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Abstract

Regenerative medicine offers potentially ground-breaking treatments of blindness and low

vision. However, as new methodologies are developed, a critical question will need to be

addressed: how do we monitor in vivo for functional success? In the present study, we

developed novel behavioral assays to examine vision in a vertebrate model system. In the

assays, zebrafish larvae are imaged in multiwell or multilane plates while various red, green,

blue, yellow or cyan objects are presented to the larvae on a computer screen. The assays

were used to examine a loss of vision at 4 or 5 days post-fertilization and a gradual recovery

of vision in subsequent days. The developed assays are the first to measure the loss and

recovery of vertebrate vision in microplates and provide an efficient platform to evaluate

novel treatments of visual impairment.

Introduction

Visual impairment has been estimated to affect 285 million people worldwide; 246 million

people have low vision and 39 million people are blind [1]. While visual impairment is gener-

ally irreversible, it may be possible to treat blindness and low vision using novel methodologies

in regenerative medicine. Phase I and Phase II clinical trials are in progress using stem cell-

based therapies to treat retinal disease [2]. In addition, comparative studies in vertebrate

model systems have provided a better understanding of the signaling pathways that regulate

regenerative neurogenesis and these signaling pathways may be used to stimulate endogenous

regeneration of the visual system [3,4]. However, as novel methodologies are developed, a criti-

cal question will need to be addressed: how do we monitor in vivo for functional success?

The analysis of visually-guided behaviors in zebrafish larvae provides an effective approach

to examine visual function. The development, anatomy and physiology of the visual system is

highly conserved in vertebrate species and zebrafish larvae have a cone-dominated retina for

full-color vision [5,6]. Hundreds of embryos can be collected from the bottom of a tank on a

daily basis. The larvae hatch from their chorion around 3 days post-fertilization (dpf) and have

a functional visual system at 5 dpf [6]. By analyzing visually-guided behaviors in zebrafish lar-

vae, it is possible to detect functional defects, even when the visual system appears normal by

morphological criteria. For example, specific visual defects have been identified by measuring
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the optokinetic response (OKR) and optomotor response (OMR). In the OKR assay, zebrafish

larvae are immobilized inside a cylindrical drum with rotating black and white stripes. The

eyes of the larvae follow the stripes, a response that gradually develops between 3–4 dpf and

can be reliably measured at 4–5 dpf [7,8]. OKR assays have been used in zebrafish mutagenesis

screens to identify a broad range of genes important for vision [7,9,10,11]. In OMR assays, zeb-

rafish larvae are placed in elongated swimming tracks and are then presented with moving

black and white or colored stripes [11,12,13]. The larvae swim in the same direction as the

moving stripes, a response that can be reliably measured at 6–7 dpf [11,13]. Similar to OKR

assays, OMR assays have been used in mutagenesis screens to identify a wide variety of genes

important for vision [10,11]. The behavior of zebrafish larvae can be examined in microplates

with commercially available imaging systems, providing unique opportunities for high-

throughput applications. Imaging systems such as the ZebraBox from ViewPoint and Danio-

Vision from Noldus are equipped with infrared lights for imaging zebrafish larvae and white

lights for studying light-dependent locomotor responses [14,15,16,17]. However, these micro-

plate imaging systems are not equipped for a display of more complex visual stimuli.

In the current study, we present several novel assays for measuring visually-guided behav-

iors in microplates. In the assays, zebrafish larvae are imaged in multiwell or multilane plates

while moving objects are presented to the larvae on a computer screen. The developed assays

were used for measuring a loss and recovery of visual function in zebrafish larvae. The devel-

oped assays are the first to measure the loss and recovery of vertebrate vision in microplates

and provide an efficient platform to evaluate novel treatments of visual impairment.

Materials and methods

Ethics statement

Zebrafish larvae were anesthetized with Tricaine (also known as MS-222) during the UV expo-

sure at 5 days post-fertilization. The use of zebrafish in our studies is in compliance with fed-

eral (PHS, USDA) and international (AAALAC) guidelines and has been approved by Brown

University’s Institutional Animal Care and Use Committee (IACUC).

Zebrafish

Adult wild type zebrafish (Danio rerio) were originally obtained from Carolina Biological and

have been maintained at Brown University as a genetically diverse outbred strain. Zebrafish

spawn in the morning when kept on a 14 hr light, 10 hr dark cycle in a mixed male and female

population. A few tanks with adult fish will produce hundreds of embryos on a daily basis.

Zebrafish embryos from 0–3 days post-fertilization (dpf) and zebrafish larvae from 3–7 dpf

were grown at 28.5˚C on a 12 hour light / 12 hour dark cycle in egg water, containing 60 mg/l

sea salt (Instant Ocean) and 0.25 mg/l methylene blue in deionized water. The embryos and

larvae were grown in 2L culture trays and were assigned randomly to different experimental

groups prior to experimental manipulation or imaging. The sex of embryos and larvae cannot

be determined at these early stages, since zebrafish use elusive polygenic factors for sex deter-

mination and both males and females have juvenile ovaries between 2.5 and 4 weeks of devel-

opment [18]. Zebrafish larvae were imaged at 4–7 dpf when the larvae use nutrients that are

available in their yolk sac and display a range of locomotor behaviors. The larvae are approxi-

mately 4 mm long during this period. The larvae are euthanized using an overdose of tricaine

(0.04% w/v, pH7). After 20 minutes, the euthanized larvae are transferred to a container with

bleach (sodium hypochlorite 6.15%, diluted 1:5 in egg water).
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UV illumination

Visual defects were induced by UV illumination using a protocol adapted from Meyers et al.

