
npj | precision oncology Article
Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-024-00748-x

Multi-omics analysis of Prolyl
3-hydroxylase1asaprognostic biomarker
for immune infiltration in ccRCC
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Jian Ma1, Yuanshan Cui1 , GangWu1 & Jitao Wu1

The formation of human collagen requires the presence of Prolyl 3-hydroxylase 1 (P3H1), but the
regulatorymechanismofP3H1 remained insufficiently understood.Our studyaimed to identify the role
of P3H1 in clear cell renal cell carcinoma (ccRCC). P3H1 expression in ccRCC was validated using
multiple databases and in vitro experiments. We performed a correlation analysis of P3H1 with drug
sensitivity, immune checkpoints, and immune cell infiltration using transcriptome and single-cell
sequencing.Drawingupon theEncyclopedia of RNA Interactomesdatabase,we selectedP3H1as the
focal point of our investigation, meticulously uncovering the intricate network of microRNAs and
lncRNAs that potentially orchestrate ceRNA mechanisms. This study employs a multidimensional
approach integrating vitro assays and multi-omics bioinformatics analyses to investigate P3H1’s
impact on ccRCC prognosis, immune modulation, immune checkpoints, ceRNA regulatory network,
drug sensitivity, and therapeutic responses, aiming to uncover new insights into its therapeutic
potential and inform future clinical strategies.

Renal cell carcinoma (RCC) encompasses multiple subtypes, with clear cell
renal cell carcinoma (ccRCC) being the most prevalent, accounting for 75-
80% of all pathological types1,2. Despite early surgical intervention, approxi-
mately 30% of ccRCC patients eventually experience relapse and develop
metastases3. ccRCC poses a significant therapeutic challenge due to its
inherent resistance to chemotherapy and radiotherapy. Poor prognosis is
typically associated with advanced or metastatic renal cancer, with the five-
year survival rate for stage IV ccRCC patients being less than 20%4. Immu-
notherapywith checkpoint inhibitors has emerged as a promising strategy for
improving survival outcomes in ccRCC5,6. Although numerous potential
genes have been proposed as prognostic markers for ccRCC, only a few have
beenvalidatedaseffective targets fordiagnosisor treatment7,8.Therefore, there
is an urgent need to thoroughly understand the molecular processes under-
lying ccRCC and to develop effective diagnostic and treatment strategies.

Prolyl 3-hydroxylase 1 (P3H1), also known as leucine proline-enriched
proteoglycan 1 (LEPRE1), is a growth inhibitor and a member of the prolyl
3-hydroxylase family9. P3H1plays a critical role in collagenassembly, folding,
synthesis, and proline hydroxylation, making it an essential protein for these
processes10,11. Furthermore, P3H1 is known to regulate intracellular signaling
and matrix interactions12, and it is involved in the invasion, migration, and

proliferation of osteosarcoma cell lines13. Elevated expression levels of P3H1
have been observed in different types of solid tumors, such as colorectal, lung,
and breast cancer14–16. Studies show that the P3H1 gene is closely related to
immune infiltration in tumors17,18. Whereas the oncogenicity, immune
infiltration, and clinical significance of P3H1 in ccRCC remain uncertain.

In this study,we employedmultiplemethods to evaluate the expression
ofP3H1 in ccRCCandvalidated the results through immunohistochemistry
(IHC) and in vitro experiments. We aimed to investigate the potential
association betweenP3H1 expression andprognosis in ccRCCpatientswith
diverse clinical-pathological features, as well as the immunotherapeutic and
chemotherapeutic response of P3H1 in ccRCC. To explore the potential
involvement of P3H1 in ccRCC, we performed functional enrichment
analysis. Moreover, leveraging cutting-edge tools like ESTIMATE, TIMER,
EPIC, and CIBERSORT, we explored the intricate interplay between P3H1
expression and immune cell infiltration within the ccRCC microenviron-
ment. This exploration not only enhances our understanding of tumor-
immune interactions but also identifies opportunities for immunother-
apeutic strategies tailored to ccRCCpatients basedon their P3H1expression
profiles. Furthermore, our comprehensive analysis of immune checkpoints,
integrating data from the TCGA cohort without immunotherapy and the
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CheckMate 025 cohort with immunotherapy, elucidated numerous corre-
lations between immune checkpoint genes and P3H1. Long noncoding
RNAs (lncRNAs) and circular RNAs (circRNA) can bind to microRNAs
(miRNAs) in the cell and act as a sponge, thereby modulating the protein
expression ofmessenger RNA (mRNA)19,20. This has led to the suggestion of
a theory called “competing endogenous RNA (ceRNA)”21–23. By adopting
the ceRNAmechanism, we explored the potential involvement of lncRNAs
and miRNAs in P3H1 regulation and prepared for subsequent basic
research. This study employs amultidimensional approach integrating into
vitro assays and multi-omics bioinformatics analyses to investigate P3H1’s
impact on ccRCC prognosis, immune modulation, immune checkpoints,
ceRNA regulatory network, drug sensitivity, and therapeutic responses,
aiming to uncover new insights into its therapeutic potential and inform
future clinical strategies.

Methods
The Human Protein Atlas (HPA) and the Harmonizome database
The HPA database (https://www.proteinatlas.org), developed through the
integration of proteomics, transcriptomics, and systems biology, offers a
comprehensive resource for investigating protein expression and immu-
nohistochemistry in both tumor and normal tissues24. Within this invalu-
able resource, we extracted the P3H1 RNA expression summary.
Furthermore, we explored the expression patterns of P3H1 in diverse
immune cells within the plasma, utilizing the Schmiedel dataset and
Monaco scaled dataset available in the HPA. For additional insights into
P3H1 expression, the Harmonizome database (https://maayanlab.cloud/
Harmonizome/) provided comprehensive information regarding its
expression in various tissues and cell lines.

