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ABSTRACT

The vast majority of germline and somatic variations
occur in the noncoding part of the genome, only
a small fraction of which are believed to be func-
tional. From the tens of thousands of noncoding vari-
ations detectable in each genome, identifying and
prioritizing driver candidates with putative functional
significance is challenging. To address this, we im-
plemented IW-Scoring, a new Integrative Weighted
Scoring model to annotate and prioritise function-
ally relevant noncoding variations. We evaluate 11
scoring methods, and apply an unsupervised spec-
tral approach for subsequent selective integration
into two linear weighted functional scoring schemas
for known and novel variations. IW-Scoring produces
stable high-quality performance as the best predic-
tors for three independent data sets. We demonstrate
the robustness of IW-Scoring in identifying recur-
rent functional mutations in the TERT promoter, as
well as disease SNPs in proximity to consensus mo-
tifs and with gene regulatory effects. Using follicular
lymphoma as a paradigmatic cancer model, we ap-
ply IW-Scoring to locate 11 recurrently mutated non-
coding regions in 14 follicular lymphoma genomes,
and validate 9 of these regions in an extension co-
hort, including the promoter and enhancer regions
of PAX5. Overall, IW-Scoring demonstrates greater
versatility in identifying trait- and disease-associated
noncoding variants. Scores from IW-Scoring as well
as other methods are freely available from http:
//www.snp-nexus.org/IW-Scoring/.

INTRODUCTION

Over 98% of the human genome does not encode proteins.
Despite its past reference as ‘junk DNA’ when first discov-

ered, noncoding sequences are now recognized as function-
ally important, possessing millions of regulatory elements
and noncoding RNA genes. The annotation of potential
regulatory sequences, through the Encyclopedia of DNA
Elements (ENCODE) (1), Roadmap Epigenomics Consor-
tium (2) and the FANTOM5 project (3,4), is revolutioniz-
ing our understanding of noncoding sequences and revealed
that large stretches of the human genome (∼80%) is evi-
dently associated with DNA transcription to RNA, chro-
matin marks and other epigenomic elements. It has also es-
tablished that many of the genetic variants associated with
disease and diverse traits uncovered by genome-wide asso-
ciation studies (GWAS) are located within these noncod-
ing regions, residing in or near ENCODE and Epigenome
defined locations. However, compared to protein-coding re-
gions, our understanding of noncoding regulatory elements
remains poor.

Overall the significance of non-coding mutations remains
an underexplored area of cancer genomics. With the rapid
emergence of whole-genome and regulatory region targeted
survey, many recurrent noncoding mutations have been
identified in various cancer types. For example the preva-
lence of TERT promoter mutations has been established in
melanoma (5,6), gliomas and a subset of tumours in tissues
with low rates of self-renewal (7). Moreover, TERT pro-
moter mutations significantly correlate with survival and
disease recurrence in bladder cancer, demonstrating the
clinical significance for noncoding mutations (8). In chronic
lymphocytic leukaemia (CLL), whole genome sequencing
(WGS) of 150 tumour/normal pairs alongside with DNase-
seq and chromatin immunoprecipitation sequencing (ChIP-
seq) identified recurrent mutations in the 3’ UTR region
of NOTCH1 gene and in the active enhancer of PAX5 (9).
In a subset of T cell acute lymphoblastic leukaemia (T-
ALL), somatic mutations were found in the intergenic re-
gion to create MYB-binding motifs, which resulted in a
super-enhancer upstream of the TAL1 oncogene (10). Most
recently, three significantly mutated promoters have been
identified based on deep sequencing in 360 primary breast
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cancers, and more such regions remain to be discovered
(11). Whole-genome sequencing (WGS) data is increasingly
available, especially through TCGA (The Cancer Genome
Atlas) and ICGC (International Cancer Genome Consor-
tium), prompting more pan-cancer style studies to look
for significantly mutated regulatory elements across cancer
types (12–15).

To systematically study these noncoding variants and
assess their functional/pathogenic potential, they first re-
quire careful annotation, by determining the regulatory re-
gions they map to, e.g. ENCODE, Epigenome Roadmap
and FANTOM5 defined elements, and their potential
target genes. However, identifying potential noncoding
pathogenic/driver/functional variants and distinguishing
them from benign/passenger/non-functional variants, re-
mains challenging, due to their abundance, cell/tissue type
specificity and complex modes of action (16). In the last
few years, many studies have taken an integrative approach
of combining available noncoding annotation features to
provide scores for the likely functional impact of noncod-
ing variants. Most of these methods, including CADD (17),
GWAVA (18), FATHMM-MKL (19) and Genomiser (20),
used machine-learning algorithms to develop classifiers in-
tegrating a range of annotations such as regulatory features,
conservation metrics, genic context and genome-wide prop-
erties to differentiate disease-associated/deleterious vari-
ants from benign/neutral variants in the model training.
Some other methods, such as DeepSEA (21) and DeltaSVM
(22), chose to directly learn regulatory sequence codes from
large-scale chromatin-profiling data generated from EN-
CODE, while FitCons (23) opted to estimate the selective
pressure for those functionally important genomic regions
on the basis of patterns of polymorphism and divergence.
Additional methods, like FunSeq2 (24) and Eigen (25), de-
veloped a weighted scoring system to combine the relative
importance of various annotation features to separate func-
tional and non-functional variants. The advantage of these
weighted scoring methods is that they do not rely on any
labelled gold-standard training data of disease-associated
and putatively benign variants, which are often inaccurate
and impractical for the extent of variants linked with GWAS
and cancer studies.

Most of the methods discussed above simply provide a
continuous functional score for each variant without fur-
ther information on the prediction accuracy and functional
consequence in affected regulatory elements. A level of con-
fidence or significance is also needed for each estimated
score as these methods often score the same variants differ-
ently with varied performances across different data types.
Thus, a class ensemble approach that combines the pre-
dictions of all these functional methods with a weighted
scheme would offer a powerful approach to summarise mul-
tiple predictive evidences, increase specificity and rank vari-
ants.