2012 [19]. In short, 5 dpf zebrafish larvae were anesthetized with 0.012% tricaine (also known

as MS-222) pH7 and transferred to a GeneTools light box containing a cooled LED array,

which emits 900 mW of 365 nm light. After 5 min UV illumination, larvae were washed in egg

water and were allowed to recover from the anesthesia for 2 hours prior to the analysis of visu-

ally-guided behaviors. As controls, larvae were left untreated or were exposed to 0.012% tri-

caine, without UV-illumination, washed in egg water and were again allowed to recover from

the anesthesia for 2 hours prior to the analysis of visually-guided behaviors. The protocol for

UV illumination was modified for the rotating-cross assays. We increased the period of UV

illumination to 5½ minutes to further reduce visual responses at 5 dpf. In addition, we reduced

the tricaine concentration to 0.00025%, since preliminary experiments revealed effects of

higher tricaine concentrations in the behavioral assays.

Morpholino injections

To specifically suppress photoreceptor function, Pde6c signaling was knocked down by mor-

pholino injection. A pde6c morpholino designed by GeneTools (GCTATCCTTGTCTGCCA
TGTTTGAA) targets the translational start site of both pde6c transcripts in zebrafish (ENSD

ART0000016224.7 and ENSDART00000169073.1). The GeneTools standard control morpho-

lino (CCTCTTACCTCAGTTACAATTTATA) was injected as a negative control. The morpholi-

nos were dissolved in ultrapure water at a 1mM stock concentration and stored in the dark at

room temperature. Prior to injection, the morpholinos were diluted into an injection solution

containing 0.6 mM morpholino and 0.5 mM fluorescein dextran (MW 10,000) in ultrapure

water. Zebrafish embryos were injected at the 1 to 4 cell stage with 1–2 nl of the control or

pde6c morpholino. After injection, embryos were raised in a 50 ml Petri dish at 28.5˚C. All

embryos were screened at 1 dpf for fluorescein dextran fluorescence using a NightSea fluores-

cence system attached to a dissection scope.

Western blots

Embryos were deyolked in batches as outlined in Link et al. [20]. Briefly, 15–20 larvae

were placed in a 1.5ml Eppendorf tube. Egg water was removed and 1 ml deyolk buffer

(55 mM NaCl, 1.8 mM KCl, 1.25 mM NaHCO3) was added. Larvae were pipetted

through a p200 pipette tip to disrupt the yolk, and then agitated at 1100 RPM for 5 min-

utes. They were then centrifuged at 300g for 30 seconds. The larvae were then washed

twice by removing the deyolk buffer, adding 1mL wash buffer (110 mM NaCl, 3.5 mM

KCl, 2.7 mM CaCl2, 10 mM Tris-Cl pH8.5), agitating at 1100 RPM for for 2 minutes, and

centrifuging at 300g for 1 minute. After washes, all liquid was removed, and 4 ul 1x SDS

buffer (5% 2-Mercapto Ethanol, 2% SDS, 5% glycerol, 0.05 mM Tris pH 6.8, 0.017% Bro-

mophenol Blue in water) per larva was added. The samples were homogenized and 6 lar-

val equivalents of protein isolate was assayed. The blots were labeled with a rabbit-anti-

pde6c polyclonal antibody (Abcam ab198744) and a mouse-anti-alpha tubulin monoclo-

nal antibody (Sigma T6199). A HRP-conjugated goat-anti-rabbit polyclonal antibody

(Abcam ab6721) and a HRP-conjugated goat-anti-mouse polyclonal antibody (Abcam

ab97265) were used as secondary antibodies. The HRP label was imaged using a Super-

Signal (TM) West Pico PLUS Chemiluminsecent Substrate (Thermo Scientific 34579)

and an Azure c600 imaging system (Azure Biosystems).
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The zebrafish imaging system

Visually-guided behaviors were recorded using a zebrafish imaging system described previ-

ously [21,22], with minor modifications. The imaging system is housed in a 180 × 40 × 40 cm

cabinet. The top shelf of the cabinet holds an 18 megapixel Canon EOS Rebel T6 digital camera

with an EF-S 55–250 mm f/4.0–5.6 IS zoom lens. The camera is connected to a continuous

power supply (Canon ACK-E10 AC Adapter) and is controlled by a laptop computer using

Canon’s Remote Capture software, which is included with the camera. The software is set to

interval mode to acquire high-resolution images every 6 sec. The bottom shelf of the cabinet

holds a second laptop (Acer Aspire 5517) with a 15.6 inch LCD screen, which is used to pro-

vide visual stimuli to the larvae. The 15.6 inch LCD screen has a 1366 × 768 pixel resolution

and a brightness of 220 cd/m2. To avoid moiré patterns in the images, a plastic diffuser (Penda-

flex 52345) is placed on the LCD screen. The plates with the larvae are placed on top of the dif-

fuser approximately 10 minutes prior to imaging and the LCD screen warms the plates to 26˚C

(4˚C above ambient). The zebrafish imaging system can be duplicated on a limited budget and

can image 4 microplates simultaneously, while retaining sufficient resolution to identify the

location and orientation of zebrafish larvae. Brown University currently has 8 zebrafish imag-

ing systems set up in two laboratories, with a combined capacity of imaging 32 microplates

simultaneously. The scalable capacity of the system makes it possible to examine subtle visual

defects in more detail or initiate medium- to high-throughput applications. The imaging sys-

tem is unique in the display of complex visual stimuli in microplates.

