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Abstract

Background

Synthetic lethality describes a relationship between two genes where single loss of either

gene does not trigger significant impact on cell viability, but simultaneous loss of both gene

functions results in lethality. Targeting synthetic lethal interactions with drug combinations

promises increased efficacy in tumor therapy.

Materials and methods

We established a set of synthetic lethal interactions using publicly available data from yeast

screens which were mapped to their respective human orthologs using information from

orthology databases. This set of experimental synthetic lethal interactions was comple-

mented by a set of predicted synthetic lethal interactions based on a set of protein meta-

data like e.g. molecular pathway assignment. Based on the combined set, we evaluated

drug combinations used in late stage clinical development (clinical phase III and IV trials) or

already in clinical use for ovarian cancer with respect to their effect on synthetic lethal inter-

actions. We furthermore identified a set of drug combinations currently not being tested in

late stage ovarian cancer clinical trials that however have impact on synthetic lethal interac-

tions thus being worth of further investigations regarding their therapeutic potential in ovar-

ian cancer.

Results

Twelve of the tested drug combinations addressed a synthetic lethal interaction with the

anti-VEGF inhibitor bevacizumab in combination with paclitaxel being the most studied drug

combination addressing the synthetic lethal pair between VEGFA and BCL2. The set of 84

predicted drug combinations for example holds the combination of the PARP inhibitor ola-

parib and paclitaxel, which showed efficacy in phase II clinical studies.
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Conclusion

A set of drug combinations currently not tested in late stage ovarian cancer clinical trials was

identified having impact on synthetic lethal interactions thus being worth of further investiga-

tions regarding their therapeutic potential in ovarian cancer.

Introduction

The concept of synthetic lethality (synlet) describes a relationship between two genes where

single loss of either gene does not trigger significant impact on cell viability, but simultaneous

loss of both gene functions results in lethality [1][2]. The term was introduced by Dobzhansky

in 1946 studying mutations in fruit flies and identifying that specific combinations of muta-

tions resulted in a lethal phenotype [3].

For cancer therapy, this principle can be utilized in different ways. One option is to address

a tumor bearing a non-functional protein (either via mutation or downregulation) with a drug

targeting a gene product being in a synthetic lethal interaction with the non-functional gene

product [4]. Such approach promises improving safety in case the drug is not addressing a

vital target mechanism. Another option is to use drug combinations where each drug is target-

ing a tumor-specific entity which in combination are synthetic lethal [5]. This latter approach

promises increased efficacy and was also discussed in other disease areas like multiple sclerosis

or lupus nephritis [6].

A prominent representative of using a synthetic lethal interaction in cancer therapy is the

relationship between BRCA and PARP [7], [8]. Both are involved in DNA repair, with the

BRCA pathway addressing repair of double-strand DNA breaks and PARP of single-strand

DNA breaks A germline mutation in BRCA increases the risk for a variety of different cancers,

but most notably breast and ovarian cancer, and accounts for more than 10% of all ovarian

cancers [9]. In case of a second mutation or more likely chromosomal loss, the function of the

BRCA pathway is lost and tumor develops. By pharmacologically targeting the synthetic lethal

partner, PARP, the cytotoxic effect mainly occurs in tumor cells with hampered BRCA func-

tion, hence selectively eliminating tumor cells and exhibiting limited cytotoxic effect in non-

cancerous tissue due to its still functional BRCA [10]. Only recently this concept has been

proven ultimately successful in the clinic for the first time, with the FDA approval of the PARP

inhibitor Olaparib as monotherapy in patients with deleterious germline BRCA-mutated

advanced ovarian cancer treated with three or more lines of chemotherapy [11].

In the alternative scenario the synergy of two drugs is used for triggering a synthetic lethal

interaction regardless of a specific mutation. According to the concept, if two drugs whose

respective targets are in a synthetic lethal interaction are given at the same time the effect

should be more than additive. Several such synergistic combinations are in clinical testing to

date, e.g. the combination of Rucaparib and Temozolomide [12].

Research groups have started to exploit the concept of synthetic lethality in order to search

for novel drug targets or drug combinations [4], [6].

