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Our group developed two biological applications, Biblio-MetReS and Homol-MetReS, accessing the same database of organisms
with annotated genes. Biblio-MetReS is a data-mining application that facilitates the reconstruction of molecular networks based
on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes,
to properly identify both the individual proteins involved in the process(es) of interest and their function. It also enables the sets of
proteins involved in the process(es) in different organisms to be compared directly. The efficiency of these biological applications is
directly related to the design of the shared database. We classified and analyzed the different kinds of access to the database. Based
on this study, we tried to adjust and tune the configurable parameters of the database server to reach the best performance of the
communication data link to/from the database system. Different database technologies were analyzed. We started the study with a
public relational SQL database, MySQL. Then, the same database was implemented by a MapReduce-based database named HBase.
The results indicated that the standard configuration of MySQL gives an acceptable performance for low or medium size databases.
Nevertheless, tuning database parameters can greatly improve the performance and lead to very competitive runtimes.

1. Introduction

Our group developed two biological applications, Biblio-
MetReS  (http://metres.udl.cat/index.php/2-uncategorised/
13-biblio-metres-paper-published) [1] and Homol-MetReS
(http://homolmetres.udl.cat/prod/) [2], respectively, acro-
nyms of Bibliomet- and Homolog-based metabolic network
reconstruction server. These applications rely on an in-
house relational database [2]. The database was built by
matching the KEGG (http://www.genome.jp/kegg/) gene
names to their NCBI (http://www.ncbi.nlm.nih.gov) names
and synonyms. The database includes full gene names and
synonyms tables for approximately 1,500 organisms with
fully sequenced genomes. The database was implemented
using MySQL (http://www.mysql.com/), one of the most
popular open-source databases, mainly managed with SQL
(structured query language), a standard programming

language designed for managing data held in a relational
database.

Biblio-MetReS is a user-friendly tool implemented in
Java, which does on-the-fly analyses of the full text of
scientific documents that are freely available on the Internet,
and uses that analysis for the automated reconstruction of
gene/protein networks. Such an on-the-fly approach leads to
high runtimes, because the analysis of scientific documents
is very resource consuming. To circumvent this high run-
time, preprocessing of the documents [3-5] is typically used.
Preprocessing of texts/documents consists of analyzing the
documents offline, extracting the relevant information, and
creating an adequate table to contain that information inside
the database.

Homol-MetReS is a web application that permits simul-
taneous large-scale reannotation, functional integration, and
automatic comparisons of metabolic networks on a multiple
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full genome scale. It automates comparisons that would
otherwise be done almost manually, for example, using
PathBlast [6], KEGG [7], or MetaCYC [8]. The functionalities
in Homol-MetReS that have the highest needs for processing
power and database access optimization are the comparison
between fully sequenced genomes and the classification of
large numbers of homologous proteins according to specific
biological process categories. As in the case of Biblio-MetReS,
database access is a bottleneck in the runtime of the server.

The system architecture (a data-center) hosting both
applications presents a single access point for the computing
needs of the users being served, like the ones described in [9,
10]. As stated in [11], most current data-center infrastructures
consist of services that are offered by a web browser anywhere
in the world. A service request sent by a user is transmitted
to a server running a web service, which is associated with
an SLA (service-level agreement). An SLA is a contract that a
customer and a service provider have negotiated and agreed
to. In such a contract, the customer only pays for the resources
and services used, according to negotiated QoS (quality of
service) requirements at a given price. Job runtime is perhaps
the most important performance index in a cloud computing
context [12], and it largely depends on the database system.

The requirement to perform compute-intensive analytics
on (semi)structured bulk datasets has pushed SQL-like cen-
tralized databases to their limits [13]. This fact, along with
the highly parallel nature of these tasks, has led to the devel-
opment of horizontal scalable, distributed nonrelational data
stores, called NoSQL (http://nosql-databases.org/) databases.
Google’s Bigtable [14], Amazon’s Dynamo [15], Facebook’s
Cassandra [16], LinkedIn’s Voldemort [17], and HBase are a
representative sample of such systems.