Immune checkpoint blockade (ICB) cohort
CheckMate 025 (CM-025) is a randomized Phase III trial of Nivolumab
(anti-PD-1) for ccRCC treatment25. The study provided RNA sequencing
(RNA-seq) data from tumor specimens of 181 ccRCC patients receiving
anti-PD-1 therapy. We obtained both clinical and RNA-seq data for these
patients from the supplemental materials of this study25.

mRNA and protein expression of P3H1 in ccRCC
The present study utilized several publicly available databases to collect data
for analysis. The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) contains 33 cancer types with genomic, transcriptomic,
proteomic, and clinical information. We explored the TCGA database to
obtain the original RNA expression data of KIRC patients, which included
72 normal tissues and 539 tumor samples. Additionally, we accessed the
GEO database (https://www.ncbi.nlm.nih.gov/geo/), which provides gene
expression data submitted by research institutions globally. Themicroarray
dataset GSE53757, consisting of 72 normal tissue samples and 72 tumor
tissues and using the GPL570 sequencing platform was downloaded from
the GEO database for analysis.

The UALCAN database (http://ualcan.path.uab.edu/index.html) pro-
vides an interactive and user-friendly platform for analyzing cancer tran-
scriptomes, featuring published data from TCGA and MET500. P3H1
protein expression levels were analyzed usingUALCAN,which sourced the
data from CPTAC (Clinical Proteomic Tumor Analysis Consortium).

Informed consent procedure
The study was conducted in accordance with the Declaration of Helsinki,
and written informed consent was obtained from all patients prior to par-
ticipation. All experimental procedures were approved by the ethics com-
mittee of Yantai Yuhuangding Hospital, Qingdao University.

Cell lines and cell culture
The ccRCC cell lines (786-O, 769-P, Caki-2, ACHN, A498) and the renal
tubular epithelial cell line (HK-2) were obtained from the Cell Bank of the
Chinese Academy of Sciences. The ccRCC cell lines were cultured in
RPMI1640 (BI, Israel),whileHK-2cellswere cultured inDMEM(BI, Israel).

All media used in the experiment were supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin and streptomycin. Each cell type was cul-
tured in a humidified incubator set at 37 °C and 5% carbon dioxide with
optimal conditions.

Sample collection
Weobtained 13 cases of ccRCC tissues and adjacent normal tissues from the
Department of Urology at Yantai Yuhuangding Hospital, Qingdao Uni-
versity. All tissue samples were immediately flash-frozen in liquid nitrogen
after resection and then stored at−80 °C for subsequent qRT-PCR analysis.
Additionally, 20paraffin-embeddedarchived ccRCCsampleswereobtained
from our hospital for immunohistochemistry (IHC) analysis. These ccRCC
samples were from patients who underwent either partial nephrectomy or
radical nephrectomy. The pathological specimens were carefully examined
and verified by two independent pathologists to ensure accuracy and
consistency.

RNA extraction and quantitative reverse transcriptase poly-
merase chain reaction (qRT-PCR)
Total RNA was extracted from the samples using Trizol reagent (Pufei,
Shanghai, China) following the manufacturer’s instructions. RNA quanti-
fication was performed at 260 nm using a spectrophotometer (Thermo
Fisher, USA). The extracted RNA was then reverse-transcribed into com-
plementary DNA (cDNA) using the Promega M-MLV kit (Accurate Biol-
ogy, China). qRT-PCR was performed on a fluorescent quantitative PCR
instrument (ThermoFisher,USA) to determine themRNA level of the gene
of interest based on the SYBR green fluorescence level. The 2−ΔΔCT method,
usingGAPDHas a control, was employed to evaluate the relative expression
levels of the target mRNAs. The primer sequences used for qRT-PCR were
provided in Supplemental Table 1.

Western blot
The protein lysates were loaded into individual lanes and subjected to
analysis by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE). Subsequently, the separated proteins were transferred onto
nitrocellulose (NC) membranes (Millipore, Darmstadt, Germany) for fur-
ther analysis. After blocking themembrane with a 5%non-fatmilk solution
in Tris-buffered salinewith Tween for 1 hour, themembranewas incubated
with rabbit polyclonal primary antibodies against P3H1 (Proteintech,
China) at a dilution of 1:1000. The incubation was carried out overnight at
4 °C. Following three 10-minute rinses with TBST, the membrane was
incubated at room temperature for 1 hour with HRP-conjugated secondary
antibodies (1:5000) (Santa Cruz, CA, USA). Immunoreactive bands were
detected using a chemiluminescent detection system (ECL, Pierce, Rock-
ford, IL, USA). The quantification of protein levels was conducted by
referencing the β-actin protein as a basis for calculation.

Immunohistochemical staining
All tumor sections were subjected to routine dewaxing and rehydration
methods. Subsequently, the sections were incubated in 3% H2O2 for
30minutes to block endogenous peroxidase activity. The slides were then
incubated with rabbit polyclonal primary antibodies against P3H1 at a
dilution of 1:100 in a humidified chamber overnight at 4 °C. The sections
underwent staining using 3,3’-diaminobenzidine (DAB) and were subse-
quently counterstained with hematoxylin following the manufacturer’s
instructions. The percentage of P3H1 immune-positive tumor cells was
used to assign a score, with a score of four when≥50% of cells were positive,
three when 26-50%, two when 6-25%, and one when ≤5%. The staining
intensity was scored as 3 (strong), 2 (moderate), 1 (weak), or 0 (negative).
The two scores were multiplied, and the resulting score was utilized to
categorize P3H1 expression as either high (>6) or low (≤6).

P3H1 immune correlation analysis
Multiple R packages, including “ggplot2,” “corrplot,” “limma,” “ggExtra,”
“vioplot,” “ggpubr,” “reshape2,” and “GSVA,” were applied to visualize the
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association between P3H1 and various immune cells and immune check-
points. ESTIMATE26, TIMER27,28, EPIC29, and CIBERSORT30 computa-
tional algorithmswere used to compute the abundance of tumor-infiltrating
immune cells in ccRCC specimens from TCGA. The relationship between
immune checkpoints (PDCD1, PDCD1LG2, CD274, CTLA4, TIGIT,
HAVCR2, and LAG3) and P3H1 was analyzed using the GEPIA2 database
(http://gepia2.cancer-pku.cn/#index)31, the TIMER 2.0 database (http://
timer.cistrome.org/)27, and the CheckMate 025 (CM-025) cohort
(N = 181)25.

Tumor-immune system interaction database
TISIDB, an integrated repository tool available at (http://cis.hku.hk/
TISIDB), endeavors to unravel the intricate interplay between the
immune system and tumors32. Leveraging the database, we assessed the
intricate association between P3H1 and the expression patterns of che-
mokines/chemokine receptors, as well as immunoinhibitors/
immunostimulators.