We in this work systematically analyze drug combinations currently in clinical use or inves-

tigated in late stage phase III or IV clinical trials on ovarian cancer for a potential synthetic

lethal background utilizing a consolidated set of synthetic lethal interactions derived from

model organisms and from computational inference. Next to deciphering potential synthetic

lethality in such given combinations we propose additional drug combinations potentially

exhibiting a synthetic lethal mechanism of action for ovarian cancer.
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Materials and methods

Cancer drug combinations in ovarian cancer

Drug combinations in ovarian cancer were extracted from clinical guidelines and late stage

clinical trials. Clinical trial information was retrieved from ClinicalTrials.gov (https://

clinicaltrials.gov/) using the search term “ovarian cancer” and limiting the search results to

clinical trials in phase III and IV, i.e. for drug combinations where first evidence on efficacy

from phase II trials was already available. Clinical trials holding one of the following terms in

the condition field were further considered as relevant: “ovarian cancer”, “ovarian neoplasms”,

“neoplasm of ovary”, “ovarian carcinoma”, “ovarian epithelial cancer”, “neoplasms, ovarian”.

This step was necessary to exclude trials for example studying hypertension in a cohort of

ovarian cancer patients. We further focused on clinical trials of type intervention with at least

one drug combination consisting of drugs and/or biologicals. Drug names were mapped to

their respective entries in DrugBank (version 4.3) where applicable [https://www.drugbank.ca/

]. We in this manuscript from now on refer to this set of drugs and drug combinations as

“tested drugs” and “tested drug combinations” respectively.

Cancer drug targets

Drug target information was retrieved from DrugBank version 4.3 using the downloadable

XML file as well as from the Therapeutic Target Database [http://bidd.nus.edu.sg/group/cjttd/

] for those without target information in DrugBank using the TTD web search functionality.

The list of drug and drug targets was further completed with drug targets identified as reported

in literature for the set of drugs not represented in either of the two drug databases.

Synthetic lethal interactions

Genetic interactions for Saccharomyces cerevisiae were retrieved from the supplementary

website published by Costanzo et al. available at http://boonelab.ccbr.utoronto.ca/supplement/

costanzo2009/ [13]. In particular the supplementary data file S1 was downloaded for identify-

ing negative genetic interactions (i.e. synthetic lethal protein coding gene pairs) setting the cut-

offs for p-value and genetic interaction scores to 0.05 and -0.08, respectively. Human orthologs

of yeast genes were retrieved utilizing roundup [14], oma browser [15], ensembl [16], inpara-

noid [17] and HomoloGene [18]. Endpoints of yeast synthetic lethal interactions were mapped

to their respective human genes, including them in further analysis only if at least one such

orthologous gene could be identified. This procedure provided 204,124 synthetic lethal inter-

actions between 3,714 human genes.

For further expanding the set of synthetic lethal interactions retrieved from yeast a compu-

tational inference method was applied. Mapping given synthetic lethal interactions on nodes

(identifying protein coding genes) of a hybrid human protein coding gene interaction network

[19] resulted in 194,565 interactions involving 3,530 network nodes. Given ortholog informa-

tion from yeast allowing labelling of interaction pairs in the network enriched with node anno-

tation including KEGG [20] and PANTHER pathway identifiers [21], Gene Ontology

assignment according to PIR slim [22] (pruned to ancestor terms), disease association accord-

ing to NCBI MeSH terms (http://www.ncbi.nlm.nih.gov/mesh), and drug association accord-

ing to DrugBank (target, enzyme, transporter and carrier associations) was used to build a

classifier allowing inference of putative synthetic lethal interactions. 186 gene nodes being

member of synthetic lethal interactions met this high level of annotation (i.e. data from all

mentioned sources was available). Next to annotation, topological properties were added for

describing synthetic lethal interactions, including degree centrality, betweenness centrality,
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closeness centrality and local clustering coefficient, complemented by shortest paths. For

learning a model on synthetic lethal interactions, Dice’s coefficients for annotation of end-

points, the mean of node-based graph-statistics and the shortest path between synthetic lethal