In favor of scalability and high availability, NoSQL sys-
tems serve a dual purpose: they can efficiently store and
index NoSQL sets arbitrarily while enabling a large number
of concurrent user requests. Among other reasons, NoSQL
systems may not be the optimal solution when data-centers
have no need to deal with large datasets. However, in order to
provide the overall system with a negotiated SLA, optimizing
the current SQL database system may be a challenge. In
(18], the authors dealt with the challenge of optimizing a
MySQL database for novelty detection, which is the process
of singling out novel information from a given set of text
documents, in order to optimize the database tables for
up to 10 million records. In [19], the authors also used
database optimization and SQL tuning in order to achieve
better performance levels for health monitoring systems. In
this paper, in addition to these proposals we propose the
application of preprocessing in order to guarantee a negotiated
SLA in web-based systems with a MySQL biological database.
Preprocessing of texts/documents consists of analyzing the
documents offline, creating a database where the interaction
information for each document is stored and can be quickly
accessed [3-5]. Response time to client requests is shorter
because it just depends on the elapsed time in accessing the
database.

In the Results section of the present work, comparisons
between optimized and nonoptimized MySQL databases
were performed. We found that performing specific
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TABLE 1: Main differences between Biblio-MetReS (B), iHOP (i),
String (S), and Laitor (L).
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optimization of some database server parameters led to a
significant performance increase without having to migrate
the entire system to a different approach, like a NoSQL
system. We show this by comparing the MySQL data-
base with a NoSQL one, implemented with MapReduce
(http://research.google.com/archive/mapreduce.html)  and
HBase.

2. Related Work and Motivation

There are important tools in the literature for the automatic
identification of cooccurrence of genes/proteins from Inter-
net to assist in the reconstruction of molecular circuits by
inferring the gene/protein entities and their cooccurrence,
such as Laitor [3], iHOP [4], String [5], and Biblio-MetReS,
released in March 2011 [1] by our group.

Table 1 summarizes the main differences between these
tools. Biblio-MetReS is the only tool able to search for
gene cooccurrences in sentences, paragraphs, and the overall
document. This allows Biblio-MetReS to better assess the
interactions between a pair of genes. In addition to the
cooccurrence statistic methods, Biblio-MetReS also provides
the P value associated with cooccurrence, reducing the
likelihood of false negatives or false positives when looking
for genes/proteins in the texts/documents.

The main drawback of Biblio-MetReS is the elevated
elapsed time processing the documents downloaded from
Internet to extract gene/protein interactions. iHOP, String,
and others (see Table 1 from [1] and references therein)
are quicker in responding to client requests because they
implement the preprocessing of information (documents)
technique offline. Bilblio-MetReS also incorporates that, but
all work is performed online. In this paper we deal with
the database efficiency by tuning the MySQL parameters and
incorporating the preprocessing.

Most current data-centers architecture consists of ser-
vices that are offered and delivered through a service center
that can be accessed from a web browser anywhere in the
world (Figure 1).

In the Biblio-MetReS application, a desktop application
acts as a client of the web service. In the case of Homol-
MetReS, the client is the web browser itself. Requests deliv-
ered to the data-center are associated with an SLA. Our work
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is focused on guaranteeing the SLA (service-level agreement).
On this occasion, the database performance was the main
focus of our research. In doing so, we propose some solutions
to provide a high level of QoS, thus determining a means to
fix the SLA in accessing the database for the particular case of
our subject applications.

The use of model organisms for research is a hallmark
of scientific endeavour (e.g., [20]). The accumulation of fully
sequenced genomes [21] and the advances in comparative
genomics [22, 23] and computational systems biology [24]
allow us to develop strategies that compare the protein or
gene networks involved in the process of interest in order to
establish similarities. These similarities can be used to predict,
to a first approximation, the accuracy of extrapolating the
behavior of specific processes between organisms. Testing
this idea requires a thorough analysis of the molecular circuits
in a well-known model organism and a comparison of these
circuits to those in other living beings. In fact, a gap exists
in systematically establishing how close different organisms
are with respect to a given process, before choosing one of
them as a model for studying that process [2]. Provided the
Biblio-MetReS database of fully sequenced genomes, Homol-
MetReS implements innovative functionality in such research
field. Thus, as in the case of Biblio-MetReS, we are interested
in providing Homol-MetReS with SLA guarantees.