Assays for visually-guided behaviors in 5-lane plates

The 5-lane plates were created as described previously [22,23]. Briefly, a one-well plate (Ther-

moFisher Scientific, Cat. No. 267060) is filled with 50 ml liquid agarose (0.8% agarose in

deionized water at 70–80˚C). A custom-designed 5-lane mold is placed on top of the agarose,

which gels as it cools down to room temperature. After removing the mold, the plate has 5

lanes that are each 70 mm long × 18 mm wide with 60˚ sloping edges to reach a 66 mm × 14

mm bottom at a 3.5 mm depth. The optics of the plate is optimal when each lane is filled pre-

cisely to the rim with egg water. Zebrafish larvae are transferred to the plates 20 min prior to

imaging. In the imaging system, visual stimuli are shown to the larvae as PowerPoint presenta-

tions. Our previous studies have shown that 5–7 dpf larvae avoid a red bar that moves up and

down in the upper half of a 5-lane plate [22,23]. The current study introduces the following

new assays for 5-lane plates. 1) The bar-dots assay: in this assay larvae are imaged for 15 min

on a white background, 15 min with a moving red bar in the upper half of a lane, and 15 min

with 0.5 mm red dots moving up in a lane (S1 File). 2) The two-bar assay: in this assay larvae

are imaged for 15 min on a white background, 15 min with a moving red bar in the upper half

of a lane, and 15 min with a moving red bar in the lower half of a lane (S2 File). 3) The 4x

repeated two-bar assay: in this assay larvae are imaged for 20 min on a white background, 10

min with a moving red bar in the upper half of a lane, and 10 min with a moving red bar in the

lower half of a lane. The two-bar sequence is shown to the larvae four times in a row (S3 File).

4) The bar-dots RGBY assay: in this assay larvae are imaged for 10 min on a white background,

10 min with a moving bar in the upper half of a lane, and 10 min with 1 mm dots moving up

in a lane. The blank-bar-dots sequence is shown to the larvae in red, green, blue and yellow (S4

File).

Assays for visually-guided behaviors in 6-well plates

The 6-well plates were created as described previously [21]. In summary, the wells of a 6-well

plate are filled with 5 ml liquid agarose (0.8% agarose in deionized water at 70–80˚C). After
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the agarose solidifies, a plastic vial is used to stamp a 27 mm diameter × 5 mm deep hole in the

agarose. The optics of the plate is optimal when each well is filled with egg water precisely to

the rim of the agarose. Zebrafish larvae are transferred to the wells 20 min prior to imaging.

The current study introduces the following new assays for 6-well plates. 1) Rotating spectral

cross assay: larvae are imaged for 20 min on a light background, 10 min with a cross that

rotates in a clockwise direction, and 10 min with a cross that rotates in a counter-clockwise

direction. The pair of rotating crosses are shown to the larvae in red, green, blue, yellow, and

cyan and rotate at 90˚/5 sec which corresponds to 3 rounds per minute. The background is set

to a light gray for optimal color separation during the image analysis (S5 File). 2) The 4x

repeated red cross assay: larvae are imaged for 20 min on a light gray background, 10 min with

a red cross that rotates in a clockwise direction, and 10 min with a red cross that rotates in a

counter-clockwise direction. The two-cross sequence is shown to the larvae four times in a

row and crosses rotate at 3 rounds per minute (S6 File).

Image analysis

Acquired images were analyzed in ImageJ using a custom-developed macro. This macro (ver-

sion 26bc) can analyze four microplates, with multiple treatment groups and changing visual

stimuli over time. The software asks the user to enter information about the wells and the peri-

ods with different visual stimuli. It opens the first image, splits the color channels, and selects a

channel in which the visual stimuli and background have similar intensities. It then subtracts

the background, applies an auto-threshold for individual wells, carries out a particle analysis

on individual wells, and logs various parameters of the larvae in a ‘Results’ file. This process is

automatically repeated for all subsequent images in a series. The Results file is then sorted

based on well number and imported into a MS Excel template. This template compares the lar-

val centroids with the center of the lane to determine if a larva is located ‘up’ or ‘down’ in the

lane. The template also compares the larval centroids with the larval center of the ‘bounding

box’ to determine the larval orientation in specific quadrants of the well. For example, a larva

is considered to have a clockwise orientation if it faces up (±45˚) or right (±45˚) in the top-left

quarter of a well. The ImageJ macro (S7 File) and MS Excel template (S8 File) are available in

the supplementary information and future updates will be posted on Brown University’s zeb-

rafish website: https://www.brown.edu/research/projects/zebrafish/ The automated image

analysis contributes to an unbiased approach in studying visually-guided behavior. For exam-

ple, effects of observer bias and observer fatigue can be avoided.

