lines and crosses were maintained at 25˚C on normal fly food unless otherwise stated. Nor-

mal fly food is composed of 100 g fresh yeast, 55 g cornmeal, 10 g wheat flour, 75 g sugar, 8 g

bacto agar, and 1.5% antimicrobial agents (33 g/L nipagin and 66 g/L nipasol in ethanol) in 1 L

water.

Fly lines used: fX-86Fb (gift from Johannes Bischof), Act>CD2>Gal4 (4780 Bloomington

Drosophila Stock Center (BDSC)); UAS-ECFP-golgi (42710 BDSC), UAS-LacZ (control, gift

from Johannes Bischof), UAS-RasV12 [18], PtenRi (101475 Vienna Drosophila Resource Center

(VDRC)), foxoRi (107786 VDRC), and Tsc1Ri (31039 BDSC).

Cross setup and clone induction

Flies were crossed for two days before an overnight egg laying. For clone induction, a 15 min

heat shock at 37˚C was applied 36 h after egg laying (AEL) and the animals were allowed to

develop at 25˚C. Wing and eye imaginal discs, and brains were dissected from wandering L3

larvae 108 h AEL; ovarioles were dissected from fertilized females. For clonal analyses, only

female larvae were used for dissection. Tissues were dissected in HCO3
- buffer [19] for live

imaging or in 4% paraformaldehyde (PFA) for fixed tissue imaging.
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Microscopy and immunofluorescence staining

After dissection of live tissues in HCO3
- buffer, the samples were mounted in the same buffer

on 35 mm MatTek dishes coated with 0.1 mg/mL poly-L-Lysine. Fluorescence images were

acquired on a Visitron Spinning Disk confocal microscope within one hour of dissection.

For fixed samples, tissues were dissected in 4% PFA, fixed for at least 30 min at room tem-

perature (RT), and stored at 4˚C until processing of all experimental conditions. The samples

were washed in PBS for 10 min and mounted on glass slides in VECTASHIELD (Vector Labo-

ratories H-1000) mounting medium. Confocal images were obtained within 24 h of dissection

on a Leica SPE TCS confocal laser-scanning microscope.

For the immunofluorescence staining with Fasciclin III (FasIII), tissues were dissected in

PBS. The samples were fixed in 4% PFA (30 min, RT), washed thrice in 0.3% Triton-X in PBS

(PBT, 15 min, RT), blocked in 2% Normal Donkey Serum (NDS) in 0.3% PBT (2 h, 4˚C), incu-

bated with mouse anti-FasIII (1:15 in 2% NDS, 7G10 Developmental Studies Hybridoma Bank

(DSHB), overnight, 4˚C), washed thrice in 0.3% PBT (15 min each, RT), incubated with goat

anti-mouse Alexa Fluor 647 (1:500, Thermo Fisher Scientific, 2 h, RT), washed thrice in 0.3%

PBT (15 min each, RT), stained with DAPI in 0.3% PBT (1:2000, 10 min, RT), and washed

once with PBS (10 min, RT). The samples were mounted on glass slides in VECTASHIELD

and imaged using a Leica SPE TCS confocal laser-scanning microscope.

In vivo nigericin calibration

Nigericin calibration buffers and curves were generated as described previously [19]. Briefly,

after acquiring images of live tissues, the HCO3
- buffer was replaced with the first calibration

buffer containing nigericin. Samples were imaged every 4 min after a minimum incubation of

10 min. After a total incubation time of 20 min, subsequent buffers were added for 6 min and

images were acquired every 2 min.

Quantification and statistical analysis

Images were processed using ImageJ [20]. Background subtraction was performed for each

channel. The images were converted to 32-bit and median filtering was applied with radius 2.

A defined area encompassing cells of interest, clones or surrounding wild-type tissue was

selected and mean gray values were measured for SEpHluorin and FusionRed. The pseudo

color images were produced by auto-thresholding of individual channels, followed by division

of SEpHluorin channel intensity with FusionRed. The calibration bar represents the relative

ratio of SEpHluorin to FusionRed intensities within a tissue from low (blue) to high (red). Sta-

tistical analyses were performed using unpaired two-tailed Student’s t-test. p values are

described in the Figure legends. All plots were generated in R Studio and Figures were assem-

bled using Adobe Illustrator.