3. Biblio-MetReS

Biblio-MetReS is a Java client-server application which needs
a database in order to manage biological data efficiently,
and more specifically information about organisms,
genes/proteins, the processes in which the genes are
involved, and the relationships between all these entities.
Biblio-MetReS searches Internet for documents with data-
mining techniques and operates as follows. Users must
register to login in to Biblio-MetReS. After login, users must
choose an organism to work with. The application loads all
the genes in the database for the selected organism. Once
this is loaded, the user is presented with the main window
(Figure 2), where s/he can select data sources as well as
genes to search for in those data sources across Internet. The
data sources are as follows: General Search Engines (Yahoo
(http://yahoo.com/), Live Search (http://www.bing.com/),
Ask (http://www.ask.com/), Answers (http://www.answers
.com/topic/statistics), Altheweb (http://altheweb.com/), and
Lycos (http://www.lycos.com/)), literature databases (Med-
line (http://www.nlm.nih.gov), PubMed (http://www.ncbi
.nlm.nih.gov/pubmed), Biomed Central (http://www.biom-
edcentral.com/), PLoS (http://www.plos.org/), Bentham
(http://www.benthampapers.ucl.ac.uk/), Highwire (http://
highwire.stanford.edu/), SCOPUS (http://www.scopus.com/),

and Elsevier (http://www.elsevier.com/)), and journals (Na-
ture (http://www.nature.com/), Science (http://www.science-
mag.org/), Cell (http://www.cell.com/), PNAS (http://www
.pnas.org/), and BMC Systems Biology (http://www.biomed-
central.com/bmcsystbiol)).

Once the choices are made and the search has started,
the tool identifies and downloads the documents from the
selected data sources that contain the gene names used in
the search query. Documents may be in HTML, PDE or
ASCII formats. Each document is then parsed to identify all
other genes and gene synonyms (that were retrieved from
the database) from the organism of interest that are also
mentioned in the documents. A similar workflow is used to
analyze biological processes in the documents. Entity cooc-
currence patterns are analyzed and represented in several
ways. For example, cooccurrence patterns can be represented
using a 2D graph of the gene cooccurrence. The whole
analysis process is done using a mixed strategy that combines
newly found documents on the fly with preprocessed infor-
mation retrieved from the database if a document has been
found in previous searches. Basically, the performance of the
tool depends on its effectiveness in processing documents and
the online access to the database. Reference [1] provides the
details on how cooccurrence is analyzed in documents.

4. Homol-MetReS

Proper functional identification of genes on a full genome
scale for all organisms with fully sequenced genomes is
only possible by transferring the functional information that
is available for proteins from other organisms with fully
sequenced genomes. Homol-MetReS is a web application that
permits the functional information of a model organism to be
extrapolated to other organisms where that process or circuit
is hard to study or there is insufficient information.

Homol-MetReS provides three main functionalities. First,
users can (re)annotate the function of each of the proteins in
the proteome of an organism of interest with respect to many
different classifications of biological functions. Although
interesting, this functionality is independent of database
performance, as the process is done via the analysis of
preexisting text files and the creation of new ones to store
transferred information.

Second, users can automatically compare the sequences
of the individual proteins from their proteome of interest
to those of the full proteome from more than 1,200 other
organisms that have fully sequenced and annotated genomes.
Functional information from one organism can be trans-
ferred to another by the user, based on sequence homology.
The process for doing so is illustrated in Figure 3. One of
the bottlenecks in the computational process underlying this
functionality is access to the database. This is so because
many requests must be sent (in parallel when possible) to the
database in order to compare the full proteome of an arbitrary
number of organisms. These comparisons between organisms
must be done within a reasonable time. We deal with the
operations related to this kind of comparisons in the Results
section. The database operations used in this functionality
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FIGURE 2: Bilio-MetReS. Main window.

FIGURE 3: Homol-MetReS.

can mainly be classified as follows: (a) operations retrieving
sequence information for the complete proteomes of any
set of organisms contained in the database, (b) operations
comparing information data of multiple organisms, and (c)
operations to create temporary tables that contain informa-
tion about the comparative analysis of the proteins between
the organisms being analyzed. Third, the tables created in
(c) are then used to represent heat maps that allow users to
visually compare the similarity between the sets of proteins
involved in specific biological processes in all the organisms
being analyzed. Neither database access nor I/O is limiting
for this functionality. Thus, its performance analysis was
discarded in the Results section (Section 6).

5. Database Optimization

In order to optimize the interaction between Biblio- and
Homol-MetReS and the database server, we designed a
cloud architecture made up of 3 virtual machines. The
first two contain the Biblio- and Homol-MetReS servers,
respectively. The third virtual machine contains the database
server. These three virtual machines were implemented
using the OpenStack (http://www.openstack.org/software)
framework. OpenStack is able to create as many virtual
machines as needed in a dynamic manner. However, the
main reason for choosing OpenStack was its freeware
availability.