P3H1 expression in the tumor microenvironment
To obtain a comprehensive understanding of the tumormicroenvironment
(TME) at a single-cell level, we utilized the scRNA-seq database called
Tumor Immune Single-cell Hub 2 (TISCH2)33, which can be accessed at
http://tisch.comp-genomics.org/. In this investigation, we delved into the
expression patterns of P3H1 within the TME of ccRCC, leveraging the
invaluable resources provided by this database.

STRINGS analysis
We utilized the STRINGS online analysis website (http://www.string-db.
org) to conduct a protein-protein interaction (PPI) network analysis on
P3H134. The PPI network was created with the following parameters: 1)
Active interaction sources including Co-expression, Databases, Experi-
ments, and Textmining; 2) Network edge meaning determined based on
available evidence; 3) Minimum required interaction score set to high
confidence (0.400); 4) Maximum number of interactions allowed set to 20.

Function enrichment analysis
The functional enrichment analysis categorizes gene lists based on their
functions and correlations with biological characteristics. We performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) analysis on P3H1 and the 20 co-expressed genes using the cluster-
Profiler package35. The aim was to gain insight into biological processes,
cellular components, molecular functions, and significant signaling path-
ways. The analysis data were visualized using the ggplot2 software package.

Kaplan–Meier plotter database
The Kaplan-Meier plotter (http://kmplot.com/analysis/), a tool for prog-
nostic analysis, includes data on 54,675 genes from10,461 cancer samples to
predict survival. To evaluate the prognostic significance of P3H1 expression
in relevant immune cell subgroups, we conducted a log-rank p-value ana-
lysis and calculated the hazard ratios (HR) with 95% confidence
intervals (CI).

Analysis of clinical prognostic factors
We utilized the “ggpubr” and “limma” packages to assess and visualize the
correlation between each prognostic factor and P3H1 expression. We
employed the “rms,” “regplot,” “timeROC,” “survminer,” and “survival”
packages to generate nomograms, calibration curves, and receiver operating
characteristic (ROC) curves. Multivariate and univariate Cox analyses were
performed using the “survival” package.

Establishment ofmRNA-miRNA-lncRNA co-expression network
Data on mRNA-miRNA and miRNA-lncRNA interactions were obtained
from the Starbase database (http://starbase.sysu.edu.cn/)36. A program
number ≥ 1 was set as the screening criterion for mRNA-miRNA interac-
tions. The R package was used to screen correlation coefficient values,

survival curve values, and differential expression values. A negative corre-
lation between expression levels was defined as r < -0.1, and a positive
correlation was defined as r > 0.1. The significant threshold for differential
expression was set at P < 0.01, and for survival curves, it was set at P < 0.05.
We utilized the R language package to plot the data and construct a crucial
lncRNA-miRNA-mRNAceRNAnetwork for ccRCC. The potential ceRNA
mechanisms associated with P3H1 were illustrated using BioRender.

P3H1-related drug sensitivity evaluation
The determination of the half maximal inhibitory concentration (IC50),
which represents the concentration required to inhibit drug activity by 50%,
was carried out using the ‘pRRophetic’ package37 along with its dependen-
cies, including “genefilter,” “sva,” “ridge,” “preprocessCore,” and “car.”
These packages provide information about the effects of various drugs.

Statistical analysis
Statistical analysis was conducted using GraphPad Prism and SPSS
software. The data are presented as the mean ± standard error from a
minimum of three experiments. The Mann-Whitney U test and paired
t-test were performed to determine differences between ccRCC and
paired normal tissues. The Wilcoxon test was employed for pairwise
comparisons between two groups, while the Kruskal-Wallis test was used
for comparisons across multiple groups. Kaplan-Meier curves were
utilized to analyze the expression level of P3H1 and its prognostic sig-
nificance in ccRCC patients. Time dependence ROC curves of P3H1
expression were used to evaluate the predictive efficiency of P3H1 in
ccRCC. A significance level of P < 0.05 was considered for all analyses.
The flow chart of the study is presented in Fig. 1.

Results
Expression landscape and expression pattern of P3H1 in pan-
cancer perspective
As shown in Fig. 2A, P3H1 is widely expressed across various tissues and
organs. The consensus dataset revealed that P3H1 mRNA was pre-
dominantly expressed in theduodenumandplacenta (Fig. 2B).UMAPplots
indicated that P3H1 expression was observed in erythroid cells, skeletal
myocytes, Müller glial cells, and squamous epithelial cells (Fig. 2C). Figure
2D and E illustrate the details of P3H1 mRNA expression across different
tissues and cell types.

Aberrant P3H1 expression in ccRCC
To determine the differences in P3H1 expression between tumors and
normal tissues, we analyzed the mRNA levels of P3H1 using the TIMER
database (Fig. 3A) and the TCGA database (Fig. 3B) across various cancer
types. This analysis revealed that most cancer types, including bladder
urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cho-
langiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal
carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), prostate adenocarcinoma (PRAD), rectum adeno-
carcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma
(THCA), and uterine corpus endometrial carcinoma (UCEC), exhibited
higher expression compared to normal tissues (Fig. 3A, B). Conversely,
kidney chromophobe (KICH) exhibited lower expression levels of P3H1
(Fig. 3A, B). To determine the mRNA and protein expression of P3H1 in
ccRCC, we analyzed the expression profile from TCGA, GEO, HPA, and
UALCAD datasets. Data from the TCGA and GEO databases revealed that
P3H1 was significantly differentially expressed in malignant tumors
(P < 0.001; Fig. 3C–E).Wewere able to conduct an analysis of P3H1protein
expression by the CPTAC and HPA database. Our findings indicated a
significant increase in P3H1 protein expression in ccRCC when compared
to paracancer tissue (Fig. 3F–H). Additionally, the validation of protein
expression was conducted using immunohistochemical staining, which
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shows that P3H1 protein expression was elevated and highly expressed in
cancer tissues (Fig. 3I–L). Furthermore, qRT-PCR was performed to
examine the expression of P3H1 in 13 pairs of ccRCC cases and adjacent
normal tissues (Fig. 3M).We also verified that P3H1 expression was higher
in several ccRCC cell lines (786-O, 769-P, CAKI-2, ACHN, and A498)
compared to the control cell line (HK-2) using qRT-PCR and WB (Fig.
3N, O). In conclusion, multiple databases and experiments jointly verified
that the expression level of P3H1 mRNA and protein in ccRCC was sig-
nificantly higher than that in normal renal tissue.