Results

Development and in vivo validation of tpHusion pH reporter

The use of the Gal4/UAS system is one of the most common ways to produce clonal manipula-

tions in Drosophila [21]. To develop a ubiquitously-expressed GEpHI that would be useful for

clonal analysis, the expression of the sensor was rendered independent of Gal4/UAS control. A

translational fusion protein of SEpHluorin with FusionRed was cloned under the control of

the tubulin promoter. FusionRed was used to replace mCherry due to its low cytotoxicity, bet-

ter performance in fusions and increased stability in a monomeric state [22]. An HRas
sequence was also included to tether the fusion protein to the cytosolic side of the plasma
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membrane. This reduces the pHi variability due to the presence of compartments of differing

pH within the cytosol [23]. The construct is referred to as tpHusion. The expression and mem-

brane localization of tpHusion was confirmed in various tissues (data shown for wing imaginal

discs in Fig 1A).

To verify that tpHusion is a suitable pH indicator, fluorescence intensity calibrations were

performed on wing imaginal discs incubated in buffers containing nigericin, which is an iono-

phore used to clamp the pHi to the buffer pH (see Materials and Methods). The pH-sensitive

SEpHluorin displayed the predicted changes in fluorescence based on the buffer pH, whereas

the pH-insensitive FusionRed only showed minor alterations. The ratio of SEpHluorin to

FusionRed reflected the buffer pH (Fig 1B), resulting in the generation of a calibration curve of

pHi with the ratio of fluorescence intensities (Fig 1C). Thus, tpHusion can be used to indicate

changes in pHi.

tpHusion reports pHi changes in living tissues

Apart from the clonal analyses, a major advantage of a ubiquitously-expressed GEpHI is the

ability to compare pHi in different cells across various developmental processes and stages.

Earlier studies have reported a higher pHi in the differentiated follicle cells of the Drosophila
ovariole as compared to the follicle stem cells (FSCs) using the Gal4/UAS-dependent expres-

sion of SEpHluorin/mCherry probe [24]. This finding was confirmed using tpHusion, which

showed a similar increase in pHi of follicle cells in contrast to the FSCs (Fig 2A and 2A’).

The Drosophila imaginal discs have proven to be excellent systems for the identification of

genes regulating cellular growth during normal development [25,26] or in perturbed states

[27,28]. The pHi in these tissues has not been analyzed due to the unavailability of robust indi-

cators. During the larval stages, the eye imaginal disc consists of proliferating cells anterior to

the morphogenetic furrow (amf) and mostly differentiating photoreceptors posterior to the

furrow (pmf) [29]. Investigation of SEpHluorin and FusionRed intensities using tpHusion

demonstrated a higher ratio in the mitotically active amf region of the eye disc (Fig 2B and

2B’). The several compartments and cell lineages of the wing disc have also been described in

great detail [26]. The larval wing disc is comprised of cells in the pouch region (which will

form the wing blade) and the notum (which will form the body wall) [30,31]. pHi analysis

using tpHusion displayed no difference in the pouch versus notum of the wing imaginal disc

(Fig 2C and 2C’).

A major organ that is vital in neurobiological research is the Drosophila brain [32]. Tremen-

dous advances have been made towards deciphering the circuitries of the adult and larval

brains [33,34]. The information about pHi of different cell types could be fundamental to

understand processes such as vesicular transport [35]. The larval brain can be subdivided into

the central brain (CB), optic lobe (OL) and the ventral nerve cord (VNC) [36]. A brief evalua-

tion in the larval brain revealed that cells in the OL have a higher pHi than cells in the CB (Fig

2D and 2D’). The above results establish the use of tpHusion for comparative analysis of in
vivo pH differences in various Drosophila tissues during different developmental stages.

tpHusion reflects in vivo pH changes in fixed tissues

Culturing of Drosophila organs has been challenging, with specific culture condition require-

ments for different tissues [37–40]. For pHi measurements in live cells, tissues are dissected in

a bicarbonate buffer (see Materials and Methods) to prevent changes in the physiological pHi.

However, the tissues cannot be maintained in this buffer for an extended period, rendering the

handling of many experimental conditions difficult. Fixing the conformational state of the

GEpHI can help slow down changes in fluorescence until all samples are processed [41]. To
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examine if tpHusion can be used to monitor pH variations in fixed tissues, comparisons were

performed in tissue regions depicted in Fig 2 after fixation. The tissues were dissected directly

in 4% PFA to restrict changes in pHi and imaged within 24 h. Interestingly, differences in the

ratio of SEpHluorin and FusionRed intensities in the various cell types of the tissues tested

were the same as in the live tissues (Fig 3A–3D’). SEpHluorin retains sensitivity to acidic pH

after fixation [42]. Since the samples were exclusively exposed to pH 7–7.4 in our experimental

setup, the physiological pHi should be maintained. This does not exclude the possibility of

slight alterations in pHi but the consistent changes in the ratio of intensities between different

regions of the live and fixed tissues (compare Figs 2 and 3) suggest that tpHusion can be reli-

ably used to study pHi variations in fixed tissues.