Here, we explore eleven most commonly used func-
tional annotation methods and scoring systems for genetic
variations in the noncoding genome. Considering the im-
proved robustness and generalisability of a class ensemble
approach compared to a single scoring method (26), we
then propose a new integrative weighted scoring method,
named IW-Scoring. Using an unsupervised spectral ap-

Figure 1. The IW-Scoring framework.

proach based on feature covariance, IW-Scoring selectively
amalgamates some of those eleven methods (i.e. full set or
subsets) into a single ‘ensemble-like’ algorithm and deliv-
ers two separate linear weighted functional scoring schemas
for known and novel variations, respectively. Across inde-
pendent test data sets, IW-scoring produces consistently
high-quality stable performance in differentiating function-
ally significant variations from others, while the constituent
methods show mixed performances at best. Finally, we
demonstrate the utility of IW-Scoring in identifying and pri-
oritizing functional variants in GWAS, expression quantita-
tive trait locus (eQTL) and cancer studies.

MATERIALS AND METHODS

Overview of IW-Scoring framework and data resources

The workflow in IW-Scoring consists of four top-level mod-
ules: (i) gene annotation, (ii) regulatory annotation, (iii)
functional scoring and (iv) score integration and signifi-
cance inference (Figure 1). With queried variants as in-
put, IW-Scoring framework uses the four modules to an-
notate and score variants, and rank noncoding ones based
on their predicted functional significance. Within the gene
annotation module, the queried variants are first annotated
against Ensembl (version 75, GRCh37/hg19 genome as-
sembly) gene annotation to identify and filter out any vari-
ants that can potentially lead to non-synonymous changes
for any transcript of a gene using SNPnexus (27). A gene
centric view/summary is provided for filtered noncoding
variants within genes (e.g. synonymous, UTR and intronic),
within 1 kb up- or downstream of genes, or in intergenic re-
gions. For intergenic variants, we also collect their nearest
up- and downstream genes and distances to them.

The next step is to further annotate noncoding vari-
ants against ENCODE/Epigenome/FANTOM5 defined
regions along with Ensembl Regulatory Build annota-
tion to identify overlapping regulatory elements of var-
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ious chromatin (e.g. DNase I), polymerase and his-
tone (e.g. H3K4me1/2/3, H3K27ac, H3K36 and H3K9)
marks, transcription factor (TF) binding sites (e.g. CTCF,
FOXA1, NFKB, c-Myc, c-Jun, p300, etc.) and predicted
promoters/enhancers/TSS, with the supporting cell and tis-
sue types also reported.

Next, noncoding functional scores of 11 different scoring
systems derived from eight studies, including CADD v1.3
(17), DeepSEA (21), Eigen (Eigen and Eigen-PC) (25), fit-
Cons (23), FunSeq2 (24), FATHMM-MKL (19), GWAVA
(region, TSS and unmatched scores) (18) and ReMM (20)
(Supplemental Table S1), are extracted for all noncoding
variants allowing missing values for some scores. The pre-
computed genome-wide scores are used for all systems, ex-
cept DeepSEA for which the standalone version of the tool
is executed locally.

Finally, an integrative score, i.e. IW-Scoring, is calculated
for each variant as the linear weighted sum of the functional
scores obtained from different systems (see below for de-
tails), with associated statistical significance also derived.

Assembly of training variant set

For the training set, we extracted all variants from the 1000
Genomes Project data set (28) that were not present in db-
NSFP (29) v3.0, and were either (i) within 1 kb upstream
of the gene start site and 1 kb downstream of the gene end
site, or (ii) within 5′ and 3′ UTR of a gene or (iii) synony-
mous variants in coding regions, leading to a total of 712
259 noncoding variants.

Construction of integrative noncoding scores

We used an unsupervised spectral approach similar to
Eigen/Eigen-PC (25) to derive a weighted linear combina-
tion of individual scores. To achieve this, we first need to
learn the weights for different functional scoring systems to
be incorporated in our scoring system, and then develop a
strategy to calculate integrative scores and associated sig-
nificance for query variants considering the missing values
and data rescaling.

Estimation of the weight for constituent scores. The weight
estimation procedure was implemented as following:

(1) Training data set of functional scores: for the training data
of 712 259 noncoding variants, we obtained functional
scores from the 11 scoring systems, allowing missing val-
ues for certain scores. DeepSEA functional significance
scores (P-values) were –log2 transformed to enable data
integration.

(2) Data rescaling: noncoding scores (continuous variables)
were rescaled to have a mean of zero and a variance of
one, individually. The minimum and maximum for the
original and rescaled values of each scoring system were
retained for the data transformation of queried data sets
(Supplementary Table S1).

(3) Covariance estimation: a covariance matrix was calcu-
lated as pairwise correlations between any two of the
11 scoring systems. This allows certain scores to be
used for variants with missing values when scores from

other methods are available. This ensures we estimate the
weights based on all observed variants accurately.

(4) Weight estimation via eigendecomposition: the estimated
weights for the individual scoring systems were calculated
using the eigendecomposition of the covariance matrix.
The lead eigenvector (i.e. the one with the greatest eigen-
value) was used to assign the weights to the correspond-
ing scoring systems.

In order to identify whether the calculated weight values
are sensitive to the training data, we conducted the same
procedure with subsets of the original training dataset, com-
prising of random selection of 20%, 40%, 60% and 80%
of the variants respectively. In addition, we conducted the
procedure multiple times with different random selection
of 20% of the variants. In all cases, the changes in derived
weight values for different training datasets were insignif-
icant, suggesting that the weights are not sensitive to the
training data set (Supplementary Figure S1).

We then calculated IW-scores, a weighted sum of rescaled
values of different noncoding scores, for all training vari-
ants, in order to determine a distribution of integrative
scores. We imputed missing values in the rescaled scoring
matrix using the Amelia R package (30). Amelia performs
multiple imputation of missing data taking into account po-
tential interdependencies between variables, combining the
expectation-maximization with bootstrapping algorithm.
The final imputed values were calculated as a mean of 10
imputations.

Calculating integrative scores and associated significance for
queried variant sets. The IW-Scoring framework to calcu-
late integrative scores for any set of queried variants is out-
lined below:

(1) Score extraction and missing value imputation: similar to
the training data processing, we first extract scores from
different methods. For variants with missing values from
certain scoring systems, imputations are enforced. Con-
sidering the usual small sample size for queried variant
sets, we employ a strategy to merge them with a set of
100 000 variants randomly selected from the training set
where all values are available, in order to increase the im-
putation accuracy. We then impute the missing values us-
ing Amelia based on the average of 10 imputations.