Relationships between P3H1mRNA levels and clinical patholo-
gical features of ccRCC patients
Baseline characteristics of patients with ccRCC, as accessed from the TCGA
database are presented in Supplemental Table 2. As depicted in Fig. 4D–L,
elevated expression of P3H1 was significantly correlated with various clin-
ical features including T stage (P < 0.001), M stage (P < 0.05), histological
grade (P < 0.001), pathological stage (P < 0.001), primary therapy outcome
(P < 0.001), overall survival (OS) event (P < 0.001), disease-specific survival
(DSS) event (P < 0.001) and progression-free interval (PFI) event
(P < 0.001). However, there was no statistically significant association
between P3H1 expression and other clinicopathological features, such as
age, gender, laterality, and N stage (Fig. 4A–C and E). These results suggest
that high P3H1 expression may be associated with tumor progression and
poorer prognosis in patients with ccRCC.

Value of P3H1 expression in diagnosis and predicting prognosis
We conducted the following analyses to further explore the prognostic and
diagnostic significance of P3H1 in ccRCC. In this study, we continued to
explore the potential relationship between P3H1 expression and the prog-
nosis of ccRCC patients. Kaplan-Meier curves were employed to examine
the correlation between P3H1 mRNA expression and OS, DSS, and PFI in
ccRCC patients. Figure 4M–O indicated that high P3H1 expression is sig-
nificantly associated with shorter OS, DSS, and PFI in ccRCCpatients, with
hazard ratios (HR) of 2.48 (1.80–3.40) for OS (P < 0.001), 3.71 (2.40-5.73)
for DSS (P < 0.001), and 3.16 (2.25–4.45) for PFI (P < 0.001).

The predictive performance of P3H1 for OS in ccRCC patients was
evaluated using time-dependent receiver operating characteristic (ROC)
analysis. The area under the curve (AUC)was calculated for 1, 3, and 5 years,

yielding values of 0.709, 0.659, and 0.682, respectively (Fig. 4P). These results
indicate that P3H1 has a strong predictive capacity for OS over five years.
Additionally, the time-dependent ROC curves for DSS and PFI also
demonstrated strongpredictive capacityoverfiveyears (Fig. 4Q,R).TheROC
curve analysis for diagnosis showed that P3H1 expression accurately dis-
tinguished tumors from normal tissues, with an AUC of 0.939 (Fig. 4S).
Multivariate Cox regression analysis identified P3H1 expression (HR, 1.951;
95% CI: 1.404–2.712; P < 0.001), age (HR, 1.625; 95% CI: 1.191–2.218;
P = 0.002), pathologic stage (HR, 2.645; 95%CI: 1.875–3.733; P < 0.001), and
histologic grade (HR, 1.753; 95% CI: 1.219–2.520; P = 0.002) as independent
risk factors for survival prognosis in ccRCC (Supplemental Table 3). The
nomogrammodel presented in Fig. 4T combines the independent prognostic
factors identified in themultivariate analysis, including age, pathologic grade,
and histologic grade. A nomogram model was built, which can be used to
predict the survival probabilities at 1-, 3-, and 5-years for patients in clinical
practice (Fig. 4T). The calibration plots show that the predicted probabilities
from the nomogrammodel align well with the observed probabilities, as the
bias-corrected line closely follows the ideal 45-degree line (Fig. 4U–W).
Overall, these findings suggest that P3H1may serve as a valuable biomarker
for both diagnosing and predicting the prognosis of ccRCC patients.

DEGs analysis
DEGanalysis between the high- and low-P3H1 groups in the TCGA cohort
revealed 2346 up-regulated and 1261 down-regulated DEGs that were
statistically significant (p.adj < 0.05, |log2(FC)| > 1) (Supplemental Fig. 1A).
The heatmap displayed the top fifty significant up- and-down-regulated
genes (Supplemental Fig. 1B).

P3H1-related functional enrichment analysis in ccRCC
The OPEN TARGET platform revealed the involvement of P3H1 in various
disorders (Fig. 5A). A PPI network was constructed in “Cytoscape” based on
P3H1and its 20 co-expressed genes fromthe STRINGdatabase (Fig. 5B).GO
and KEGG pathway enrichment analyses were conducted on the top 20
correlated genes of P3H1 to investigate the potential functions of P3H1 in
ccRCC (Fig. 5C–F). Correlation analysis showed that P3H1 was positively
correlated with its co-expressed genes (Fig. 5G).The KEGG pathway
enrichment analysis revealed that P3H1 was associated with several path-
ways, including “protein digestion and absorption,” “ECM-receptor

Fig. 1 | Flowchart.
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interaction,” “AGE-RAGE signaling pathway in diabetic complication,”
“Relaxin signaling pathway,” and “PI3K-Akt signaling pathway” (Fig. 5F).
TheGOenrichment analysis indicated that P3H1 is involved in “extracellular
structure organization” (BP, GO:0043062), “endoplasmic reticulum lumen”

(CC, GO:0005788), and “extracellular matrix structural constituent” (MF,
GO:0030020) (Fig. 5C–E). These results suggest that P3H1plays a crucial role
in multiple signaling pathways and both intracellular and extracellular
functions, contributing significantly to the onset and progression of ccRCC.