Using tpHusion to detect clonal pH changes

Deregulated pH is now considered a hallmark of cancer with a higher pHi and a lower pHe

observed in cancer cells as compared to normal cells [43]. Many tumor models have been

described in Drosophila [44]. Overexpression of activated Ras (RasV12) causes hyperplastic

overgrowth [45] and metastatic behavior in combination with loss of polarity genes [27]. It has

also been shown to have an increased pHi compared to control cells in a 2D cell culture system

of breast epithelial cells [13]. To analyze the pHi in RasV12-overexpressing clones in Drosophila
epithelial cells, tpHusion was recombined with an actin-FLP-out cassette [46]. Comparison of

SEpHluorin and FusionRed intensities ratio in clones and the surrounding wild-type tissue

revealed an elevated pHi in the clones (Fig 4A and 4A’).

Fig 1. Validation of tpHusion reporter. (A) Fixed wing pouches of wandering L3 larvae depicting the cellular localization of tpHusion.

FasIII labels the plasma membrane and DAPI stains the nuclei. Scale bar = 50 μm. (B) Changes in SEpHluorin (green) and FusionRed

(red) fluorescence intensities, and the ratio of SEpHluorin to FusionRed intensities from live wing pouch cells upon incubation in

nigericin buffers of varying pH. n> 7 larvae. Data are represented as mean ± standard deviation. (C) Calibration curve between

intracellular pH (pHi) and the ratio of SEpHluorin to FusionRed intensities generated from experiments in B.

https://doi.org/10.1371/journal.pone.0228995.g001
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Earlier studies have reported an enhanced cellular overgrowth upon clonal loss of tumor

suppressors of the phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin

(mTORC1) signaling network. Loss-of-function mutations in the phosphatase and tensin

homolog (Pten) or the tuberous sclerosis complex (TSC) subunit 1 (Tsc1) lead to an escalation

in cell size and number [47,48]. We have also outlined the function of the transcription factor

forkhead box O (FoxO) in limiting the proliferation of Tsc1 mutant cells under conditions of

nutrient restriction [49]. The loss of foxo does not cause an overgrowth phenotype on its own

Fig 2. Comparison of pHi in different cell types of living tissues. (A-D) SEpHluorin, FusionRed, and ratiometric images

of live (A) ovarioles, (B) eye discs, (C) wing discs, and (D) brains. (A’-D’) Quantification of the ratio of fluorescence

intensities in (A’) FSC (arrow, white solid square) and follicle (arrowhead, yellow dashed square) cells, (B’) cells anterior

(amf, arrow, white solid square) and posterior (pmf, arrowhead, yellow dashed square) to the morphogenetic furrow (dashed

line), (C’) pouch (arrow, white solid square) and notum (arrowhead, yellow dashed square) cells, and (D’) cells in optic lobe

(OL, arrow, white solid square) and central brain (CB, arrowhead, yellow dashed square). n> 7 larvae. Data are represented

as mean ± standard deviation. � p< 0.05, ��� p< 0.001 and ns = not significant. Scale bar for A = 50 μm, scale bar for

B-D = 100 μm. Calibration bar represents the ratio values of SEpHluorin to FusionRed intensities used to generate

ratiometric images.

https://doi.org/10.1371/journal.pone.0228995.g002
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[50]. Using the system mentioned above, the pHi of control, Pten, foxo, Tsc1, and Tsc1 foxo
knockdown clones was compared to the surrounding wild-type tissue (Fig 4B). The ratio of

SEpHluorin and FusionRed intensities in control and foxo knockdown clones was similar to

the surrounding wild-type tissue, whereas the ratio was higher in Pten, Tsc1, and Tsc1 foxo
knockdown clones. These data validate the use of tpHusion for clonal analysis of pHi in Dro-
sophila epithelial tissues and suggest that loss of the tested tumor suppressors increases pHi.