nodes were used. Non-synthetic lethal interactions were sampled at random between highly-

annotated end points not taking part in any known synthetic lethal interaction, thereby achiev-

ing a balanced set of instances holding 1,049 synthetic lethal-positive and an equivalent num-

ber of synthetic lethal-negative cases. This set was split into a balanced training set (2/3 of all

instances) and a test set (1/3 of all instances). Using WEKA [http://www.cs.waikato.ac.nz/ml/

index.html], a Random Forest model [23] was derived on the training set (performing parame-

ter-optimization using 10-fold cross-validation) and validated on the test set. The final model

consisting of 93 trees achieved 76.5% accuracy on the test set (with a precision of 0.77, a recall

of 0.757, a F1-score of 0.774, a specificity of 0.860 and an AUC of 0.757). With this procedure

135,400 synthetic lethal interactions between 1,060 human genes could be predicted. Combin-

ing the synthetic lethal interaction data set derived from yeast ortholog mapping and computa-

tional inference resulted in 4,556 human genes being involved in 339,524 synthetic lethal

interactions.

Evaluation of drug combinations and proposal of new ones

We searched for tested drug combinations addressing a synlet interaction, i.e. synlet interac-

tions were selected where both synlet interactors are direct drug targets of tested drugs being

combined in one of the tested drug combinations. Focus was on synlet pairs where both synlet

interactors are addressed by two different tested drugs with no single drug available targeting

both synlet interactors. All pairwise drug combinations were constructed for evaluation for

tested drug combinations holding more than two drugs.

For proposing novel drug combinations targeting synlet interactions we were looking for

exactly such kind of synlet pairs using the set of individual drugs from the set of tested drugs.

The annotation degree of the respective synlet interaction partners for ovarian cancer was

used in order to rank proposed synlet interactions. Annotation degree was defined as the sum

of resulting publications from a PubMed search for the respective proteins using the gene sym-

bol as well as the gene name in combination with the major MeSH term ovarian neoplasms.

Results and discussion

Cancer drug combinations and addressed drug targets

We in total identified 68 phase III or IV clinical trials on ovarian cancer studying at least one

combination of drugs/biologicals. 95 drug combinations were studied in total in these 68 trials

with 61 unique drug combinations. A schematic representation of the workflow for processing

clinical trial data is given in Fig 1.

The most widely investigated drug combination, tested in 39 clinical trials, consisted of car-

boplatin, a platinum-based drug, and paclitaxel, the current first line therapy in high-grade

serous ovarian cancer [24]. Other combinations already used in clinical practice being tested

in a number of clinical studies center around chemotherapeutics like the combination of car-

boplatin and gemcitabine or the combination of carboplatin and doxorubicin. From the set of

targeted agents the vascular endothelial growth factor A (VEGFA) inhibitor bevacizumab

stands out being investigated primarily in combination with carboplatin and/or paclitaxel

[25], [26]. The map of pairwise drug combinations being investigated in late stage clinical trials

is depicted in Fig 2.

35 of the 43 drugs used in the set of tested drug combinations had at least one protein target

with an average number of 4.5 protein targets per drug. The drug with the largest number of

Synthetic lethality guiding selection of drug combinations in ovarian cancer
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Fig 1. Ovarian cancer clinical trial workflow. Fig 1 depicts an overview on the search strategy to identify relevant

ovarian cancer clinical trials and drug combinations along with numbers of the individual processing steps.

https://doi.org/10.1371/journal.pone.0210859.g001
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protein targets was Glutathione with 37 drug targets assigned followed by valproic acid with a

set of 20 drug targets. Glutathione however rather serves as substrate than as inhibitor for

most of the listed drug targets. Chemotherapeutic agents like e.g. cisplatin, carboplatin, or mel-

phalan on the other hand having solely DNA as target with no direct protein targets available

(drugs with white background in Fig 2) had to be excluded from further analysis as the synlet

interactions are always composed of two protein coding genes. Analysis with respect to

addressing synlet interactions was thus focused on the set of 35 drugs having at least one pro-

tein drug target.