Statistical analysis

The obtained results were averaged in MS Excel. To assure that all data points are independent,

even in wells with multiple larvae, we analyzed the data on a per well basis (n = number of

wells). Within each well, we consider all ‘larval measurements’ equally. For example, a well

with 5 larvae imaged for 10 minutes at 10 frames per minute, will provide 500 larval measure-

ments, which are averaged as a whole. The averaging over a 10 minute period reduces variabil-

ity between wells and makes it possible to obtain reliable data with a relatively low number of

larvae. However, it is possible to analyze the data at shorter intervals, which could provide

additional information on changes within the 10 minute period. The percentage of larval mea-

surements in the upper half of the lane (% up) and the percentage of larval measurements with

a clockwise orientation (% cw) have a normal distribution. Differences in % up and % cw were

tested for significance using a two-tailed t-test with unequal variance. The calculated p-values

were adjusted with a Bonferroni correction for multiple comparisons. Differences in behavior

were considered significant when p<0.01. When differences in behavior were significant at a
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95% confidence limit (p<0.05), the results were described in the text, but not indicated with

an asterisk in the graphs. The conservative Bonferroni correction and stringent p-value help to

avoid type I errors (false positives), which is important in assay development. For repeated

measures over time, we used a one-way repeated measures analysis of variance (ANOVA) with

stimulus acting as the independent variable and %up or %cw as dependent variables, with a

Greenhouse-Geisser correction when sphericity was violated. All ANOVAs were carried out

using IBM SPSS Statistics 24.

Code availability

The ImageJ macro and MS Excel template for automated analyses of behavior are included in

the supplementary information.

Data availability

The original imaging data is available upon request. The PowerPoint files with visual stimuli

are included in the supplementary information.

Results

Automated analysis of behavior

Visually-guided behaviors were measured using a custom-built imaging system for automated

analyses of behavior [21,22]. This imaging system is easy to use, can be built on a limited bud-

get and makes use of open-source software for image analysis (Fig 1). Images are acquired

using an 18 megapixel Canon camera and visual stimuli are shown to zebrafish larvae as

PowerPoint presentations on a computer screen. In the current study, we developed a new

ImageJ macro and MS Excel template for automated analyses of microplates with changing

visual stimuli over time. The macro includes dialog boxes and algorithms for the identification

of experimental groups and periods with different visual stimuli. The imaging system and soft-

ware make it possible to measure the location and orientation of larvae in a set of four micro-

plates, while moving objects with different colors are presented to the larvae.

Assays for visually-guided behaviors in 5-lane plates

Several new assays were developed to examine vision of 5 day-old zebrafish larvae in 5-lane

plates (Fig 2). These assays expand on previous studies, which showed that zebrafish larvae

avoid a moving red bar [22,23]. We first developed a ‘bar-dots assay’, which combines a red

bar that moves up and down in the upper half of the plate with an array of red dots that move

continuously up in the plate (Fig 2A). We found that the larvae avoid the area with the moving

bar and swim in the same direction as the moving red dots (Fig 2C). The responses to the two

visual stimuli differ significantly and this difference may be used as a robust measure of vision

(p = 5x10-11, n = 10 lanes). In a second assay, called the ‘two-bar assay’, we showed a moving

red bar in the upper half of the plate followed by a moving red bar in the lower half of the plate

(Fig 2B). In this assay, larvae avoid the areas with the moving bars (Fig 2D) and larval locations

differ significantly in response to the first and second bar (p = 4x10-6, n = 10 lanes). The bar-

dots and two-bar assays described above were carried out using two 5-lane plates with 5 larvae

per lane (50 larvae total). To examine if reliable results can be obtained with a lower number of

larvae, we imaged two 5-lane plates with one larva per lane (10 larvae total). The same experi-

ment was carried out twice without averaging the results, which allowed for an evaluation of

the assay with only 10 larvae. Visual responses were examined in a ‘4x repeated two-bar assay’,

which includes a moving red bar in the upper half of the plate (bar 1) and a moving red bar in
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the lower half of the plate (bar 2), shown to the larvae four times in a row (Fig 2E). We tested

the effect of stimulus on %up in experiment 1 and experiment 2 by performing a repeated

measures ANOVA. We found that in both cases the stimulus had a significant effect on % up

at a critical value of p = 0.05 with a Greenhouse-Geisser correction for sphericity (experiment

1: F(2.955,26.594) = 11.667, p = 4.9 x 10−5 and experiment 2: F(3.655,32.893) = 3.622,

p = 0.017). The measurements with 1 larva per lane are not as robust as the measurements

with 5 larvae per lane, which may be expected since the experiments with 1 larva per lane con-

tain 5x fewer observations than the experiments with 5 larvae per lane. Group effects with 5

larvae per lane are unlikely, since robust shoaling behaviors are only observed later in develop-

ment [24,25]. S1 Table provides a summary of the assays at 5 dpf. In addition, we examined if

the 4x repeated two-bar assay could be used to detect visual responses in younger larvae, at 4

dpf. In this experiment, two 5-lane plates were imaged using 5 larvae per lane and significant

differences were observed when comparing the average of all bar 1 and bar 2 periods

(p = 4x10-8, n = 10 lanes). Overall, the results in the 5-lane plates suggest that robust measure-

ments of vision can be obtained at 4 and 5 dpf.