Fig 3. Comparison of pHi in different cell types of fixed tissues. (A-D) SEpHluorin, FusionRed, and ratiometric images of

fixed (A) ovarioles, (B) eye discs, (C) wing discs, and (D) brains. (A’-D’) Quantification of the ratio of fluorescence intensities

in (A’) FSC (arrow, white solid square) and follicle (arrowhead, yellow dashed square) cells, (B’) cells anterior (amf, arrow,

white solid square) and posterior (pmf, arrowhead, yellow dashed square) to the morphogenetic furrow (dashed line), (C’)

pouch (arrow, white solid square) and notum (arrowhead, yellow dashed square) cells, and (D’) cells in optic lobe (OL,

arrow, white solid square) and central brain (CB, arrowhead, yellow dashed square). n> 7 larvae. Data are represented as

mean ± standard deviation. � p< 0.05, ��� p< 0.001 and ns = not significant. Scale bar for A = 50 μm, scale bar for

B-D = 100 μm. Calibration bar represents the ratio values of SEpHluorin to FusionRed intensities used to generate

ratiometric images.

https://doi.org/10.1371/journal.pone.0228995.g003

tpHusion enables clonal pH detection in Drosophila

PLOS ONE | https://doi.org/10.1371/journal.pone.0228995 February 14, 2020 7 / 12

https://doi.org/10.1371/journal.pone.0228995.g003
https://doi.org/10.1371/journal.pone.0228995


Discussion

The ubiquitously-expressed GEpHI, tpHusion, facilitates in vivo pHi measurement and com-

parative analysis in diverse tissues and developmental stages in Drosophila. We have used this

reporter to investigate pHi differences in developing organs and genetically manipulated

clones compared to their surrounding cells in the same tissue.

Such an analysis was not feasible with the previously available tools for pHi determination.

Our results demonstrate the applicability of tpHusion for the identification of new pHi modu-

lators, and for studying pHi homeostasis during developmental processes or in disease models.

Fig 4. tpHusion detects clonal pH changes in Drosophila imaginal discs. (A) SEpHluorin, FusionRed and

ratiometric images of wing pouches dissected from wandering female L3 larvae with RasV12-overexpressing clones that

are marked by ECFP. Calibration bar represents the ratio values of SEpHluorin to FusionRed intensities used to

generate ratiometric images. Scale bar = 50 μm. (A’) Quantification of the ratio of fluorescence intensities in wild-type

and RasV12 clones. (B) Quantification of the ratio of fluorescence intensities in wild-type and control, PtenRi, foxoRi,

Tsc1Ri or Tsc1Ri foxoRi clones from wing pouches of wandering female L3 larvae. n> 10 larvae. Data are represented as

mean ± standard deviation. � p< 0.05, �� p< 0.01, ��� p< 0.001 and ns = not significant.

https://doi.org/10.1371/journal.pone.0228995.g004
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Minor imbalances in the intracellular and extracellular pH equilibrium can have major

impacts on many cellular functions. The regulation of cell proliferation by pHi has been

shown in a variety of species including sea urchin eggs, yeast, and mammalian cell culture sys-

tems [51]. Changing pHi can coordinate differentiation or lineage specification of certain stem

cells [24,52,53]. pHi has also been found to change during cell cycle progression [54]. Given

the crucial role of pH in physiology, it is not surprising that a loss of pH homeostasis is seen in

many diseases including cancer [55]. One notable aspect of this observation that remains dis-

puted in the field is if pH can signal to cellular processes leading to diseases or whether the

observed pH imbalance is a result of the pathological state.

Studies addressing the role of pHi in the fundamental processes mentioned above have

been limited in Drosophila due to the lack of adequate tools. The uniform expression of tpHu-

sion with no apparent cytotoxicity throughout development can aid the analysis of pHi

dynamics in various developmental contexts. The complete potential of tpHusion can be real-

ized by combining it with the existing repertoire of genetic modification tools in Drosophila.

The flexible use of tpHusion with the Gal/UAS and FLP-out systems to express UAS-based

transgenes in clones led us to present, for the first time, an increase in pHi in cells with overex-

pression of an oncogene or knockdown of tumor suppressor genes as compared to the sur-

rounding wild-type cells. One caveat is the inability to use the most commonly used

fluorophores to label clones or cell lineages but this can be circumvented by the use of non-

interfering fluorophores in the blue or the far-red channels. We conclude that tpHusion is a

powerful tool for investigating cellular pH in Drosophila.
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