(2) Data rescaling: we use the training data set as a reference
for all queried variants to be rescaled to. For each scoring
system, we rescale the values of queried variants to fit into
the rescaled distribution of the training set based on the
parameters (e.g. the minimum and maximum values) de-
rived from the original and rescaled scores. The rescaled
values need to satisfy the following equation,

MaxAi − mi

mi − Min Ai
= MaxRi − xi

xi − MinRi
(1)

where MaxAi and Min Ai , MaxRi and MinRi are the max-
imum and minimum values of the original and rescaled
scores for scoring system i in the training set, respectively.
Variables mi and xi are the original and rescaled values of
scoring system i for the queried variant. Thus, the solu-
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tion to this equation of calculating xi is

xi = MaxRi × (mi − Min Ai ) + MinRi × (MaxAi − mi )
MaxAi − Min Ai

. (2)

(3) Integrative scoring: after rescaling, the integrative scores
are calculated as the weighted sum of rescaled values of
all scoring systems for queried variants, as

IW score =
∑

i
Wi xi (3)

where Wi is the weight of scoring system i derived from
the training set.

(4) Scoring significance and variant ranking: the integrative
scores for queried variants are compared to the lognor-
mal distribution of all 712 259 scores in the training set
to determine the significance levels. Queried variants are
further ranked based on IW-scores and P-values derived.

Performance comparison between IW-scores and other scores

We used three independent data sets to evaluate the
variant differentiating (functional/deleterious from non-
functional/benign variants) performances between IW-
scoring and other scores. These data sets included non-
coding variants from the ClinVar database (31) version
2016/11/01 and National Human Genome Research Insti-
tute (NHGRI)-EBI GWAS Catalog (http://www.ebi.ac.uk/
gwas/home) version 2016/11/21. For cancer data set, we se-
lected noncoding variants curated in the COSMIC database
(32) Version 79. The three test data sets chosen are ‘gold-
standard’ for benchmarking variant functional scores and
annotation. They have been widely used in many studies, in-
cluding those featuring CADD, Eigen, GWAVA, DeepSea
and FATHMM methods. The performance of each scoring
method differentiating functional from non-functional vari-
ants was assessed using the average receiver operating char-
acteristic (ROC) curves and the area under curve (AUC) us-
ing pROC R package (33).

Software availability

The workflow for IW-Scoring described above has been im-
plemented as a web-based tool that allows users to annotate
any list of known and novel variants against various non-
coding annotation and scoring databases, as well as to cal-
culate IW-scores for them. This integrated single web tool is
freely available for use at http://snp-nexus.org/IW-Scoring.

RESULTS

IW-Scoring for noncoding variants in training data set

We first assessed individual functional scores and their
correlation/covariance structure using 712 259 training
noncoding variants. Correlations among different func-
tional scores for the training variants showed that scores
from Eigen, DeepSEA, FATHMM noncoding, ReMM and
CADD were more closely correlated, whereas GWAVA
scores (i.e. unmatched and TSS) were more similar to each
other (Figure 2A). Under the assumption of conditional in-
dependence among individual functional scores given the
true state of a variant (either functional or non-functional),

this correlation/covariance structure could be used to deter-
mine the weight for each scoring system when combined to
differentiate variants. We are aware of the limitation of our
assumption, as many functional scores tend to use similar
information for prediction, thus likely to be correlated when
scoring variants. However, our inclusion of a wide range
of functional scores based on different subsets of regula-
tory annotations and different algorithms (either machine-
learning classifier, or sequence pattern recognition, or se-
quence conservation or weighted summarizing score) min-
imises the inter-dependency effect and ensure the functional
scoring based on the most diverse evidences. It is worth
noting that functional scores were available for >95% of
training variants for all methods, except for FunSeq2 (84%),
Eigen-PC (87%) and Eigen (91%), partially due to the miss-
ing values for chromosome X variants for Eigen (Supple-
mentary Table S1).

Using the eigendecomposition of the covariant matrix de-
rived from the training set, we calculated the weights for dif-
ferent scores (Supplementary Table S1). Eigen, DeepSEA,
FATHMM noncoding, ReMM and CADD had the high-
est weights, while fitCons, GWAVA TSS and Eigen-PC had
the lowest weights, half of those for Eigen and DeepSEA.
Our impression is that evolution and conservation based
measures, like fitCons, may not be appropriate choice to
score functional noncoding variants, as the regulatory ele-
ments are often lineage/species-specific (34). We then com-
puted the integrative scores for all training variants as the
weighted sum of different functional scores (rescaled val-
ues) where the scores appeared to follow a lognormal dis-
tribution (mean of 0.028 and standard deviation of 2.211)
with a long tail in the direction of positive values (Figure
2B). This distribution could then be used to infer the statis-
tical significance for all queried variants. We also compared
the integrative scores amongst different feature types using
the Ensembl Regulatory Build annotation, which revealed
that variants in promoter regions had the highest scores, fol-
lowed by those in promoter flanking regions and enhancers
(Supplementary Figure S2).

Benchmark of IW-Scoring and comparison with other meth-
ods

Using three independent validation sets, we assessed the
performance of IW-Scoring against other methods in differ-
entiating pathogenic/functional noncoding variants from
benign/non-functional ones.

ClinVar pathogenic and benign noncoding variants. We se-
lected noncoding single nucleotide variants (SNV) from
the ClinVar database, including 3′/5′ UTR, intergenic up-
stream / downstream, intronic, and synonymous coding
variants, resulting in in total 769 pathogenic SNVs (true
positives) and 11 173 benign SNVs as control (true neg-
atives). As shown in the average receiver operating char-
acteristic (ROC) curves when comparing all 11 individ-
ual functional scores (Figure 3A), ReMM, Eigen and
FATHMM noncoding gave the best performances in dif-
ferentiating pathogenic from benign variants with the area
under the curve (AUC) values ranging 0.76–0.78 (Supple-
mentary Table S2). The performances of DeepSEA and

http://www.ebi.ac.uk/gwas/home
http://snp-nexus.org/IW-Scoring
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Figure 2. Correlations between 11 functional scores and the distribution of integrative scores of 712 259 noncoding variants in the training set. (A) Corre-
lation matrix of 11 functional scores based on variants in the training set. (B) Distribution of integrative scores based on 11 scoring systems for all variants
in the training set. The mean and standard deviation were shown. Mean and median values were indicated by the blue and green lines, respectively.