Fig 1. Imaging system for automated analyses of behavior. a) Imaging cabinet. b) Canon EOS Rebel T6 camera for

acquisition of 18 megapixel color images. c) Four microplates with zebrafish larvae on the screen of a laptop. Visual stimuli

are shown to the larvae using PowerPoint presentations. d) Four 5-lane plates without visual stimuli. e) Four 5-lane plates

with a moving red bar. f) Four 6-well plates without visual stimuli. g) Four 6-well plates with a rotating red cross. h) The

acquired images are analyzed in ImageJ. i) An ImageJ macro was developed for the automated analysis of large imaging

files. The macro opens the first image, splits the color channels, selects a channel in which the visual stimuli and background

have similar intensities, subtracts the background, applies a threshold, carries out a particle analysis, logs the measured

coordinates, and automatically repeats this process for subsequent images in the series. j) Well with an agarose ring, a red

cross and a 5 day-old zebrafish larva. k) The same well in the red channel after background subtraction and a threshold for

dark objects. The acquired images showing four plates have sufficient resolution for measuring the location and the

orientation of individual larvae. Scale bar = 1 cm.

https://doi.org/10.1371/journal.pone.0183414.g001
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Assays for visually-guided behaviors in 6-well plates

Novel ‘rotating cross’ assays were developed to examine vision of zebrafish larvae in 6-well

plates (Fig 3). As a visual stimulus, we created a cross, which first rotates in a clockwise direc-

tion and then in a counter-clockwise direction. The rotating cross was colored red, green,

blue, yellow, or cyan (Fig 3A) and is shown on a light gray background for optimal color sepa-

ration during the image analysis. We found that 5 day-old zebrafish larvae display a clockwise

orientation when the cross rotates clockwise and display a counter-clockwise orientation when

the cross rotates counter-clockwise (Fig 3B). This change in larval orientation is robust in all

colors (e.g. p = 1x10-15 in red, p = 1x10-12 in green, p = 1x10-11 in blue). To examine if reliable

results can be obtained with a lower number of larvae, we imaged two 6-well plates with one

larva per well (12 larvae total). The same experiment was carried out twice without averaging

the results, which allowed for an evaluation of the assay with only 12 larvae. In these experi-

ments, we showed a red cross rotating clockwise followed by a red cross rotating counter-

clockwise and repeated this sequence four times (Fig 3C). We tested the effect of stimulus on

clockwise orientation in experiment 1 and experiment 2 by performing a repeated measures

ANOVA. We found that in both cases the stimulus had a significant effect on the percent

clockwise at a critical value of p = 0.05 with a Greenhouse-Geisser correction for sphericity in

experiment 2 (experiment 1: F(8,88) = 4.843, p = 5.4 x 10−5 and experiment 2: F(4.258,46.833)

= 8.480, p = 2.2 x 10−5). S1 Table provides a summary of all assays at 5 dpf, using 10–60 larvae

per experimental group. In general, the table indicates that one needs 12 larvae per experimen-

tal group to measure significant visual responses. However, the assays become substantially

Fig 2. Visual stimuli in 5-lane plates. a) In the bar-dots assay, larvae are imaged for 15 min without visual stimuli, 15 min

with a moving red bar and then 15 min with moving red dots. b) In the two-bar assay, larvae are imaged for 15 min without

visual stimuli, 15 min with a moving red bar and then 15 min with a moving red bar in the opposite half of the plate. c)

Measurements of larval location in the bar-dots assay. d) Measurements of larval location in the two-bar assay. e)

Measurements of larval location using 1 larva per lane and a 4x repeated two-bar stimulus (10 min per bar). Differences in

larval location were tested for significance using a two-tailed t-test with unequal variance and a Bonferroni correction for

multiple comparisons when only pairwise comparisons were considered (c,d). A repeated measures ANOVA was performed

to test the effect of stimulus on the %up for 4x repeated two-bar stimulus study. When sphericity was violated, a Greenhouse-

Geisser correction was used (e). To assure that the data points are independent, even when using 5 larvae per lane, the data

was analyzed on a per-lane basis (n = 10 lanes). All larvae were imaged at 5 dpf. % up = percentage of larval measurements in

the upper half of a lane. The arrows indicate the movement of the visual stimuli.

https://doi.org/10.1371/journal.pone.0183414.g002
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more sensitive using 50–60 larvae per experimental group. We also examined if a 4x repeated

rotating red cross assay could be used to detect visual responses in younger larvae, at 4 dpf. In

this experiment, two 6-well plates were imaged using 5 larvae per well and significant differ-

ences were observed when comparing the average of all clockwise and counter-clockwise peri-

ods (p = 4x10-11, n = 12 wells). Since the larvae are located only a few millimeters away from

the computer screen, the larvae will view the visual stimuli differently than a distant observer.