We now present the shared database used by Biblio-
MetReS and Homol-MetReS, highlighting the most important

tables. Then, an analysis of the improvements and optimiza-
tion done on the database parameters is performed.

Figure 4 shows a basic schema of the current relational
database, implemented by means of MySQL.

According to the relational database definition, our
database consists of a collection of tables organized according
to the relational model with defined relationships with each
other. There are the tables corresponding to organisms,
genes, processes, and documents. These tables contain the
information most frequently accessed by the applications
and, therefore, the ones we focus on. Note that, in Figure 4,
the tables corresponding to each of the different organisms
present in the database are not explicitly listed. This is
because there is one table for each defined organism and
there are currently more than 1,200 different organisms in the
database. In addition, although genes are organism-specific,
biological processes are general and apply to all organisms.
The relationship between genes and biological processes is
also stored in organism-specific tables.

Also, there are other secondary tables in Figure 4 that
are defined in order to support the applications. These tables
include, for example, such user information as the country
and login name. These tables are not considered, as they lack
interest for our current purposes.

Table 2 shows an example of one of the tables that
contains information about the proteins coded for in the
genome of a fully sequenced organism contained in the
central MySQL database. All such tables follow the same
field structure, as shown in Table 2, where XXX _ORG_ID
corresponds to the prefix of the organism.
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TABLE 2: Generic organism table description. TaBLE 3: Generic process.

Field Type Null Key  Default Field Type Null Key Default
XXX _isoform_id char(20) NO PRI Processes varchar(100) NO PRI NULL
XXX _protein_id char(20) YES NULL Dockey int(11) NO PRI 0
XXX _gene_id char(20) YES NULL organism varchar(100) NO PRI NULL
XXX org.id char(20) YES NULL individualOC int(10) NO NULL
XXX kegg-id char(30) YES NULL typeProcess int(10) NO PRI NULL
isoform_no int(5) YES MUL NULL
XXX _gene_symbol varchar(50) YES NULL
XXX_prot-name varchar(500)  YES NULL from one of the organisms with fully sequenced genomes cur-
XXX-prot_synonym  varchar(500)  YES NULL rently included in the central database (e.g., Saccharomyces
ncbi_ref_id char(25) YES NULL cerevisiae, Homo sapiens, Escherichia coli K12 MG1655, or
gi_number char(25) YES NULL Drosophila melanogaster). The XXX _isoform_id column iden-
orf_start int(5) YES NULL tifies which isoform of the gene is considered if the gene codes
orf_end int(5) YES NULL for more than one such isoform. The status column indicates
isoform_sequence blob YES NULL whether the isoform has been experimentally confirmed or
isoform_length int(5) YES NULL only predicted through bioinformatics analysis.
isoform.mol_wt int(8) YES NULL Table 4 summarizes the genes table (Genestable), which
comments char(200) YES NULL stores information. regarding the. genes. tha.t are found by
R char(50) YES NULL Biblio-MetReS during the analysis of scientific documents.

Table 3 shows the description of the process table (Pro-
cessestable) identified by Biblio-MetReS during the analysis
of scientific documents. This table is general and stores
information about biological processes associated with genes

The processes, typeofprocesses, and organism columns connect
the information found in the literature to the relevant
organism and process contained in the database, while the
other columns identify the document in which the process
was identified.

Table 5 shows the description of the documents table
(Doctable), which stores statistical information about the
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TABLE 4: Generic genes table description.
Field Type Null Key Default
Genes varchar(100) NO PRI
Dockey int(11) NO PRI 0
organism varchar(100) NO PRI
individualOC int(10) NO NULL

TABLE 5: Document.

Field Type Null Key Default
Dockey int(11) NO PRI NULL
title text YES NULL
authors text NO NULL
url text YES NULL
doi varchar(80) YES NULL
pmcid varchar(80) YES NULL
pmid varchar(80) YES NULL
benthamid varchar(80) YES NULL
cellid varchar(80) YES NULL
bmcid varchar(80) YES NULL
nSentence int(10) NO NULL
nParagraph int(10) NO NULL

documents found by Biblio-MetReS in Internet in the data-
mining search phase. The Dockey field is the unique ID
of each document in the database. All other fields have
information required to calculate mutual information for
gene/protein cooccurrence in documents.