CADD were the next best with AUC of 0.72, whereas fit-
Cons and GWAVA unmatched classifiers performed poorly
(AUC = 0.58 and 0.62, respectively). We also performed the
Wilcoxon rank-sum tests to compare functional scores be-
tween pathogenic and benign noncoding variants for each
scoring system. Although the overall results were highly sig-
nificant for all methods, P values from the tests were the
most significant for ReMM (P = 1.5 × 10−149), FATHMM
noncoding (P = 2.9 × 10−121) and Eigen (P = 2.5 × 10−114),
while P values for fitCons (P = 6.0 × 10−11) and GWAVA
unmatched (P = 7.3 × 10−13) were the least significant, con-
sistent with the AUC results.

We next calculated IW-Scoring values for all ClinVar
pathogenic and benign noncoding variants. The AUC
for the integrative scores was 0.78 (95% CI: 0.77–0.80),
marginally higher than that of the best performing score
above, ReMM (Figure 3B). P value from the Wilcoxon
rank-sum test was also the lowest for the IW-scores (P =
1.1 × 10−151). We also simply added up all 11 individual
scores as the ‘sum-up’ scores, and the AUC for this was
0.78 (95% CI: 0.76–0.79), almost on a par with the weighted
scores. As fitCons performed the worst out of all meth-
ods, we excluded fitCons from the training set and recal-
culated weights for all the remaining scores, followed by
the calculation of IW-scores for all selected ClinVar non-
coding variants. The AUC for this set of integrative scores
to distinguish pathogenic from benign variants was 0.80
(95% CI: 0.78–0.81), the highest of all scores (Figure 3B).
This best performance was also supported by the most sig-
nificant P value derived from the Wilcoxon rank-sum test
(P = 1.5 × 10−165) (Figure 3C; Supplementary Table S2).
Furthermore, we also computed the significance P-values
by comparing IW-scores with the lognormal distribution
of those derived from the training set for selected Clin-

Var pathogenic and benign noncoding variants. Overall, P-
values for pathogenic variants were much more significant
than those for benign variants (combined P-value using
Wilkinson’s method (15), P = 0.0003 for pathogenic vari-
ants and P = 0.15 for benign variants) (Figure 3D). Within
a queried variant set, IW-scores and associated P-values
could be further used to rank and prioritise variants. It is
worth noting that the performance of IW-Scoring did not
improve when we excluded other methods with poor perfor-
mances (e.g. GWAVA unmatched) or just used the best per-
forming methods only (e.g. ReMM, Eigen and FATHMM
noncoding). As shown in the distribution of scores across all
tools for pathogenic and benign variants (Supplementary
Figure S3), IW-score (excluding fitCons) is close to taking
the maximum of individual scores, increasing the specificity
greatly. It is also important to note that IW-Scoring, along
with ReMM and DeepSEA, resolved 100% of the selected
ClinVar variants, with CADD and FATHMM noncoding
scoring 98% variants, while three methods had scores for
<90% selected variants, GWAVA (89%), Eigen-PC (86%)
and FunSeq2 (only 55%) (Supplementary Table S2).

We also benchmarked variant distinguishing perfor-
mances between IW-Scoring and LINSIGHT (35), a very
recent noncoding variant scoring method based on the ex-
isting INSIGHT-fitCons evolutionary conservation frame-
work but with vastly improved prediction power. Our re-
sults show that IW-Scoring excluding fitCons produced
marginally better results than LINSIGHT (AUC = 0.79)
(Figure 3B), but LINSIGHT only resolved 55% of all tested
ClinVar noncoding variants (Supplementary Table S2).

GWAS significant noncoding SNPs. The second validation
test data set we used was the noncoding trait-associated
SNPs from the National Human Genome Research Insti-
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Figure 3. Comparison of the performances of different functional scores with IW-Scoring using the ClinVar pathogenic and benign noncoding variants.
(A) ROC curves of IW-Scoring and 11 individual functional scores with AUC values noted, measuring the accuracy to differentiate pathogenic and benign
variants. (B) AUC values for IW-Scoring and selected individual scores to differentiate pathogenic and benign variants. 95% CI bars were also shown. (C)
Violin plots of integrative scores (without fitCons) for ClinVar pathogenic and benign variants. (D) Boxplot of P-values associated with integrative scores
(without fitCons) for pathogenic and benign variants.

tute (NHGRI)-EBI GWAS Catalog. We identified 19,797
GWAS significant noncoding SNPs, consisting of inter-
genic, intronic, synonymous and regulatory region vari-
ants. For negative ‘non-functional’ variants, we randomly
selected more than twice the number of 1000 Genomes
intergenic and intronic SNPs with minor allele frequency
(MAF) > 5% in the population (n = 45 808). In general,
the performances of all methods were much poorer for
this data set when compared to ClinVar data set. This is
probably because most of these GWAS significant SNPs
are not truly causal, but in linkage disequilibrium (LD)
with the genuine causal ones, which consisted of only 5%
of all GWAS catalogued SNPs (36). The AUCs for IW-
Scoring and GWAVA unmatched classifiers were very com-
parable (0.591 and 0.595, respectively), producing the best
results of all (Figure 4A). Eigen-PC, DeepSEA, FunSeq2,
GWAVA TSS and Eigen were the next best (AUC range
0.580–0.589), while ReMM and CADD performed rela-
tively poorly (AUC, 0.533 and 0.536, respectively). FitCons
appeared to be inadequate in handling this set of SNP
data with AUC below 0.500 (Figure 4A; Supplementary
Table S3). Thus, we excluded fitCons from the integrative
scores. In contrast with the ClinVar analysis, this exclu-

sion did not improve the discriminating power of the in-
tegrative scores (AUC = 0.590) (Figure 4A). When com-
paring the P values from the Wilcoxon rank-sum test be-
tween GWAS significant and non-functional variants, the
integrative scores led to the highest significance (P = 3.7 ×
10−301) along with GWAVA unmatched, followed by Eigen-
PC, DeepSEA, FunSeq2, GWAVA TSS and Eigen (Sup-
plementary Table S3). Again, IW-Scoring was informative
for all selected 65 605 variants, with ReMM, DeepSEA,
FATHMM noncoding, FunSeq2 and CADD all scoring
>95% variants. Eigen-PC was the only score system that
had scores for <90% variants (89%) (Supplementary Ta-
ble S3). Note that AUC for LINSIGHT (0.575) was sig-
nificantly lower than that for IW-Scoring, and higher than
that for FATHMM noncoding (Figure 4A). Different from
the results for ClinVar variants, LINSIGHT managed to re-
solve over 99% of all tested variants in this set.