For example, an approaching arm of the rotating cross and an approaching bar in the multi-

lane plates may look similar from the viewpoint of a larva. The main differences between the

assays are the measurement of larval location (multilane plates) vs. larval orientation (6-well

plates) and the shape of the swimming area. In multilane plates, larvae typically swim away

from the moving bar until they reach a corner at the end of the lane. In contrast, larvae in

6-well plates do not have an endpoint, as they can continue to swim around in the well. Based

on the results in 6-well plates, we conclude that robust measurements of vision can be obtained

with the rotating cross assay using either 5 larvae per well or using 1 larva per well with

repeated visual stimuli.

UV-induced visual defects examined in 5-lane plates

The 5-lane plates were used to examine visual defects and the recovery from these defects.

Visual defects were induced at 5 dpf by UV illumination, using a protocol adapted from

Meyers et al. (2012) [19]. The larvae were anesthetized with tricaine during a 5 min UV-illumi-

nation period and tricaine-treated larvae, without UV illumination, were used as controls. Lar-

vae from both groups were washed in egg water and allowed to recover from the anesthetic for

2 hours prior to the behavioral assays. Visual defects were first examined in 5-lane plates, with

5 larvae per lane, using a modified bar-dots assay carried out in red, green, blue and yellow

(Fig 4). The tricaine-treated control larvae displayed clear visual responses in red, green, blue

and yellow at 5, 6 and 7 days post-fertilization (dpf). In each of these cases, we confirmed that

Fig 3. Visual stimuli in 6-well plates. a) View of a single well in a 6-well plate. b) Rotating cross assay using 5 larvae per

well. c) Rotating red cross assay using 1 larva per well. In each color, the cross first rotates 10 minutes clockwise (cw) and

then 10 minutes counter-clockwise (ccw). R, G, B, Y, C = red, green, blue, yellow, cyan. % CW = the percentage of

measurements in which larvae display a clockwise orientation. Differences in the response to cw and ccw visual stimuli were

tested for significance using a two-tailed t-test with unequal variance (n = 12 wells) and a Bonferroni correction for multiple

comparisons when only pairwise comparisons were considered (a,b) A repeated measures ANOVA was performed to test the

effect of stimulus on the % CW for 4x repeated two-bar stimulus study. When sphericity was violated, a Greenhouse-Geisser

correction was used (c).

https://doi.org/10.1371/journal.pone.0183414.g003
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the response to the bar was significantly different from the response to the dots (p<0.01,

n = 10 lanes). UV-illuminated larvae did not respond to visual stimuli in any color at 5 dpf

(Fig 4A), consistent with prior studies showing a destruction of photoreceptor cells by high-

intensity light [19]. At 6 dpf, the UV-illuminated larvae showed a gradual recovery of vision,

i.e. the larvae displayed a significant visual response in red, green and yellow (Fig 4B). These

responses are lower than the responses observed in the controls (p<0.01 in all colors), indicat-

ing that the recovery of vision is incomplete at 6 dpf. At 7 dpf, the UV-illuminated larvae show

a significant visual response in red, blue and yellow (Fig 4C). The visual response in red, green

and yellow is suppressed in the UV-illuminated larvae compared to the tricaine-treated

Fig 4. Effects of UV illumination examined in 5-lane plates. a) UV-illuminated larvae display a strongly

reduced visual response at 5 dpf. b) Partial recovery of the response to visual stimuli at 6 dpf. c) Near

complete recovery of the response to visual stimuli at 7 dpf. R, G, B, Y = red, green, blue, yellow. Black * =

p<0.01, bar vs. dots in control larvae (exposed to tricaine without UV illumination). Red * = p<0.01 bar vs. dots

in UV-illuminated larvae (two-tailed t-test with unequal variance, n = 10 lanes). The 5-lane plates contained 5

larvae per lane.

https://doi.org/10.1371/journal.pone.0183414.g004
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controls (p<0.01, p<0.05, p<0.01, respectively) indicating that the recovery of vision still

incomplete at 7 dpf.

UV-induced visual defects examined in 6-well plates

We used the rotating-cross assay in 6-well plates to examine UV-induced visual defects and

the recovery from these defects. The rotating cross assay was carried out with 5 larvae per well

as shown in Fig 3B. Untreated and tricaine-treated control larvae showed a robust response to

all colors at 5, 6, and 7 dpf (Fig 5). In each color, the response to the cross rotating clockwise

was significantly different from the response to the cross rotating counter-clockwise (p<0.01,

n = 12 wells). UV-illuminated larvae did not display a significant response to the visual stimuli

in any color at 5 dpf (Fig 5A). To examine if UV illumination affects motor performance, we

analyzed the average swim speed during the first 20 minutes of the experiment without visual

stimuli. We found that UV illumination does not have a significant effect on swim speed (6

mm/min in the tricaine controls (N = 11 wells, 55 larvae, SEM = 1.82) vs. 5 mm/min in the

UV exposure group (N = 10 wells, 50 larvae, SEM = 0.81), p = 0.53, two tailed t-test). Thus, the

UV-treatment affects the response to visual stimuli, but does not affect swim speed in 5 dpf lar-

vae. UV-treated larvae did not display a significant response to visual stimuli at 6 dpf. How-

ever, a partial recovery of vision was observed at 7 dpf. The 7 dpf larvae displayed a significant

visual response in red, green, blue and cyan, but not in yellow (Fig 5C). The response in red,

blue, yellow and cyan was reduced in the UV-illuminated larvae as compared to the tricaine-

treated controls (p<0.01, p<0.05, p<0.05, p<0.01, respectively), indicating that the recovery

of vision still incomplete at 7 dpf. Based on these results, we conclude that the rotating cross

assay is an efficient tool to examine UV-induced visual defects and the gradual recovery from

these defects.