We now present the optimization we performed to
the database. To facilitate understanding, the modifications
related to Biblio- and Homol-MetReS are explained separately
in the following sections.

5.1 Biblio-MetReS Optimization. Incoming documents
found on the Internet are individually analyzed by Biblio-
MetReS. Once a document has been analyzed, the results
are stored in the database using the tables described
above, among others. Subsequent searches that identify
the same document will retrieve the preprocessed statistics
stored in the database, thus avoiding repeating the time-
consuming on-the-fly analysis. This process is known as
preprocessing.

By implementing preprocessing we greatly decrease the
time spent by the Biblio-MetReS application repeating the
processing of documents. In contrast, much access to the
database must be performed. On average, the database
is accessed twice per new document to store statistical
information for future use and 5 times per document to
retrieve the statistical information from preprocessed doc-
uments when this information is required in subsequent
searches.

Improvements in the database have little effect on the
performance of Biblio-MetReS, as we will see in the Results
section (Section 6). Because of this, we present and discuss
the improvements made in database access in the following
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section, Homol-MetReS Optimization, where the gains are
more significant.

5.2. Homol-MetReS Optimization. Several configuration pa-
rameters were adjusted to improve the database performance
relating to the Homol-MetReS functionality. These parameters
mainly affect the query caching done by the database server,
hence improving query requests that will be executed more
than once in a relatively short period of time.

These performance parameters were obtained using the
MySQLTuner (https://github.com/major/MySQLTuner-perl)
tool, which is a Perl (http://www.perl.org/) script that allows
us to review a MySQL database and perform adjustments in
order to increase performance and stability.

The main running parameters related to optimiz-
ing database performance can be obtained by executing
the MySQLTuner benchmark, and they are as follows:
query_cache_size, table_open_cache, key_buffer_size, join_buff-
er_size, query_cache_limit, and innodb_buffer_pool_size.
The query_cache_size parameter determines the amount
of memory allocated to caching query results. If set to 0,
it disables the query cache. The optimal value depends
on the system architecture. If set too high, it can provoke
lock contention issues. The table_open_cache parameter
determines the number of open tables for all threads.
The number of file descriptors required by the MySQL
server increases with table_open_cache. The key_buffer_size
parameter determines the size of the buffer used for index
blocks. The key buffer is also known as the key cache. The
value of this variable indicates the amount of memory
requested. Internally, the server allocates as much memory
as possible up to this amount. It increases the value to obtain
better index handling for all reads and multiple writes. The
join_buffer_size parameter determines the size of each join
buffer. The query_cache_limit parameter determines the
maximum size of individual query results that can be cached.

6. Results

In this section, we present a set of results obtained from opti-
mizing the application database. As data grows, there may be
a drop in performance for access to the database shared by
Biblio-MetReS and Homol-MetReS. That implies an increase
in runtime and, therefore, a fall in QoS. In multiple situations,
this entails noncompliance with the SLA agreement.

The current database server is located in a virtual ma-
chine, running on top of an HP Proliant DL165 G7 node with
two Opteron 6,274 processors at 2.2 GHz with 16 cores each
192 GB of DDR3 RAM and 4.5 TB. The resources assigned to
the virtual machine are 4 cores, 32 GB of RAM, and 525 GB
of disk.

6.1. Biblio-MetReS Optimization. To measure the effect of
implementing a preprocessing strategy we carried out a set of
experiments where the execution runtimes of Biblio-MetReS
with and without the strategy were measured.

In the experiment, all the literature database sources
were selected simultaneously for the search (see literature
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FBAI and CDCI9 genes involved in the Glycolysis process of the
Homo sapiens organism.

databases column in Figure 2). Figure 5 only shows the results
obtained for the Homo sapiens organism. The PGMI, FBAI,
and CDCI9 genes involved in the Glycolysis process in Homo
sapiens were used in the search. In the “without preprocessing”
case, the runtime computed the search after the database
had previously been emptied. During the procedure in doing
the search, the database was updated with the statistical
information of the documents found. Next, the same search
was repeated (with the database containing almost all the
documents). Thus, this operation shows the results “with
preprocessing” activated. A large number of similar searches
were done and the performance results were qualitatively
similar (data not shown).