Noncoding cancer mutations from COSMIC. Next, we
compared the different scoring systems to determine their
ability to differentiate potentially functional from non-
functional noncoding cancer mutations in the COSMIC
database (32). As GWAVA only scores known SNPs, we
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Figure 4. Comparison of the performances of different functional scores using the GWAS and COSMIC noncoding data sets. (A) AUC values for IW-
Scoring and individual scores in the ability to differentiate between GWAS and randomly selected 1000G noncoding SNPs. 95% CI bars were also shown.
(B) AUC values for IW-Scoring and individual scores in the ability to differentiate COSMIC recurrent from non-recurrent noncoding mutations. (C) Violin
plots of functional scores between recurrent and non-recurrent noncoding mutations for CADD, integrative scores (six scores) and ReMM.

omitted all three GWAVA scores from this test. Since the
large-scale discovery of true functional noncoding muta-
tions is still very much lacking, for potential ‘functional’
ones, we identified all COSMIC noncoding mutations that
had been identified in more than two samples and were also
absent or present in <1% of samples in the 1000 Genome
Project and NHLBI GO Exome Sequencing Project (ESP)
data sets, restricting our analysis to 68 969 noncoding mu-
tations. We further limited this set of mutations to those
within the annotated regulatory regions only from EN-
CODE, Epigenome Roadmap and Ensembl Regulatory
Build, leading to 34,813 potentially functional mutations
as true positives. For the control set, we randomly selected
∼4 million COSMIC non-recurrent noncoding mutations,
and identified those with MAF larger than 1% in the 1000
Genome data set. We further excluded mutations within the
annotated regulatory regions, leading to 57 866 noncoding
mutations as the non-functional control. The AUC was the
highest for ReMM (0.64), followed by FATHMM noncod-
ing (0.62), Eigen-PC (0.60) and IW-Scoring of eight scor-
ing systems (0.60) (Figure 4B; Supplementary Table S4).
CADD and DeepSEA appeared to perform the poorest
in differentiating the selected recurrent from non-recurrent
noncoding mutations, with AUC < 0.55. Thus, we excluded
these two functional scores from IW-Scoring, and the new
integrative scores based on the six remaining scoring sys-
tems significantly improved the discriminating power with
an AUC of 0.63, which was only marginally lower than
that for the best performing method, ReMM (Figure 4B;
Supplementary Table S4). In general, recurrent noncod-
ing mutations within the regulatory regions had signifi-
cantly higher functional scores on average than their non-

recurrent counterpart for all scoring systems. The extent of
this difference was the highest for ReMM and IW-Scoring
compared to others (Figure 4C; Supplementary Table S4).
Again, Eigen and Eigen-PC resolved the lowest number of
selected COSMIC variants. Note that IW-Scoring combin-
ing six functional scores also outperformed evolutionary
conservation LINSIGHT framework (AUC = 0.61) in dif-
ferentiating recurrent from non-recurrent noncoding muta-
tions (Figure 4B; Supplementary Table S4).

In summary of the benchmark results across three data
sets, the performance of IW-Scoring was stable and ranked
consistently among the best performing methods. However,
the performances of other methods appeared to vary greatly
among data types (Supplementary Table S5).

IW-Scoring usage and workflows

To further assist end-users to apply IW-Scoring to annotate
and score their queried variants, here we discuss the stan-
dard usage of our framework. We have also developed a
useful single web portal where scores from IW-Scoring and
all other methods were available for query. IW-Scoring con-
tains separate workflows for scoring known and novel vari-
ants. Furthermore, based on the detailed evaluation of IW-
Scoring performance on the test data sets (Figures 3 and 4),
each workflow is designed to provide two sets of scores. For
known variants, we provide two IW-scores with the associ-
ated P-values: IW-score (K11) that aggregates scores from
11 functional scoring systems including fitCons, and IW-
score (K10) that excludes fitCons scores. This approach is
useful for ranking and narrowing down variants indicated
in GWAS and QTL studies, as well as rare known vari-
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ants in hereditary diseases. As GWAVA only scores known
variants, the workflow for novel variants excludes GWAVA
scores from the aggregate calculation and provides two in-
tegrative scores: IW-score (N8) that aggregates scores from
the other eight scoring systems, and IW-score (N6) that fur-
ther excludes CADD and DeepSEA scores. This workflow
is preferred for variants identified in cancer and other so-
matic diseases. In situations where users do not know which
options to choose, they can use both workflows to gener-
ate IW-scores. The percentage of queried variants that are
scored by GWAVA can further guide users in interpreting
which IW-scores would be more reliable.

Application of IW-Scoring to study noncoding variants from
human data sets

Having assessed the performance of IW-Scoring and other
available functional scores in a range of test data sets, next
we aimed to use our scoring system to evaluate key noncod-
ing variants derived from association mapping, eQTL and
cancer studies.