Visual defects induced by pde6c knockdown

A specific defect in visual function was induced by morpholino-mediated knockdown of the

phosphodiesterase Pde6c, a key signal transduction protein in retinal cone cells [26]. Previous

studies have shown that low morpholino concentrations are effective in the zebrafish retina at

4 dpf, but not at 5 dpf, which allows one to examine a loss and recovery of visual function [27].

We examined Pde6c protein levels in 4 dpf larvae by Western blotting (Fig 6A). We found

Pde6c protein levels are reduced 49% in pde6c morpholino-injected larvae as compared to

control morpholino-injected larvae (ratiometric measurements with Tubulin protein levels in

the denominator). These results indicate that the pde6c morpholino is effective in knocking

down Pde6c levels. Visual defects were examined using 1 larva per well and the 4x repeated

rotating red cross assay, starting at 4 dpf. Larvae injected with control morpholinos displayed a

robust response to each of the four pairs of rotating red crosses at 4 dpf [F(4.468,151.914) =

8.007, p = 2.7x10-6, with Greenhouse-Geisser correction for sphericity violation] and 5 dpf [F

(5.787,196.756) = 37.813, p = 1.1x10-29, with Greenhouse-Geisser correction for sphericity vio-

lation] (Fig 6). In each pair of crosses, the response to the cross rotating clockwise was signifi-

cantly different from the response to the cross rotating counter-clockwise (p<0.01). The pde6c

morpholino-injected larvae did not display a significant visual response at 4 dpf [F(4.983,

159.454) = 1.665, p = 0.146, with Greenhouse-Geisser correction for sphericity violation]. To

examine if pde6c morpholinos affect motor performance, we analyzed the average swim speed

during the first 20 minutes of the experiment without visual stimuli. We found that the pde6c

morpholino does not have a significant effect on swim speed (17 mm/min with the control

morpholino (N = 36 wells, 36 larvae, SEM = 3.00) vs. 18 mm/min with the pde6c morpholino

(N = 34 wells, 34 larvae, SEM = 3.64), p = 0.76, two-tailed t-test). Thus, pde6c morpholino-
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injected larvae display normal swim speeds at 4 dpf, but don’t respond to visual stimuli. At 5

dpf, the pde6c morpholino-injected larvae display a near complete recovery of vision [F

(4.925,157.589) = 21.992, p = 1.6x10-16]. Based on these results, we conclude that the 4x

repeated rotating red cross assay can be used to examine morpholino-induced visual defects

and the recovery from these defects.

Fig 5. Effects of UV illumination examined in 6-well plates. a) UV-illuminated larvae do not show a

significant response to visual stimuli at 5 dpf. b) Similarly, UV-illuminated larvae do not show a significant

response to visual stimuli at 6 dpf. c) Near complete recovery of vision at 7 dpf. Black * = p<0.01, cw vs. ccw

in unexposed control larvae. Blue * = p<0.01, cw vs. ccw in tricaine-exposed control larvae. Red * = p<0.01,

cw vs. ccw in UV-illuminated larvae (two-tailed t-test with unequal variance, n = 12 wells per experimental

group). R,G,B,Y,C = rotating cross in red, green, blue, yellow and cyan. cw = clockwise rotation of cross.

ccw = counter-clockwise rotation of cross. The 6-well plates contained 5 larvae per well.

https://doi.org/10.1371/journal.pone.0183414.g005
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Discussion

In the current study, we introduce new software and algorithms for automated analyses of

visually-guided behaviors and present novel assays for measuring vertebrate vision in micro-

plates. In addition, we used the developed methodologies to detect visual defects and the grad-

ual recovery from these defects.

The software was written as an open-source ImageJ macro and was designed for automated

analyses of microplates with multiple visual stimuli that change over time. With this macro, it

is possible to measure the location and orientation of larvae in a large field of view (4 micro-

plates per image), while various red, green, blue, yellow or cyan objects are presented to the lar-

vae. The developed software builds on a previously developed ImageJ macro that we developed

for automated analyses of zebrafish behavior in microplates [22,23]. However, the previously

developed macro was not suitable for automated analyses of multi-color experiments. Both the

Fig 6. Visual defects after pde6c knockdown. a) Effects of pde6c knockdown at 4 dpf. Pde6c protein levels

were suppressed by pde6c morpholino oligonucleotides (MO) as shown by Western blotting. b) The 4 dpf

control larvae displayed a significant visual response to the 4x repeated rotating red cross. In contrast, the

pde6c morpholino-injected larvae did not show a significant response to the visual stimuli. c) Effects of pde6c

knockdown at 5 dpf. The control larvae and pde6c larvae display a robust response to the rotating red cross at