Given drug combinations addressing synthetic lethal pairs

Twelve of the tested drug combinations addressed a synlet interaction as depicted in Fig 3.

Nine of the twelve tested drug combinations involved paclitaxel in combination with either

veliparib, pertuzumab, trastuzumab, bevacizumab, gemcitabine, fosbretabulin, interferone

gamma-1b, cediranib, or nintedanib respectively. Bevacizumab in addition to the combination

with paclitaxel also addressed the synlet pair VEGFA and BCL2 in combination with docetaxel.

The PARP inhibitor olaparib in combination with cediranib addressed the synlet pairs PARP1

and KDR as well as PARP2 and KDR. Drug combination number twelve consisted of valproic

acid and hydralazine, targeting the synlet pair ALDH5A1 and AOC3.

As mentioned before, the widely used platinum-based therapies with cisplatin, carboplatin

or oxaliplatin were not considered in this analysis because of unspecific cross-linking guanine

bases in DNA thus impairing DNA replication with no direct protein drug targets available.

Fig 2. Drug-drug combination map. Fig 2 depicts the pairwise drug-drug combinations extracted from phase III and IV ovarian

cancer clinical trials of the 43 drugs used in these combinations. The edge width corresponds to the number of the studied drug-

drug combination with combinations already used in the clinical setting indicated by a red edge. Drugs having at least one

protein target assigned have a grey background, whereas drugs not directly targeting specific proteins but merely interfering with

DNA are displayed with a white background.

https://doi.org/10.1371/journal.pone.0210859.g002
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Of the twelve synlet interactions addressed by the tested drug combinations BCL2 was

involved in ten being addressed by either paclitaxel or docetaxel. Although not being the main

target of paclitaxel, BCL2 has been shown to be negatively affected by paclitaxel in tumor cell

lines but also in regulatory T cells [27], [28]. The synlet interaction between BCL2 and VEGFA

is of particular interest as the combination of paclitaxel and bevacizumab is a heavily tested

one. VEGFA was previously proposed as predictive marker for mTOR inhibition in the con-

text of high-grade serous ovarian cancer therapy [29]. Based on results from the phase III

ICON7 study, bevacizumab had no effect on overall survival in the whole study population of

newly diagnosed ovarian cancer patients but had a positive effect on overall survival in poor-

prognosis patients [25]. This is another example where a drug’s efficacy only affects a subgroup

of patients thus highlighting the need for molecular markers being capable of stratifying

patients with respect to drug response.

The PARP inhibitor veliparib in combination with paclitaxel was found to address the syn-

let interactions between PARP1 and PARP2 with BCL2 respectively. An interaction on the

molecular level between BCL2 and PARP1 in tumor cell lines was shown by Dutta and col-

leagues thus making this interaction an interesting therapeutic target in cancer [30]. A molecu-

lar link between BCL2 and ERBB2 was also found in breast cancer cell lines making also this

synlet interaction interesting in the context of ovarian cancer treatment [31] with tested drug

Fig 3. Synlet map of known drug combinations. Fig 3 depicts synlet pairs addressed by drug combinations either already approved or in late stage

clinical testing. Color-coded number tags indicate the twelve pairwise drug combinations. Synlet edges are displayed in red with drug target links

shown in grey color. The width of synlet edges corresponds to the number of trials available testing drug combinations addressing the respective synlet

interaction.

https://doi.org/10.1371/journal.pone.0210859.g003
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combinations addressing this synlet pair being trastuzumab and paclitaxel as well as pertuzu-

mab and pacliataxel.

A clinical benefit could be shown for the combination of the epigenetic agents valproic acid

and hydralazine in combination to chemotherapy when tested in a small cohort of tumor

patients by Candelaria and colleagues [32].

Despite the fact that only a small number of tested pairwise drug combinations affect synlet

interactions, these combinations might be of particular interest when assessing the status of

the synlet target genes thus potentially identifying those patients benefitting the most from

these combinations.