Disease SNPs near consensus motifs. We first assessed the
functional significance for known disease-associated vari-
ants that fall near consensus motifs of transcription fac-
tor binding sites. We used candidate causal variants gen-
erated from Farh et al. (36), where transcription and cis-
regulatory elements annotations for primary immune cells
generated from Epigenome Roadmap Project were used and
integrated. In this study, Farh et al. investigated the effects
of disease SNPs in altering TF binding, and identified a no-
table AP-1 binding motif-disrupting SNP rs17293632 asso-
ciated with Crohn’s disease. We extracted all nearby known
variants, within 5 kb up- and downstream of rs17293632 (n
= 187), and calculated the IW-scores for them. Our results
show that IW-score (K10) for the causal SNP rs17293632
is the highest (score = 9.48, P = 7.32 × 10−13) among
all the SNPs investigated (Figure 5A). rs17293632 is lo-
cated within an intron of SMAD3, a region enriched for
H3K4me1, H3K27ac, DNase I and TF ChIP-seq peaks,
also with a higher degree of sequence conservation (Fig-
ure 5A). The assessment of IW-scores further highlighted
three additional SNPs with functional potential in this re-
gion, rs28514342 (5.47, P = 0.006), rs12324077 (4.98, P =
0.012) and rs193193326 (4.50, P = 0.020), which were all
within 5 kb from the disease-associated rs17293632, thus
likely to be in the same linkage disequilibrium (LD) block.

We also compared the performances of IW-Scoring and
other methods in differentiating rs17293632 from nearby
non-associated SNPs (Supplementary Figure S4). Al-
though the majority of the methods prioritized rs17293632
as the highest causal SNP, the average difference in func-
tional impact scores between rs17293632 and all nearby
background SNPs was maximized in IW-scores (K11 and
K10), along with DeepSEA and FunSeq2 (Figure 5A).
The differentiating performances and scoring differences
of GWAVA (all three scores) along with ReMM and fit-
Cons were poor for this case. FitCons and GWAVA un-
matched scores failed to produce significant differences be-
tween rs17293632 and the nearby known SNPs (Figure 5A).

Disease SNPs with gene regulatory effects. We also as-
sessed the functional significance for disease SNPs with
gene regulatory effects. Combining epigenome data and a
data set mapping variants in peripheral blood gene expres-
sion, Farh et al. identified two eQTL SNPs in the IKZF3
locus with independent effects on IKZF3 expression. Based
on the GWAS and eQTL significance, rs12946510 is associ-
ated with decreased IKZF3 expression and increased multi-
ple sclerosis (MS) risk, while rs907091 is associated with in-
creased expression but with no association with MS risk. In-
terestingly, IW-score (K10) for the causal SNP rs12946510
is high (5.35, P = 0.007), whereas the IW-score for the eQTL
SNP rs907091 with no disease effect is not significant (–
0.105, P = 0.525), in line with the scores for all nearby non-
functional SNPs (Figure 5B). These results indicated that
IW-scores are probably more sensitive to disease causative
effects linked with phenotypic differences, rather than gene
expression differences of nearby targeted genes. Therefore,
by combining IW-scores and gene expression differences, we
could further pinpoint those SNPs with both disease associ-
ation and gene regulatory effects. IKZF3 3’ downstream re-
gion is enriched for H3K27ac, DNase I peaks and TF bind-
ing sites; therefore, many variants in this region appeared to
have higher IW-scores compared to those in other regions
(Figure 5B).

When comparing the differentiating results between IW-
Scoring and all other methods for these two SNPs, IW-
scores (K11 and K10) were the best performing ones, pro-
ducing the largest difference in functional scores between
causal and non-causal variants, and clearly prioritizing
the disease associated SNP rs12946510 (Figure 5B). Al-
though other methods (e.g. Eigen-PC and Eigen) also pri-
oritized the causal SNP correctly, the score difference be-
tween causal and non-causal SNPs was much smaller com-
pared to that of IW-scores. In particular, fitCons, GWAVA
TSS, FunSeq2, GWAVA unmatched and region scores all
failed to differentiate and prioritise rs12946510 from the
non-associated counterpart rs907091 (Figure 5B).

Recurrent functional noncoding mutations in cancer. We as-
sessed the functional significance of recurrent noncoding
mutations identified in cancer, using TERT promoter mu-
tations as the representative example. First, we identified
somatic mutations curated in COSMIC and Huang et al.
(37), as well as the known SNPs in this region, including
∼15 kb up- and downstream flanking regions. In order to
generate comparable scores between somatic mutations and
known SNPs, we used the IW-Scoring novel variant work-
flow for both. Intriguingly, higher IW-scores were observed
around the promoter region marked by strong DNase I
signal and conserved TF binding sites, and gradually de-
creased to non-functional levels moving away from the pro-
moter (Figure 5C). For the two most frequently recurrent
mutations, chr5:1 295 228 C>T and chr5:1 295 250 C>T
(reverse strand, hg19), the integrative scores IW-score (N8)
were 4.25 (P = 0.021) and 4.09 (P = 0.025), respectively.
The scores for other less frequent mutations, chr5:1 295
228 C>A and chr5:1 295 161 A>C (reverse strand), were
3.12 (P = 0.068) and 3.47 (P = 0.048). Encouragingly, this
provided further confirmation of the accuracy and validity
of our integrative approach for somatic variants. Interest-
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Figure 5. Application of IW-Scoring in scoring variants identified in GWAS, eQTL and cancer studies. (A) Disease SNPs near consensus motifs in SMAD3
intronic region. Integrative scores (IW-score K10) were shown for all nearby known SNPs along with the disease-associated candidates. The score of
rs17293632 was compared to the mean value and standard deviation of all nearby known variants, and P-value was derived and shown for each method.
The mean difference in scores between rs17293632 and all other nearby SNPs after rescaling (mean of zero and SD of one, for the convenience of cross-
comparison) for each method was also shown at the right panel. (B) Disease SNPs with gene regulatory effects nearly 3’ UTR of IKZF3. Integrative scores
(IW-score K10) were shown for 1,000 randomly selected known SNPs nearby, and two GWAS and eQTL candidates, circled with red and blue circles,
respectively. Functional scores of rs12946510 and rs907091 for all methods were also extracted and compared, rescaled to fit into the rescaled distribution
of the training set. The plots were shown at the right panel. (C) TERT promoter mutations and known SNPs in the region, with their integrative scores
calculated. Black and grey dots denote somatic mutations and SNPs, respectively. Functional scores between TERT promoter (defined by the DNase I
mark of the GM12878 cell line) and non-promoter regions were compared and P-values were derived at the right panel.

ingly, we also identified a silent mutation within a DNase
I hypersensitive site, chr5:1 282 594 C>A (reverse strand),
c.1719C>A, p.L573L, with a score of 3.88 (P = 0.032) with
strong pathogenic potential (Figure 5C).