RNA expression Protein expression

Tissue/organ types Tissue/organ types

0 0

types

Fig. 2 | RNAandprotein expression profile of P3H1 in humanorgans and tissues.
AThe summary of themRNA and protein expression of P3H1 in human organs and
tissues; B P3H1 mRNA expression summary in different human organs and tissues

based on consensus dataset; C The interactive UMAP plot displays the gene clusters
resulting from Louvain clustering of gene expression across all single cell types;
D, E Details of P3H1 mRNA expression in different tissues and cell lines.
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Correlation between immune infiltration and expression of P3H1
in ccRCC
We utilized multiple immune algorithms (ESTIMATE, TIMER, EPIC, and
CIBERSORT) to examine immune cell infiltration in ccRCC patients,
categorizing 503 tumor transcriptome sequencing samples from TCGA-
KIRC into high and low P3H1 expression groups based on average P3H1

levels, to investigate the correlation between P3H1 expression and immune
infiltration. The ESTIMATE algorithm revealed high P3H1 expression
patients had significantly higher immune scores (P < 0.001), stromal scores
(P < 0.001), and ESTIMATE scores (P < 0.001) compared to those with low
P3H1 expression (Fig. 6A). In contrast, the ESTIMATE algorithm showed
that high P3H1 expression groups had lower tumor purity than low P3H1

Fig. 3 | The expression of P3H1 in ccRCC and pan-
carcinoma. A P3H1 expression levels in different
tumor types were measured using the TIMER2.0
database. B TCGA database analysis shows the
P3H1 expression levels in 33 types of cancer tissues
and their corresponding adjacent normal tissues.
C The mRNA expression level of P3H1 in 539
ccRCC samples and 72 normal samples. D The
mRNA expression level of P3H1 in 72 ccRCC and
matched-adjacent normal samples. E The mRNA
expression level of P3H1 in tumor samples matched
in GEO database was higher than that in adjacent
normal samples (P < 0.001). F Protein expression
level of P3H1 based on the CPTAC database.
G Normal tissues: the protein levels of P3H1 based
on the Human Protein Atlas. H Tumor tissues: the
protein levels of P3H1 based on the Human Protein
Atlas. I, J Normal renal tissue. K, L ccRCC tissue.
M qRT-PCR experiment on matched samples of 13
eligible ccRCC patients. qRT-PCR N and WB
O experiments to verify the expression of P3H1 gene
in renal cell carcinoma cell lines.

https://doi.org/10.1038/s41698-024-00748-x Article

npj Precision Oncology |           (2024) 8:256 6

www.nature.com/npjprecisiononcology


expression group (Fig. 6B). The thermogram of the immune function
indicated that the high P3H1 expression group had significantly higher
levels of cytolytic activity, inflammation-promoting, T-cell co-stimulation,
and parainflammation (Fig. 6C). The EPIC algorithm revealed that the high
P3H1 expression group had significantly higher levels of B cells, CAFs, and
macrophages, while levels of CD4+ T cells, CD8+T cells, and endothelial
cells were not significantly different between the two groups (Fig. 6E). In
contrast, the TIMER algorithm showed that the high-P3H1 expression
grouphad increased levels ofCD4+Tcells, neutrophils, anddendritic cells,
with no significant difference in CD8+T cells andmacrophages compared
to the low P3H1 expression group (Fig. 6D). The abundance of 22 immune
cells in tumor tissues of ccRCC patients was evaluated using the CIBER-
SORT algorithm (Fig. 6F, G). The expression of four immune cells (Tregs,
T cells CD4memory activated, macrophagesM0, and plasma cells) showed
significant positive correlations with P3H1 expression in ccRCC. Con-
versely, the abundance ofT cells gammadelta,monocytes,mast cells resting,
macrophages M1, dendritic cells, and eosinophils was significantly nega-
tively associatedwith P3H1 expression in ccRCC, as depicted in Fig. 6H and
I. We found B cells showed significant differences between high and low
P3H1 expression groups in the TIMER and EPIC algorithms (Fig. 6D, E),
but no significant difference in CIBERSORT (Fig. 6F, G). CD8+T cells did
not show differences between the high and low P3H1 expression groups
across the three immune algorithms (Fig. 6D–G). CD4+ T cells were

enriched significantly in the high P3H1 expression group according to the
TIMER algorithm (Fig. 6D), but therewas no significant difference between
the CIBERSORT and EPIC algorithms (Fig. 6E–G). Macrophages were
significantly enriched in the high P3H1 expression group in the CIBER-
SORT and EPIC algorithms (Fig. 6E–G), while no significant differencewas
observed in the TIMER algorithm (Fig. 6D–G). Neutrophils were enriched
significantly in the high P3H1 expression group according to the TIMER
algorithm (Fig. 6D), but no significant difference was observed in the
CIBERSORT algorithm (Fig. 6F, G). Correlation analysis using the
CIBERSORT and ssGSEA algorithms showed that Tregs and macrophages
were significantly positively correlated with P3H1 expression, while eosi-
nophils were significantly negatively correlated with P3H1 expression
(Fig. 6H, I). The CIBERSORT algorithm revealed a significant negative
correlation betweendendritic cells (DCs) andP3H1 expression, whereas the
ssGSEA algorithm showed a significant positive correlation between DCs
and P3H1 expression (Fig. 6H, I).

Exploration of the association between P3H1 and immunoinhi-
bitors, immunostimulators, chemokines and chemokine
receptors
Based on the TISIDBdatabase, we further assessed the relationship between
P3H1 expression and immunoinhibitors, immunostimulators, chemokines,
and chemokine receptors. Figure 7A–D depicts the association between

Fig. 4 | P3H1 expression levels correlate with multiple clinicopathological
characteristics of ccRCC patients. A–H The correlation analysis between P3H1
expression levels and A age, B gender, C laterality, D T stage, E N stage, FM stage,
G histologic grade, H pathological stage, I primary therapy outcome, J OS event,
K DSS event and L PFI event of ccRCC patients. Kaplan-Meier, ROC analysis,
nomogram and Calibration plot of P3H1. The Kaplan-Meier plotter analysis shows
the differences inM overall survival,N disease-specific survival, andO progression-
free interval of ccRCC patients with high- and low-P3H1 expression levels. ROC