Novel proposed drug combinations addressing synthetic lethal pairs

We identified a set of 84 drug combinations currently not tested in phase III or IV trials in the

context of ovarian cancer which address synlet interactions and are thus of interest to be fur-

ther evaluated for the treatment of ovarian cancer. 102 synlet interactions in total are

addressed by the 84 drug combinations, with 17 synlet interactions already addressed by tested

drug combinations and the remaining 85 synlet interactions not addressed so far by tested

drug combinations as depicted in Fig 4.

The following synlet interactions are addressable by six drug combinations each, namely

PARP1 with TUBB, PARP2 with TUBB, as well as KDR with TUBB. Synlet interactions

addressed by five novel drug combinations are BCL2 with TUBB as well as TUBB with

TUBB1. The synlet pairs PARP1 with BCL2 and PARP2 with BCL2 are addressable by three

novel drug combinations in addition to the already tested combination of paclitaxel and veli-

parib which we discussed in the chapter on tested drug combinations. Other synlet interac-

tions already addressed by tested drug combinations with other novel drug combinations

available are among others BCL2 with ERBB2 and RRM1 as well as TUBB1 with IFNGR1 and

IFNGR2. These synlet interactions are depicted with dotted lines in Fig 4 as drug combinations

addressing these synlet interactions do not depict novel mechanisms.

All novel drug combinations targeting synlet interactions are listed in the S1 Table sorted in

descending order based on the sum of publications retrieved for papers annotation with the

major MeSH term ovarian neoplasms for both synlet interaction partners with the top ranked

drug combinations given in Table 1.

The top ranked combinations consisted of the anti-VEGF inhibitor bevacizumab together

with one of the two ERBB2 inhibitors, namely trastuzumab or pertuzumab. This combination

has already been tested in phase 2 clinical trials in the context of breast neoplasms along with

the chemotherapeutic docetaxel among others [33], [34]. Docetaxel in combination with one

of the ERBB2 inhibitors showed up very high in the ranking based on PubMed counts of the

addressed synlet interaction partners.

Due to the fact that ERBB2 alone was reported in 697 publications on ovarian neoplasms

also the synlet interactions to PARP1, PARP2 as well as SPHK1 were ranked very high in the

list, addressed by the ERBB2 inhibitors with either one of the PARP inhibitors olaparib or veli-

parib or with phenoxodiol, the synthetic analog of genistein, targeting the sphingosine kinase

1 (SPHK1). SPHK1 was recently reported to be a therapeutic target of interest in high grade

serous ovarian cancer as could be demonstrated by knock-out experiments in mice [35]. Phe-

noxodiol in combination with carboplatin however did not show evidence for clinical activity

based on data of a phase III study in acquired platinum-resistant ovarian cancer [36].

The PARP inhibitor olaparib in combination with paclitaxel and carboplatin on the other

hand was shown to significantly improve progression-free survival in a phase II clinical study

[37]. The combination of olaparib and paclitaxel addresses the synlet interaction of PARP1

Synthetic lethality guiding selection of drug combinations in ovarian cancer
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and BCL2, also ranked in the top third of synlet interactions in our analysis based on PMID

counts of the two synlet partners.

The tyrosine-kinase inhibitor nintedanib is the most frequent drug in the list of novel drug

combinations due to the fact of the multitude of drug targets addressed by the compound.

Nintedanib is currently being investigated in a phase III trial in combination with paclitaxel

and carboplatin for first line treatment of ovarian cancer [https://clinicaltrials.gov/show/

NCT01015118]. Nintedanib is approved for idiopathic pulmonary fibrosis as well as non-small

cell lung cancer and is tested in a number of trials on various cancer types [38], [39].

One of the more interesting combinations targeting not so well annotated protein in the

context of ovarian cancer is the one between valproic acid in combination with either gemcita-

bine or vinblastine, targeting the synlet interactions of ALDH5A1 with RRM1 and TUBB

respectively. Valproic acid was shown to enhance the cytotoxic effect on gynecologic cancer

cells in combination with an aurora kinase inhibitor [40]. Valproic acid was also reported to

sensitize gemcitabine-induced cytotoxicity in gemcitabine-resistant pancreatic cancer cells

[41].