We also assessed the correlation between predicted func-
tional scores and positions in relation to TERT promoter
for all noncoding variants and mutations in and near TERT
for all other methods (Supplementary Figure S5). Although

most of the methods demonstrated reduced scores with the
distance away from the promoter, IW-scores (N8 and N6)
provided the most informative and reliable correlation and
the largest difference of scores for noncoding variants be-
tween TERT promoter and non-promoter regions based
on the Wilcoxon rank-sum test (Figure 5C; Supplementary
Figure S6). This further consolidates our conviction that the
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performance of IW-Scoring is effective and stable regardless
of data types, unlike other methods.

Landscape of noncoding mutations in follicular lymphoma.
We next used IW-Scoring to investigate the landscape of
noncoding mutations in cancer. We chose to examine WGS
datasets in a haematological cancer, follicular lymphoma
(FL) where the landscape of the coding mutations has been
extensively studied recently (11,38–40). More than 90% of
the tumours have mutations in genes encoding epigenetic
regulators suggests that these tumours rely on epigenetic
deregulation (41). However, little is known about the reper-
toire of non-coding mutations in FL.

First we used a cohort of 14 WGS cancer samples from
six FL patients from our previous study (11). We cal-
culated IW-scores for all 93 078 unique noncoding so-
matic mutations. As expected, mutations in defined reg-
ulatory regions generally had significantly higher scores
than those in non-regulatory regions (Wilcoxon test, P =
3.53 × 10−49, for Ensembl Regulatory Build; P = 2.71 ×
10−89 for ENCODE annotation). For example, within En-
sembl Regulatory Build defined regions, mutations in pro-
moters had the highest IW-scores on average, followed by
those in open chromatin and promoter flanking regions,
while mutations in TF binding sites had relatively low
scores (Figure 6A). This is largely reflected by the occur-
rence of mutations in various ENCODE annotated regions
(Supplementary Figure S7). Among different ENCODE
TF binding regions, mutations within POU2F2, BCLAF1,
FOXA2, Ini1 and Brg1 binding sites seemed to have the
highest pathogenic potential on average, further emphasiz-
ing the importance of B-cell specific activator (POU2F2,
also known as Oct-2) (mean IW-score, –0.47, compared
to the mean of –1.15 for all mutations in TF binding
regions), Bcl-2 associated protein (BCLAF1) (mean IW-
score, –0.63), and chromatin modification and remodelling
(FOXA2, Ini1/SMARCB1 and Brg1/SMARCA4, mean
IW-score of –0.70, –0.83 and –0.85, respectively) in FL de-
velopment (Figure 6B; Supplementary Table S6).

By using a P < 0.05 significance threshold for the IW-
scores, this allowed the identification and refinement of the
list of non-coding mutations to 1375 (∼1.5%) variants (Sup-
plementary Table S7). To highlight recurrent functional mu-
tations in regulatory regions, we next examined the density
of these candidate functional mutations and searched for
regions where functional mutations were clustered within
short inter-distance of each other (<10 kb). We identified
11 such clusters with enriched functional mutations (n ≥ 3)
(Supplementary Table S7). Many of these are known tar-
gets of aberrant somatic hypermutations (aSHM) in B-cell
lymphomas, such as BCL2, BCL6, BCL7A, CXCR4 and
PAX5 (42,43). However, many recurrent functional muta-
tions were also found outside the typical targeted regions
of aSHM for these genes, i.e. within ∼2k bp downstream
of transcription start sites (TSS). To what extent these mu-
tations were associated with aSHM remains unclear.

We were able to validate these mutation clusters in an ex-
tended cohort of 36 FL patients derived from the ICGC
Malignant Lymphoma Project where whole-genome sim-
ple somatic mutations (SSM) were available (ICGC Data
Portal Release 23). Nine out of 11 clusters (82%) were also

significantly enriched for functional mutations in this larger
cohort (Supplementary Table S8), although many more mu-
tational clusters enriched for functional mutations were dis-
covered (data not shown). For example, we found in total 64
functional mutations in PAX5 5’ upstream/UTR and first
intron, and only seven of these were within the usual aSHM
target regions (Supplementary Table S9). The majority of
these mutations were within PAX5 first intron that contains
an active promoter characterized by a DNase I hypersen-
sitive site with strong H3K4me3 and H3K27ac signals in a
lymphoblastoid B cell line GM12878 (Figure 6C). Interest-
ingly, we further identified two clusters of mutations ∼300–
330 kb upstream of the PAX gene. One cluster was within
ZCCHC7 intronic region with five potential functional mu-
tations, and the other cluster of 24 mutations was located at
the 3’ downstream region of ZCCHC7 with the most signif-
icant mutation as chr9:3 7371 916 G>A (3.29, P = 0.058)
(Figure 6C and D). Both regions seemed to contain active
enhancers marked by DNase I, H3K4me1 and H3K27ac
peaks profiled in GM12878 (Figure 6C). The latter clus-
ter has been previously described in several B-cell related
malignancies, indicating this region served as a PAX5 en-
hancer (9). By comparing FL mutations and their IW-scores
among these three regions, our results further suggest that
mutations in PAX5 promoter were commonly more dele-
terious than those in enhancers (Wilcoxon test, P = 4.64
× 10−4, for promoter versus enhancer region 2) (Figure
6C and D). Future studies are required to further under-
stand the gene expression regulatory effect and mechanism
of these mutations in those regions.

In light of other methods likely offering similar obser-
vations, we evaluated the functional scores against coor-
dinates for all identified noncoding mutations in chromo-
some 9, for ReMM and FATHMM noncoding (selected for
their decent performances in differentiating potential func-
tional from non-functional noncoding cancer mutations),
as well as for CADD (selected for its relatively poor per-
formance) (Supplementary Figure S8). The results demon-
strated that clusters enriched for mutations with high func-
tional scores were not clearly evident based on those meth-
ods, compared to the result from IW-Scoring (Figure 6C).
We further quantified the differences in scores of noncoding
mutations between PAX5 promoter and first intron, and the
rest of chromosome 9, and IW-Scoring produced the largest
difference in scores between the two categories (Wilcoxon
test, P = 1.32 × 10−61), followed by FATHMM noncoding,
ReMM and CADD (Supplementary Figure S8), demon-
strating the higher detection power of IW-Scoring identi-
fying potential functional mutation clusters in the genome.