In general, performance gains, defined as the execution
ratio between preprocessing and nonpreprocessing, ranged
between 5 and 11, with an average improvement of 10. So,
with preprocessing enabled, Biblio-MetReS was about 10 times
faster than without preprocessing.

Figure 6 shows the response time evolution when retriev-
ing different numbers of documents from the Doctable
database table (from 1 to 700 documents). It can be seen
how response time increased slightly from 0 to 0.06 seconds
when accessing larger numbers of documents. However,
these variations were not very significant as runtime was
always below 0.1 seconds, and therefore it had no real impact
on overall performance. So we can affirm that preprocessing
is a consistent improvement in the performance of Biblio-
MetReS in the potential high-variability access to a data-
center like the one where this tool was hosted.

6.2. Optimal Database Parameters. Several performance tests
based on the current database usage were carried out in
order to determine the optimal values for the database.
Table 6 shows a summary of the parameters thoroughly
described in Section 5, containing their default values. Their
optimal value (also in Table 6) was determined by using the
MySQLTuner (https://github.com/major/MySQLTuner-perl)
benchmark. Optimal values are referenced as “Optimized”
and the default ones as “Default.”

We were interested in how runtime was affected by
optimizing the values of the parameter set shown in Table 6 in

0.1

0.08

0.06

Time (s)

0.04
0.02 e
0 [] (W

100 300 5

1 10

00 700
Documents

FIGURE 6: Runtime evolution when selecting from 1 to 700 simulta-
neous documents from the Doctable table.

the database server. In order to do the different optimization
experiments, the current database server located in a virtual
machine was replicated. Consequently, both database servers
were located in their respective virtual machines, running
on the HP Proliant DL165 G7 machine presented at the
beginning of Results section.

Optimization of the parameters was done taking into
account the database size, the maximum number of related
tables in a search query in the database, and the length of
tables and fields involved in it. These considerations led to the
parameter limits shown in Table 6.

First, we determined the size of the database (6 GBytes),
the main tables, and the fields to be used in the performance
experiments. As a first optimization experiment we asked
the biological question: “Is the distribution of protein
sizes similar between organisms?” To answer this, we
accessed each organism table and retrieved the size of the
sequence of each annotated protein in its fully sequenced
genome. The results are shown in Figure7. We can see
that the statistical distribution of protein sizes between
organisms is qualitatively similar and has a long tail. This
operation created a dataset that allowed us to compare
and build histograms for the sizes of all proteins between
two organisms, YPN and SPM. YPN is the acronym for
Yersinia pestis Nepal516 (biovar Antiqua) and SPM stands
for Streptococcus pyogenes MGAS8232 (serotype MIS).
The ypn ISOFORM_MAIN and spm_ISOFORM_MAIN
tables had 4,094 and 1,839 entries, respectively. However,
the average protein size is organism-specific and increases
rapidly with the number of proteins contained in the genome.

The SQL query used in this occasion was the following:

SELECT OCTET_LENGTH (isoform_sequence)
AS sequence,

COUNT(x*) AS frequency

FROM hsa ISOFORM_MAIN

GROUP BY OCTET_LENGTH
(isoform sequence);
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(a) from Section 4 (retrieving information of the different
organisms).

Experiments with the different parameter values of
Table 6 were performed. Figure 8 summarizes the results
of optimizing the values of some of the parameters from
Table 6. The x-axis represents different combinations of
the parameters and the y-axis measures the runtimes (in
seconds). In the first column, all the parameters were set to
their default values. In the other columns, the enumerated
parameters were set to their optimal value, and the remaining
parameters were unchanged from their default values. This
way the impact of each parameter on the performance could
be independently measured. The sensitivity of runtime to
changes in each parameter was, in increasing order of impor-
tance, table_open_cache, join_buffer_size, query_cache_limit,
and key_buffer_size. Generally speaking, it can be said that the
use of the optimal parameter values had a great impact on the
overall system performance. The query_cache_size parameter
is discussed separately below.

F1GURE 8: Runtimes for default and optimal values of the database
server parameters. TOC: the table_open_cache, KBS: key_buffer_size,
JBS: join_buffer_size, and QCL: query_cache_limit.