curve in P overall survival, Q disease-specific survival, and R progression-free
interval of ccRCC patients with time dependence. S ROC curve showed that P3H1
had an AUC value of 0.939 to discriminate ccRCC tissues from healthy controls.
T Nomogram for predicting the probability of 1-, 3-, and 5-year OS for ccRCC
patients.U–WCalibration plot of the nomogram for predicting the OS likelihood of
1-, 3-, and 5-year OS for ccRCC patients. (ns: no significance; *P < 0.05,
**P < 0.01, ***P < 0.001).
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P3H1 expression and the abundance of immunoinhibitors and immunos-
timulators. Among the immunoinhibitors, the top three were CD274
(rho = -0.413, P < 2.2e-16), LGALS9 (rho = 0.438, P < 2.2e-16), and TGFB1
(rho= 0.545,P < 2.2e-16) (Fig. 7B).Among the immunostimulators, the top
threewereCD276 (rho= 0.609,P < 2.2e-16), CXCR4 (rho= 0.432,P < 2.2e-
16), and IL6 (rho= 0.457,P < 2.2e-16) (Fig. 7D). The infiltration of immune
cells into tumors depends on chemokines and chemokine receptors. The
relationship between P3H1 expression and abundance of chemokines and
chemokine receptors is shown in Fig. 7E–H. Among the chemokines, the
top three were CCL11 (rho = 0.344, P = 3.64e-16), CCL26 (rho = 0.511,
P < 2.2e-16), and CXCL5 (rho = 0.403, P < 2.2e-16) (Fig. 7F). Among the
chemokines, the top three were CCR10 (rho = 0.409, P < 2.2e-16), CXCR4
(rho = 0.432, P < 2.2e-16), and CXCR5 (rho = 0.366, P < 2.2e-16) (Fig. 7H).
These results suggest that P3H1 significantly correlates with various
molecules involved in immunoinhibition, immunostimulation, chemo-
kines, and chemokine receptors, indicating itmay regulate these factors and
impact the progression of ccRCC.

P3H1 expression level in immune cells
We evaluated P3H1 expression in immune cells using the HPA database,
focusing on its specific expression in immune-infiltrating cells. P3H1 was
primarily expressed in plasmablasts andmemoryTreg cells, as shown in the
Monaco and Schmiedel datasets (Supplemental Fig. 2A, B). To explore the
expression of P3H1 at the single-cell level, we carried out a single-cell
analysis based on the TISCH database. We obtained five scRNA-seq data-
sets of ccRCC (GSE111360, GSE121636, GSE145281, GSE159115,
GSE171360). Figure 8A illustrates the distribution of P3H1 expression
across these datasets. In theGSE111360 dataset, which included 23,130 cells
fromtwopatientswithprimary ccRCC,P3H1waspredominantly expressed
infibroblasts andTprolif cells (Fig. 8B).TheGSE121636dataset, comprising
33,441 cells from three patients with primary ccRCC, showed predominant
expression of P3H1 in Tprolif cells (Fig. 8C). The GSE145281 dataset,
encompassing 44,220 cells from tissues of four patients with metastatic
ccRCC following immunotherapy (PD-L1), revealed significant differential

expression of P3H1, particularly in plasma and Tprolif cells (Fig. 8D). The
GSE159115 dataset, comprising 27,669 cells from tissues of eight patients
with primary ccRCC, showed predominant expression of P3H1 in endo-
thelial cells and pericytes (Fig. 8E). The GSE171360 dataset, containing
11,427 cells from tissues of two patients with primary ccRCC, demonstrated
predominant expression of P3H1 in fibroblasts and endothelial cells (Fig.
8F). These results indicate that after PD-L1 treatment, ccRCC patients have
higher plasma cell expression compared to untreated renal cancer patients.
Additionally, after immunotherapy, the expression levels of immune cells in
the tumor tissues of ccRCC patients are lower than those in untreated
patients.

Predictive evaluation of P3H1 levels in ccRCC based on
immune cells
Our findings suggest a potential mechanism for the influence of P3H1
expression on the prognosis of ccRCC patients through immune infil-
tration. To investigate this hypothesis, we analyzed whether P3H1
expression influences the prognosis of ccRCC patients in different
immune cell subgroups. The Kaplan-Meier plotter unraveled a sig-
nificant relationship between elevated P3H1 expression and poor
prognosis in multiple enriched immune cell subgroups, including
basophils (P = 2.2e-08), B cells (P = 2.3e-05), CD4+ memory T cells
(P = 7.2e-07), CD8+ T cells (P = 1.3e-06), eosinophils (P = 1.5e-05),
macrophages (P = 5.3e-09), mesenchymal stem cells (P = 0.012), reg-
ulatory T cells (P = 3.4e-05), Type 1 T helper cells (P = 0.0053), and Type
2 T helper cells (P = 0.019) (Supplemental Fig. 3). In parallel, elevated
P3H1 expression in various immune cell subgroups was associated with
poor prognosis, including basophils (P = 3.5e-06), B cells (P = 1.9e-10),
CD4+ memory T cells (P = 9.2e-07), CD8+ T cells (P = 7.2e-07),
eosinophils (P = 1.9e-07), macrophages (P = 2.4e-05), mesenchymal
stem cells (P = 4.1e-08), natural killer T cells (P = 7.8e-09), regulatory
T cells (P = 7.6e-07), Type 1 T helper cells (P = 5.6e-09), and Type 2 T
helper cells (P = 2.9e-10) (Supplemental Fig. 3). However, there was no
significant difference in survival between high and low P3H1 expression

Fig. 5 | PPI network and functional enrichment analysis. A P3H1-associated
diseases obtained by OPEN TARGET platform. B P3H1 and its co-expressed gene
PPI network. BPC, CCD,MFE, KEGGF enrichment analysis of P3H1 and its 20 co-
expressed genes.GCorrelation analysis of P3H1 expression with co-expressed genes

in ccRCC. BPBiological Process, CCCelluarComponents,MFMolecular Functtion,
KEGG Kyoto Encylopedia of Genes and Genomes, ccRCC clear cell renal cell
carcinoma.
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Fig. 6 | Immune infiltration analysis. A, B Stomal score, immune score, ESTI-
MATE score and tumor purity calculated by ESTIMATE algorithm. CHeat map of
immune function. The abundance of immune filtrating cells was evaluated by the
TIMERD and EPIC E algorithm. F,G The CIBERSORT algorithmwas used to map

22 kinds of immune cells in tumor tissues of ccRCC patients. Correlation of P3H1
expression with immune infiltration level by the CIBERSORT H and ssGSEA
algorithm I.
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groups in enriched natural killer T cells (P = 0.13) (Supplemental
Fig. 3C). These results indicate that the impact of elevated P3H1
expression on the prognosis of ccRCC patients is partially mediated by
immune infiltration.