DISCUSSION

The noncoding regions of the genome harbour a substantial
fraction of total DNA sequence variations, and the func-
tional contribution of these variants to complex traits, ge-
netic diseases and tumourigenesis is still very poorly de-
fined. Only a small fraction is believed to be truly func-
tional and pathogenic. How to identify and prioritise these
key functional driver events has become critical in the era
of routine whole genome surveys and studies. We describe
here an integrative approach, IW-Scoring, for noncoding
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Figure 6. Integrative scores IW-score (N8) of somatic mutations in follicular lymphoma. (A) Integrative scores for mutations within Ensembl Regulatory
Build annotated regions. (B) Integrative scores for mutations within top mutated TF binding sites. The mean value was shown by the red dotted line. (C)
Recurrent mutations in PAX5 locus. Integrative scores were shown for all noncoding mutations in whole chromosome 9 first. PAX5 locus was further
zoomed in with three mutations clusters further identified, PAX5 promoter, putative enhance regions 1 and 2. Mutations from ICGC FL samples were
shown by solid green dots, while mutations from Okosun et al. were shown by solid light blue dots. Signals of epigenetic histone marks were for GM12878
cell line. (D) Integrative scores for mutations across three PAX5 associated regions in boxplots. Red dotted line indicated the level of P = 0.05.

variant annotation and functional scoring. We showed that
our approach outperforms most other functional scoring
methods in differentiating functional/pathogenic from non-
functional/benign variants in a variety of independent data
sets: (i) validated clinically relevant variants, (ii) GWAS sig-
nificant variants and (iii) recurrent COSMIC cancer mu-
tations. We also demonstrated its powerful application in
identifying functional mutations in FL noncoding genome.

Our integrative approach has several advantages when
compared to other available methods. First, it starts with
embedded gene and regulatory annotation modules, allow-
ing for easy access to the gene centric information and over-
lapping regulatory elements from a wide range of anno-
tation resources, as well as available functional scores for
queried variants. Second, it uses an unsupervised spectral
approach to assign weights to available functional scores,
and integrates these into a weighted sum. This approach
yields the final scores and functional calls based on mul-
tiple evidences with a level of significance also derived to

further improve the prioritisation. Thirdly, the nature of
this integration meant that the performance of IW-scores
was stable and ranked consistently among the best perform-
ing methods across all test variant data types. The perfor-
mances of other methods, however, appeared to vary among
data types, therefore, caution is needed to interpret these
scores when different data types are studied and compared.
In contrast with other tools, IW-Scoring benefitted by scor-
ing the highest proportion of variants in all data sets via
imputations based on interdependencies between variables.
These advantages ensure that our method is versatile and
can be applied to various studies from known SNPs, to rare
germline variants and to somatic novel mutations.

A common feature of IW-Scoring and many other
methods (e.g. CADD, Eigen and GWAVA) is that
disease/phenotype and tissue/cell specificities with
their related annotations were all combined into a single
functional score. This technique significantly reduced the
dimensionality of scoring output without having to produce
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scores for each tissue and phenotype, as well as for different
chromatin/histone marks, making the data post-processing
much easier and more straightforward especially for a large
number of variants. However, IW-Scoring still allows for
the functional variants associated with specific tissues,
cells and features to be identified through the regulatory
annotation module. This is currently lacking in many other
methods, although some algorithms have chosen to focus
on the identification of disease/tissue specific risk variants
recently (22,44). Compared to most available methods,
we believe our approach is optimally balanced between
summarized and detailed evidences for the diverse range of
users.

The approach we have adopted here is similar to Eigen
and Eigen-PC, however our framework is specifically de-
signed for noncoding variants, incorporating most recent
and a wider range of noncoding annotation and func-
tional features/scores. Via a vigorous weight learning pro-
cess, strong weights were assigned to the block of closely
correlated scores (Eigen, DeepSEA, FATHMM noncod-
ing, ReMM and CADD). We have demonstrated that the
derived IW-scores provide consistently high-quality perfor-
mance across various data sets where the individual con-
stituent scores fail to do so, demonstrating the accuracy,
validity and stability of our approach. Such ensemble based
approach with different estimated weights has been shown
to perform better than any single component classifier (26),
and has been widely used in various bioinformatics prob-
lems (44,45). The weighted integration technique based on
the eigendecomposition of the covariance matrix also offers
the flexibility to incorporate any other correlated genome-
wide functional scores/features into the integrative scores.
Many other integration approaches for continuous output
can also be explored. For example, decision tree and ran-
dom forest have been shown to perform well to predict the
functional consequences of non-synonymous variants com-
bining various scores (46). Their performances on noncod-
ing variants in comparison to our IW-Scoring approach are
yet to be seen. However, as suggested by our results, incor-
porating more annotation scoring systems does not neces-
sarily improve the performance of integrative scores, espe-
cially if these additional scoring systems are very much un-
correlated with the existing ones. Integrative scores can be
mostly useful when combined with additional layers of ge-
netic data, such as gene expression profiling by RNA-seq, to
look for differential expression of target genes. This combi-
national approach has recently been applied to identify re-
current noncoding regulatory mutations in pancreatic can-
cer (47). We are aware that IW-Scoring and all other algo-
rithms are useful and powerful tools to prioritise mutations
and associated genes from hundreds of thousands of non-
coding mutations. However, these findings still need to be
validated in the wet-lab to determine their true oncogenic
potential.

In this age of WGS and diagnostics, we believe IW-
Scoring offers great versatility in discovering noncoding dis-
ease causal variants. With the collection of a cohort of sam-
ples with the same disease or phenotype, one can iden-
tify recurrently mutated noncoding regions enriched for
functional mutations predicted by IW-Scoring, which could
drive the disease initiation and development, with or with-

out the presence of coding drivers. This will certainly trigger
the new wave of noncoding biomarker discovery. We pro-
pose that IW-Scoring can play an integral part in the search
for significant regulatory variations in complex traits and
diseases.
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