We have also manually analyzed the effect of changing
parameter values on the performance of the system to
confirm the good behavior of the automated optimization
done using MySQLTuner. In general, we observed that further
increases in the parameter values led to no improvement
in the performance of the applications. As an example, the
effect of query_cache_size on the performance is shown in
Figure 9. In this case, the evolution of the runtime by ranging
query_cache_size between the default and the optimal values
is represented. We see that increasing the query cache size
beyond 64 MB had no effect on runtime, which justifies the
choice of 64 MB as the optimal value by the MySQLTuner
benchmark. However, this optimal value should account for
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FIGURE 9: Runtime evolution when modifying the query_cache_size
parameter.

database usage in order to avoid wasting resources. The SQL
query used on this occasion was the following:

SELECT COUNT(*) FROM ypn_ISOFORM_MAIN
LEFT JOIN (spm_ISOFORM_MAIN) ON (

ypn_ISOFORM_MAIN. isoform_sequence =
spm_ISOFORM_MAIN. isoform_sequence);

The type of this database operation is (b) from Section 4
(comparing information data of multiple organisms).

We conclude this section by remarking that the SQL
queries took on average 0.1441 seconds using the default
parameter values and 0.002 seconds using the optimized
parameter values. This shows that our proposed optimization
can lead to improvements in runtime of approximately three
orders of magnitude.

6.3. Stressing the Database. Next, the optimization effect
was measured by running a representative set of queries in
Bilio- and Homol-MetReS using the default parameter values.
We then ran the same set of queries using the optimized
parameter values. Figure 10 shows the runtime (in seconds)
of the following SQL query used this time:

SELECT % FROM Processestable;

The type of this database operation is (a) from Section 4
(retrieving information about the different organisms). This
operation determines the number of individual biological
processes defined in the database. Table Processestable had
10,933 entries. It is a very common query when selecting
the process in the Biblio-MetReS application in the query
definition, done before choosing the genes/proteins (see
Figure 2).

Figure 10 shows that runtimes using the optimized
parameter values were slightly faster than when using the
default parameter. However, the performance improvement
was small, and this could hardly be appreciated by the final
user when operating the applications.

Further experimentation was done with more com-
plex queries to measure performance differences of both
database’s server configurations when more complex sets of

0.1
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Time (s)
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FIGURE 10: Runtime of a simple query.
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FIGURE 11: Runtime querying the Homo sapiens table.

operations are performed. Figure 11 shows an example of such
a search. Here, we can see a higher performance difference
between the runtime of a query accessing a single table when
using the optimized and the default parameter values.

In this case, the SQL query was the following:

SELECT isoform_sequence FROM
hsa ISOFORM_MAIN;

The type of this database operation is (a) from Section 4
(retrieving information about the different organisms).

This experiment selected the sequences of all the pro-
teins in the proteome of the Homo sapiens organism. The
hsa_ISOFORM_MAIN table used had a total length of 25,796
entries. This is a common type of search in the database per-
formed by users in both the Biblio- and Homol-MetReS appli-
cations. This operation is especially critical in the Homol-
MetReS application, because similarities between genes are
found by comparing the sequences retrieved from such a table
with all the organisms. These comparisons give additional
information or suggestions about organisms that lack this
gene data. On this occasion, the gains of the optimized
database compared to the nonoptimized one were quite
significant (see Figure 11). We performed similar systematic
searches in accessing other organism tables and the results
were qualitatively similar to those shown in Figure 11 (data
not shown).

As stated above, Homol-MetReS compares sequences of
protein between two organisms. To do so, the application
needs to simultaneously access two tables. An example of the
effect of parameter optimization on such operations is shown
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FIGURE 12: Runtime of a left join using 2 tables.

in Figure 12. This figure shows the runtime of a query that
accesses two tables simultaneously. This operation creates a
dataset that allows us to compare and build histograms for the
sizes of all proteins between two organisms, ZMA and XLA.
ZMA is the acronym for Zea mays (maize) and XLA stands
for Xenopus laevis (African clawed frog).

The SQL query from Figure 12 is the following:

SELECT zma_ISOFORM_MAIN.
isoform_sequence FROM zma ISOFORM_MAIN

LEFT JOIN (xla_ISOFORM_MAIN) ON (
zma_ISOFORM_MAIN . isoform_sequence =
xla_ISOFORM_MAIN . isoform sequence);

The type of this database operation is (b) from Section 4
(comparing information data between multiple organisms).