A limitation of the present study is the lack of experimental validation on identified novel

drug combinations as the focus of this study was on the data integration pipeline with an appli-

cation on established drug combinations in the context of ovarian cancer. In addition, the way

we currently rank novel identified drug combinations based on the sum of available literature

information for the two synthetic lethal gene partners is probably a little biased towards genes

and proteins which in general are better annotated and characterized in scientific literature. A

Fig 4. Synlet map of novel proposed drug combinations. Fig 4. depicts synlet pairs being eligible to be addressed by drug combinations currently not

in clinical use or late stage clinical testing. Each two drugs targeting the two synlet partners can be considered as drug combination. Synlet edges are

displayed in red with drug target links shown in grey color. The width of synlet edges corresponds to the number of drug combinations targeting this

specific synlet interaction. Synlet interactions already addressed by drug combinations in clinical use or late stage testing are indicated by dotted lines.

These drug combinations are composed of those drugs flagged with an asterisk (�) each in combination with paclitaxel always via the path through the

dotted synlet interaction or with a circle (o) for the combination between cediranib and olaparib.

https://doi.org/10.1371/journal.pone.0210859.g004
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Table 1. Synlet interactions addressed by novel drug combinations. The top addressed synlet interactions based on sum of PubMed ID (PMID) counts as well as the

respective novel proposed drug combinations are given in Table 1. Synlet interactions are sorted in descending order based on the sum of PMID counts of the two synlet

interacting partners in the context of ovarian cancer. PMID counts of the two synlet interaction partners are also provided in brackets for synlet partner A and B

respectively.

Drug A Drug B Synlet partner A Synlet partner B PMID counts

Pertuzumab Bevacizumab ERBB2 VEGFA 1262 (695 / 567)

Trastuzumab Bevacizumab ERBB2 VEGFA 1262 (695 / 567)

Pertuzumab Saracatinib ERBB2 SRC 808 (695 / 113)

Pertuzumab Nintedanib ERBB2 SRC 808 (695 / 113)

Trastuzumab Nintedanib ERBB2 SRC 808 (695 / 113)

Trastuzumab Saracatinib ERBB2 SRC 808 (695 / 113)

Pertuzumab Docetaxel ERBB2 BCL2 761 (695 / 66)

Trastuzumab Docetaxel ERBB2 BCL2 761 (695 / 66)

Trastuzumab Nintedanib EGFR SRC 749 (636 / 113)

Trastuzumab Saracatinib EGFR SRC 749 (636 / 113)

Pertuzumab Olaparib ERBB2 PARP1 736 (695 / 41)

Pertuzumab Veliparib ERBB2 PARP1 736 (695 / 41)

Trastuzumab Veliparib ERBB2 PARP1 736 (695 / 41)

Trastuzumab Olaparib ERBB2 PARP1 736 (695 / 41)

Pertuzumab Nintedanib ERBB2 FGFR2 719 (695 / 24)

Trastuzumab Nintedanib ERBB2 FGFR2 719 (695 / 24)

Pertuzumab Nintedanib ERBB2 PDGFB 718 (695 / 23)

Trastuzumab Nintedanib ERBB2 PDGFB 718 (695 / 23)

Pertuzumab Cediranib ERBB2 KDR 717 (695 / 22)

Pertuzumab Nintedanib ERBB2 KDR 717 (695 / 22)

Trastuzumab Cediranib ERBB2 KDR 717 (695 / 22)

Trastuzumab Nintedanib ERBB2 KDR 717 (695 / 22)

Pertuzumab Nintedanib ERBB2 PDGFA 714 (695 / 19)

Trastuzumab Nintedanib ERBB2 PDGFA 714 (695 / 19)

Pertuzumab Nintedanib ERBB2 FGFR1 713 (695 / 18)

Trastuzumab Nintedanib ERBB2 FGFR1 713 (695 / 18)

Pertuzumab Saracatinib ERBB2 ABL1 705 (695 / 10)

Trastuzumab Saracatinib ERBB2 ABL1 705 (695 / 10)

Pertuzumab Nintedanib ERBB2 FGFR3 702 (695 / 7)

Trastuzumab Nintedanib ERBB2 FGFR3 702 (695 / 7)