5 dpf. Black * = p<0.01, cw vs. ccw in control larvae. Red * = p<0.01, cw vs. ccw in pde6c larvae (two-tailed t-

test with unequal variance for pairwise comparisons, n = 35 wells in the control group, n = 33 wells in the

pde6c group). R = red cross, cw = clockwise rotation of cross, ccw = counter-clockwise rotation of cross. The

average response to clockwise stimuli minus the average response to counter-clockwise stimuli is shown as a

separate point in the graph (cw-ccw). These averages are significantly different between the control and

pde6c groups at a 95% confidence limit (p<0.05). The 6-well plates contained 1 larva per well.

https://doi.org/10.1371/journal.pone.0183414.g006
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previously developed macro and the new macro presented in this study allow for the analysis

of microplates while objects are displayed to zebrafish larvae, which is not feasible using any

commercially-available imaging system.

The developed assays in 5-lane plates build on our previous studies showing that zebrafish

larvae avoid a moving red bar [22,23]. We found that the red bar assay can be substantially

improved by including additional visual stimuli. In the ‘bar-dots’ assay, 5 dpf larvae first swim

away from the moving bar into the lower half of the lane, and then swim in the same direction

as the moving dots into the upper half of the lane. These changes in larval location are robust

and provide a reliable measure of vision. Similarly, the two-bar assay and 4x repeated two-bar

assay can be used to drive 5 dpf larvae up and down a lane. In the ‘rotating cross’ assay in

6-well plates, larvae display a clockwise orientation when the cross rotates clockwise, and a

counter-clockwise orientation when the cross rotates counter-clockwise. In this assay, larvae

respond well to all colors tested, including red, green, blue, yellow and cyan on a light back-

ground. The rotating cross assay is robust and can be used to evaluate vision when a limited

number of larvae are available. The response of zebrafish larvae to moving objects may be used

in nature to avoid predators and capture prey, depending on the size of the object [28]. Thus,

the larvae may view the moving bar as a looming predator and the moving dots as prey. Zebra-

fish larvae are also known to maintain a fixed location in a water stream, which is the basis of

an orienting behavior in the optomotor response [29]. Similarly, the observed response to the

rotating cross may reflect an optomotor-related orienting behavior. The 4x repeated two-bar

assay and the 4x repeated rotating cross assays were used to reliably measure visual responses

early in development, at 4 dpf. Thus, larvae displayed a visual response to the moving bar and

rotating cross at same developmental stage as the optokinetic response, which can be reliably

measured at 4 dpf [7,8] and 2–3 days earlier than the optomotor response, which can be reli-

ably measured at 6–7 dpf [11,13].

The developed methodologies were used to measure a loss and recovery of vision. Visual

defects were induced at 5 dpf by UV-illumination, using an adapted protocol from Meyers

et al. [19]. These UV-illuminated larvae did not display a significant response to visual stimuli

in a multicolor bar-dots assay or a multicolor rotating cross assay. However, vision gradually

recovers in 1–2 days after UV-illumination. This rapid recovery of vision is consistent with

previous studies showing retinal regeneration following light-induced ablation of photorecep-

tor cells [19] and a rapid recovery of vision after cone photoreceptor ablation using a nitrore-

ductase system [30]. In the rotating cross assay, 7dpf larvae displayed a recovery of visual

responses in red, green, blue and cyan, but not in yellow. The suppressed response in yellow

could indicate a persistent UV-induced defect in blue photoreceptor cells, i.e. the yellow sti-

muli and light background are likely indistinguishable without seeing blue. Apart from the UV

illumination, we also used pde6c morpholinos to temporarily block photoreceptor function.

Pde6c is a signaling protein in cone photoreceptors and mutations in the pde6c gene lead to

visual defects in both zebrafish and humans [26]. Zebrafish larvae express pde6c in cone photo-

receptors and homozygous pde6c mutant larvae display a rapid degeneration of cone photore-

ceptors during early larval stages [26,31]. Electroretinograms and optokinetic assays revealed

that the pde6c mutant larvae are blind, consistent with the idea that early larval vision depends

on cone photoreceptors. Rods do not degenerate in pde6c mutant fish and an optokinetic

response can be observed at 3 weeks post-fertilization in low-light conditions [31]. We chose

to use morpholinos, instead of mutant fish lines, based on previous studies showing that mor-

pholino concentrations can be adjusted to affect the zebrafish retina at 4 dpf, but not at 5 dpf

[27]. While morpholinos can have off-target effects [32], the pde6c morpholinos effectively

suppressed Pde6c protein levels, did not affect baseline motor performance, and induced visual

defects at 4 dpf consistent with the mutant phenotype. In addition, we found that visual
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responses recover at 5 dpf, suggesting that pde6c morpholinos may be used to examine both

the loss and recovery of visual function.

Based on the obtained results, we conclude that the developed assays are efficient in mea-

suring the loss and recovery of visual function. The developed assays are the first to measure

the loss and recovery of vertebrate vision in microplates and provide an efficient platform to

evaluate novel treatments of visual impairment.
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