The tables used in this experiment, zma_ISOFORM._
MAIN and xla_ISOFORM,_MAIN, contain 17,821 and 10,681
entries, respectively. The SQL operation is a LEFTJOIN,
which is very expensive computationally speaking. This
experiment shows how, even in extreme stressed scenarios,
the optimization of parameters leads to a strong performance
improvement that decreases runtime by more than 50%.
These results illustrate that our approach to optimizing
database access parameters can lead to significant improve-
ments in performance when running operations in Homol-
MetReS and, to a lesser degree, in Biblio-MetReS.

6.4. Searching with Preprocessing. Typically, the most time-
consuming operations in Biblio-MetReS do not involve
database access. Rather, they have to do with on-the-fly
analysis of text in scientific documents. As stated above,
improving the performance of the application for these
operations was done by implementing a preprocessing strat-
egy, as seen in Section 3. Nevertheless, as the number
of preprocessed documents contained in the application’s
database increases, the effect of optimizing database access
on the performance of the application will be increasingly
significant. Therefore, it is important to estimate what the
effect of optimizing database access might be in the future.
To do so, we perform Biblio-MetReS-related searches using
default versus optimized parameter values. The searches
are done by selecting all defined biological processes from
the table Processpairstable, which contains 33,731 entries.
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FIGURE 13: Runtime of a search query to the Processpairstable table.

Figure 13 shows that optimization of parameter values leads
to significant improvements of about 30% in the runtime of
this type of search.

The SQL query from Figure 13 is the following:

SELECT * FROM Processpairstable;

The type of this database operation is (a) from Section 4
(retrieving information about the different organisms).

6.5. MySQL versus MapReduce. We were interested in quan-
tifying the effect of using an optimized regular relational
database implemented in MySQL versus the utilization of a
NoSQL database, when the amount of available data is below
the terabyte limit. To do so, we compared the performance
of a set of searches run against our optimized database
versus the same set of searches run against equivalent
NoSQL implementation of our database. This implementation
was done with MapReduce and HBase. MapReduce is a
programming model for processing large datasets with a
parallel, distributed algorithm on a supercomputing system
(i.e., large cluster system). HBase is thought for random
and realtime read/write access to large amount of data. The
new database was mapped in another virtual machine with
the same computational resources as the original database.
Consequently, the two database servers were located in their
respective virtual machines, running on the HP Proliant
DL165 G7 machine presented at the beginning of Results
section.

In the experiment, the Processestable table was accessed
to compare the response times of a commonly used query on
both systems. Figure 14 shows the runtime (in seconds) of the
following SQL query used this time:

SELECT % FROM Processestable;

In summary, MySQL obtained the best performance.
MySQL was one order of magnitude faster than MapRe-
duce/HBase (averaged 60% faster). This justifies the selection
of a typical database like MySQL as the technology for
implementing the database server.

7. Discussion

The optimization experiments presented have been widely
tested in order to determine the parameter values that
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FIGURE 14: MySQL and MapReduce runtimes when accessing the
Processestable table.

maximize application performance. We present the main
results and relate gains obtained with the kind of operations
performed by Biblio-MetReS and Homol-MetReS. The optimal
tunable values for the search in the database server were
found empirically. The application whose performance was
more extensively improved was Homol-MetReS.

A special search affecting the preprocessing was analyzed.
Preprocessing reduced 10 times the Biblio-MetReS runtime.
In addition, our proposed optimization can lead to improve-
ments of three orders of magnitude. Even in extreme stressed
scenarios, the optimization decreased runtime by more than
50%.

We also compared the performance of the database
server (implemented as a relational MySQL database) against
the same database implemented with the MapReduce in
order to verify that the database was not large enough to
apply NoSQL technologies. MySQL averaged 60% faster than
MapReduce/HBase.

8. Conclusions

In this paper, we analyzed and optimized the performance
of two biological cloud applications. We presented one
main solution to achieve this improvement that consisted
of analyzing and optimizing the database access parameters
used by both applications in order to obtain a better level of
performance. We successfully analyzed the current database
demands and determined the parameters that could provide
a greater positive impact on the system performance. The
results show a significant improvement in the runtime of
some of the most common and significant queries in a MySQL
database, done by the biological applications presented,
Biblio- and Homol-MetReS. The fully sequenced database
used needs sizes of one or more orders of magnitude bigger
than the one used by the biological applications used in this
work to justify its use in NoSQL technologies. Preprocessing
can further extend the use of SQL databases. Although
this process was effective enough to obtain an acceptable
performance, a NoSQL approach may be needed in the future
as the database grows both in concurrent queries and size as
more fully sequenced organism genomes are added.
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