Pertuzumab Nintedanib ERBB2 LCK 702 (695 / 7)

Trastuzumab Nintedanib ERBB2 LCK 702 (695 / 7)

Pertuzumab Olaparib ERBB2 PARP2 697 (695 / 2)

Pertuzumab Veliparib ERBB2 PARP2 697 (695 / 2)

Trastuzumab Veliparib ERBB2 PARP2 697 (695 / 2)

Trastuzumab Olaparib ERBB2 PARP2 697 (695 / 2)

Pertuzumab Phenoxodiol ERBB2 SPHK1 697 (695 / 2)

Trastuzumab Phenoxodiol ERBB2 SPHK1 697 (695 / 2)

Trastuzumab Nintedanib EGFR FGFR1 654 (636 / 18)

Trastuzumab Nintedanib EGFR LCK 643 (636 / 7)

Vinblastine Paclitaxel JUN BCL2 602 (536 / 66)

Vinblastine Docetaxel JUN BCL2 602 (536 / 66)

Bevacizumab Nintedanib VEGFA PDGFB 590 (567 / 23)

Bevacizumab Nintedanib VEGFA KDR 589 (567 / 22)

Bevacizumab Cediranib VEGFA KDR 589 (567 / 22)

(Continued)

Synthetic lethality guiding selection of drug combinations in ovarian cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0210859 January 25, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0210859


way to counterbalance this potential bias would be to calculate an enrichment score for each

gene based on papers in the context of ovarian cancer as compared to the background set of

publications for each gene. Another option would be to use measures such as the Gene Charac-

terization Index to account for the different degrees of gene annotation [42]. Despite the fact

that we used rather stringent criteria to define our synthetic lethal interaction set, one has to

admit that synthetic lethal interactions were experimentally determined in yeast and not in

human tissue. Research groups have in the meantime started to generate sets of synthetic lethal

interactions in human tissues [43]. As described in a previous publication of our group [44],

we used a random forest classification algorithm to extend the set of experimental synthetic

lethal interactions to also include human genes not being present in the yeast genome.

Drug combinations addressing synthetic lethal interactions proposed in this study pave the

way for further studies evaluating these combinations in more detail in order to enhance drug

efficacy. Lee and colleagues demonstrated how such systems-based attacks with drug combina-

tions can significantly increase drug efficacy, especially when administered in the proper order

and timing of administration [45].

Further, preclinical proof-of-concept studies as published by our group for breast cancer

[46] and previously performed in the field of ovarian cancer using patient-derived xenograft

(PDX) or in-vitro models [47], [48], are dearly needed to add biological significance to the

drug combinations predicted through our in-silico approach.

Conclusions

In summary we on the one hand could show that drug combinations currently in late stage

clinical testing address synthetic lethal interactions and on the other hand we identified a set of

drug combinations currently not tested in late stage ovarian cancer clinical trials worth of fur-

ther investigation due to their impact on synthetic lethal interactions.

Supporting information

S1 Table. Complete list of synlet interactions addressed by novel drug combinations. The

full list of addressed synlet interactions as well as the respective novel proposed drug combina-

tions are given in the S1 Table. Synlet interactions are sorted in descending order based on the

sum of PubMed ID (PMID) counts of the two synlet interacting partners in the context of

ovarian cancer. PMID counts of the two synlet interaction partners are also provided in brack-

ets for synlet partner A and B respectively.

(XLSX)

Table 1. (Continued)

Drug A Drug B Synlet partner A Synlet partner B PMID counts

Bevacizumab Nintedanib VEGFA PDGFA 586 (567 / 19)

Bevacizumab Nintedanib VEGFA FGFR3 574 (567 / 7)

Topotecan Glutathione TOP1 ESD 130 (128 / 2)

Topotecan Phenoxodiol TOP1 SPHK1 130 (128 / 2)

Docetaxel Veliparib BCL2 PARP1 107 (66 / 41)

Paclitaxel Olaparib BCL2 PARP1 107 (66 / 41)

Docetaxel Olaparib BCL2 PARP1 107 (66 / 41)

https://doi.org/10.1371/journal.pone.0210859.t001
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