Establishment of ceRNA co-expression network and related
survival analysis
The P3H1-miRNA interaction data were obtained from the starBase
database and analyzed using the R package. Based on a co-expressed and

Fig. 7 | Associations of the P3H1 expression level with immunoinhibitors,
immunostimulators, chemokines and chemokine receptors in ccRCC.Heatmaps
for correlation analysis of the P3H1 expression level with immunoinhibitors (A),

immunostimulators (C), chemokines (E) and chemokine receptors (G) in ccRCC.
The top 3 immunoinhibitors (B), immunostimulators (D), chemokines (F), and
receptors (H) associated with the expression of P3H1 in ccRCC.
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negative correlation with P3H1 (R < -0.2; P < 0.001; Fig. 9), three groups
of miRNAs were identified for subsequent screening of potential targets
and pathways. Among these, two groups of miRNAs were observed
differentially expressed between the normal and tumor groups
(P < 0.001; Fig. 9A, C), and the above-mentioned miRNA-related

prognosis survival curve analysis revealed that the high-expression
group had a better survival rate compared to the low-expression group
(P < 0.01; Fig. 9A, C).

Subsequently, we obtained lncRNA data that interacted with miR-10a-
5p and miR-660-5p from the starBase database and performed a screening

Fig. 8 | Single-cell analysis of the P3H1 and TME in ccRCC. A The expression levels of P3H1 in the TME-related cells of ccRCC in 5 independent scRNA-seq datasets;
B–F Violin plots and UMAP plots of P3H1 and immune cell infiltration in GSE111360 (B), GSE121636 (C), GSE145281 (D), GSE159115 (E), GSE171360 (F).
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process based on correlation coefficients (value > 0.1), survival curves, and
differential expression between normal and tumor groups (P < 0.01).
According to the screening results,we further selected lncRNAs that showeda
positive correlation with P3H1, with a correlation coefficient value greater
than 0.1 and aP value less than 0.01. Finally, themiR-10a-5p-related lncRNA
(SNHG3) and the miR-660-5p-related lncRNA (GAS5) were identified (Fig.
10A, B). These results were used to construct a ceRNAmechanism diagram
for P3H1, as shown in Fig. 10C. The ceRNA regulatory network revealed
potentialmechanisms of P3H1 in ccRCC, yet further experiments are needed
to validate this regulatory network. This inquiry seeks to uncover novel
regulatorymechanismsunderlyingP3H1’s role in cancer biology and lays the
groundwork for future translational studies aimed at developingpersonalized
treatment strategies and prognostic biomarkers for ccRCC patients.

The relationship between immune checkpoint and P3H1
in ccRCC
Immune checkpoints are negative regulators of effector functions, pro-
liferation, and T-cell activation. ICB has been explored as a potential

approach to activate antitumor immunity against tumors. Hence, we eval-
uated the expression of seven immune checkpoint genes, namely PDCD1
(PD-1), CD274 (PD-L1), CTLA4, PDCD1LG2 (PD-L2), TIGIT, HAVCR2
(TIM-3), and LAG3, which have previously been reported as targets of ICB.
The relationship between P3H1 expression and the expression of immune
checkpoint genes was analyzed using the TIMER and TCGA databases.
Spearman correlation analysis showed that the expression of P3H1 was
significantly correlatedwith six immunemarkers (PDCD1,CTLA4,CD274,
TIGIT, HAVCR2, and LAG3) (|cor | > 0.1 and P < 0.05) (Fig. 11C, D).
Consistent results were also obtained from the analysis of the TIMER and
GEPIAdatasets (Fig. 11A, B). In conclusion, our study highlights that P3H1
expression correlates positively with key immune checkpoint genes, sug-
gesting its potential role in modulating antitumor immune responses.

We then analyzed transcriptome sequencing data from 181 kidney
cancer patients treated with nivolumab in the CM-025 cohort by Braun et al.
to assess the effect of P3H1 on ICB in this group (Fig. 11E–H). The com-
prehensive analysis of the study cohort (N = 181) revealed a significant
positive correlation between P3H1 and HAVCR2 (Fig. 11E). Further

Fig. 9 | Correlation, difference, and survival curve analyses between P3H1 and 3 miRNAs. A miR-10a-5p; B miR-192-5p; C miR-660-5p.
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investigation of progressive disease (PD) patients (N = 69) following treat-
ment uncovered a robust positive relationship between P3H1 andHAVCR2,
a correlation not evident with other immune checkpoints (Fig. 11F). Con-
versely, in the case of patients with stable disease (SD) post-treatment
(N = 64), no significant associations were observed between P3H1 and any
immune checkpoints (Fig. 11G). Lastly, in patients demonstrating partial
response (PR) to treatment (N= 13), a notable negative correlation was
identified between P3H1 and CTLA4, while no similar relationships were
detected with other immune checkpoints (Fig. 11H). These findings further
demonstrate that P3H1 plays an essential role in promoting tumor-immune
evasion in the ccRCC microenvironment. These findings underscore the
potential of P3H1 as a biomarker for predicting responses to immune
checkpoint blockade in ccRCC patients treated with NIVOLUMAB.

Drug sensitivity evaluation
We examined the relationship between P3H1 and the sensitivity of ccRCC
patients to several drugs commonly used in clinical treatment. The drugs
included axitinib, sorafenib, pazopanib, sunitinib, gefitinib, and lapatinib.
Our results indicated that patients with lowP3H1 expressionwere generally
more susceptible to most drugs compared to those with high P3H1
expression (P < 0.001; Supplemental Fig. 4). In conclusion, our analysis
revealed that low P3H1 expression in ccRCC patients is associated with
increased sensitivity to a range of commonly used drugs in clinical treat-
ment. Particularly noteworthy, patients with high P3H1 expression
demonstrated heightened susceptibility to gefitinib and lapatinib (P < 0.001;
Supplemental Fig. 4), suggesting these drugs could be beneficial options for
treating ccRCC patients with elevated P3H1 levels.

Discussion
ccRCC is a common type of urinary system tumor characterized by high
levels of tumor-infiltrating immune cells and aggressive behavior38. Con-
ventional radiotherapy and chemotherapies have exhibited limited effec-
tiveness in treating advanced ccRCC, and therefore targeted therapy and
immunotherapy are the primary treatment options39,40. Nevertheless, the
long-term efficacy of these treatments in treating advanced KIRC remains
suboptimal due to the absence of precise targets.

P3H1 plays a crucial role in collagen synthesis and folding, which are
essential for maintaining structural integrity in tissues. Emerging evidence
suggests that P3H1may have significant implications in tumorigenesis and
tumorprogressionacross various cancers. Further research isneeded to fully
elucidate the molecular mechanisms through which P3H1 influences
ccRCC biology, potentially offering new insights into diagnostic and ther-
apeutic strategies for ccRCC treatment.

In this research, we examined the P3H1 expression in ccRCC tumor
tissues and adjacent normal tissues and found that P3H1 expression was
elevated significantly in ccRCC. These results were further certified by both
immunohistochemistry assay and qRT-PCR analysis. Elevated expression
of P3H1 was associated with higher T and M stages as well as higher
histologic and pathologic stages in a positiveway. TheKaplanMeier-Plotter
database analysis revealed that high expression levels of P3H1 in a variety of
immune cell cohorts of ccRCCwere associated with a worse prognosis. The
results of the Kaplan-Meier curves and univariate analysis have demon-
strated that elevated expression of P3H1was correlatedwith short OS, DSS,
and PFI. Time-dependent ROC curve analysis suggested that P3H1 might
be a potentially valuable diagnostic biomarker for distinguishing between

Fig. 10 | Construct a ceRNA regulatory network for P3H1. A Correlation, dif-
ference, and survival curve analyses between miR-10a-5p-P3H1-related lncRNA
and miRNA and P3H1, respectively. B Correlation, difference, and survival curve

analyses between miR-660-5p-P3H1-related lncRNA and miRNA and P3H1,
respectively. C The model of P3H1-related ceRNA in the carcinogenesis of ccRCC.
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ccRCC and normal tissues. These findings imply that P3H1 might exert a
key role in the progression of ccRCC.

Previous studies have shown that ccRCC has a high level of immune
infiltration41–43. Nonetheless, the correlation analysis of P3H1 expression
and immune cell infiltration in ccRCChas not been reported.Our study has
shown that multiple immune cells infiltrate tumors.We observed a positive
correlation between P3H1 expression and abundance of Tregs, T cells CD4
memory activated, macrophagesM0, and plasma cells. Tregs are a subset of
T lymphocytes that suppress anti-tumor responses, leading to tumor
immune escape44,45. Previous studies also linked the proportion of macro-
phages and Tregs in RCC patients with poor prognosis46,47. These results
suggest that elevated expression of P3H1may partly affect the prognosis of
ccRCC patients through its impact on immune infiltration.

Additionally, we investigated the relationship between P3H1 and
immune checkpoints in both the untreated TCGA-KIRC cohort without

prior immunotherapy and the NIVOLUMAB-treated CM-025 cohort. In
the TCGA-KIRC cohort, P3H1 expression exhibited positive correlations
with several immune checkpoints, including PDCD1,CTLA4, PDCD1LG2,
TIGIT, and LAG3, implying its potential involvement in immune evasion
during ccRCC carcinogenesis. Subsequent analysis of the NIVOLUMAB-
treated cohort showed a significant positive correlation between P3H1 and
HAVCR2 in patients with PD, with no significant correlations observed in
SDpatients, while notably, P3H1 exhibited a significant negative correlation
with CTLA4 in patients showing PR. These findings underscore P3H1’s
potential as a biomarker for predicting responses to immune checkpoint
blockade in ccRCC patients treated with NIVOLUMAB.

The ceRNA regulatory network has been demonstrated to play a role in
the development and progression of cancers48. These networks involve
ncRNAs that regulate gene expression by competing for binding sites with
other RNAs49–51. In the current study, we employed bioinformatics analysis

Fig. 11 | The relationship between P3H1 expression and immune checkpoint
genes in ccRCC. The expression correlation of P3H1 with PDCD1 (PD-1), CD274
(PD-L1), CTLA4, PDCD1LG2 (PD-L2), TIGIT, HAVCR2 (TIM-3), and LAG3 in
ccRCC was investigated by TIMER (A), GEPIA (B), and the spearman correlation
analysis of TCGA data (C). D Correlation heat map between P3H1 and immune

checkpoints. E Association of P3H1 with immune checkpoint genes in 181 kidney
cancer patients treatedwith NIVOLUMAB in the CheckMate 025 (CM-025) cohort.
Association of P3H1 with immune checkpoint genes in PD (F), SD (G), and PR (H)
after NIVOLUMAB treatment in the CheckMate 025 (CM-025) cohort.
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of gene chip data to construct a comprehensive ceRNA network for P3H1
deletion, which is involved in regulating ccRCC proliferation.We identified
several ncRNAs, including miR-10a-5p, miR-660-5p, GAS5, and SNHG3,
which have been previously investigated in cancer or specifically in
KIRC52–55. Notably, miR-10a-5p and miR-660-5p, known tumor sup-
pressors, are significantly downregulated in ccRCC, with their low expres-
sion correlatingwith increased cellmigration, invasion, andproliferation55,56.
This research aims to uncover novel regulatory mechanisms of P3H1 in
cancer biology and to lay the groundwork for future studies on personalized
treatment strategies and prognostic biomarkers for ccRCC patients.

Our study has several limitations. Firstly, the findings are based
on bioinformatics analysis and need validation through further
experimental research. While the bioinformatics analysis provided
valuable insights into the relationship between P3H1 expression and
ccRCC prognosis, immune infiltration, immune checkpoints, and
drug sensitivity, the results should be interpreted with caution until
confirmed by experimental studies. Additionally, this study focused
solely on P3H1 expression in ccRCC, and it remains unclear whether
these findings are generalizable to other types of cancer. Further
research is needed to investigate the role of P3H1 in various cancer
types and to validate our findings in experimental models.

This study employs a multidimensional approach integrating vitro
assays and multi-omics bioinformatics analyses to investigate P3H1’s
impact on ccRCC prognosis, immune modulation, immune checkpoints,
ceRNA regulatory network, drug sensitivity, and therapeutic responses,
aiming to uncover new insights into its therapeutic potential and inform
future clinical strategies.

Data availability
All data are obtained in the article.
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