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Abstract: Kininogens are multidomain glycoproteins found in the blood of most vertebrates. High
molecular weight kininogen demonstrate both carrier and co-factor activity as part of the intrinsic
pathway of coagulation, leading to thrombin generation. Kininogens are the source of the vasoactive
nonapeptide bradykinin. To date, attempts to crystallize kininogen have failed, and very little is
known about the shape of kininogen at an atomic level. New advancements in the field of cryo-
electron microscopy (cryoEM) have enabled researchers to crack the structure of proteins that has
been refractory to traditional crystallography techniques. High molecular weight kininogen is a
good candidate for structural investigation by cryoEM. The goal of this review is to summarize the
findings of kininogen structural studies.
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1. Introduction

Kininogens or Fitzgerald factors are multidomain glycoproteins found in the blood
of most vertebrates [1–4]. The orthological proteins (kininogen-1, UniProt ID: P01042 for
human) are produced by splicing of the KNG1 gene transcript. High molecular weight
kininogen (HK) is one of the members of the kallikrein-Kinin system (KKS). Together with
coagulation factor (f)XI, the KKS form the contact activation system of blood coagulation
(CAS) or more commonly known as the intrinsic pathway of coagulation contributing to
thrombin generation primarily under pathologic conditions. CAS can operate indepen-
dently from the tissue factor (TF) extrinsic pathway (Figure 1). As a class, kininogens have
been studied for decades, nonetheless, the atomic arrangement of full length kininogen or
its fragments are still unknown for all species with no coordinates in Protein Data Bank
(PDB). A protein Basic Local Alignment Search Tool (BlastP) applied with human kininogen
amino acid sequence against PDB returns only proteins containing homologous cystatin
domains with identity around 30% (Table 1).

Table 1. Blastp results of human HK amino acid sequence against Protein Data Bank proteins.

Description Percent Identity 1 PDB Accession and Chain 2

Cleaved human fetuin-b in
complex with crayfish astacin

[Homo sapiens]
26.20 6SAZ B

Crystal structure of L68V
mutant of human cystatin C

[Homo sapiens]
29.73 3PS8 A

Human Cystatin C; Dimeric
Form With 3d Domain

Swapping [Homo sapiens]
30.63 4N6M A

Crystal structure of human
cystatin E/M [Homo sapiens] 29.73 1G96 A
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Table 1. Cont.

Description Percent Identity 1 PDB Accession and Chain 2

Crystal structure of
monomeric human cystatin C
stabilized against aggregation

[Homo sapiens]

31.48 4N6L A

N-Truncated Human Cystatin
C; Dimeric Form With 3D

Domain Swapping
[Homo sapiens]

28.57 3GAX A

Crystal structure of V57G
mutant of human cystatin C

[Homo sapiens]
27.84 1R4C A

Crystal structure of V57P
mutant of human cystatin C

[Homo sapiens]
28.83 6ROA A

Hinge-loop mutation can be
used to control 3D domain

swapping and
amyloidogenesis of human

cystatin C [Homo sapiens]

28.83 3S67 A

1 Percent identity is less than 30%. Cystatin domain homology is detected. None is HK fragment. 2 PDB according
to https://www.rcsb.org/, https://www.ebi.ac.uk/pdbe/ and https://pdbj.org/, accessed on 29 October 2021.
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Figure 1. Blood coagulation cascade. Roman numerals denote individual coagulation factors, the
letter “a” stands for the active form, other abbreviations are as in the text.

Moreover, entering the keyword “kininogen” in the database search engine returns only
structures containing polypeptide fragments referred to as “inserts of kininogen peptides”,
“peptides derived from kininogen” or bradykinin (BK) derived peptides (Table 2).

https://www.rcsb.org/
https://www.ebi.ac.uk/pdbe/
https://pdbj.org/
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Table 2. The best ten of 39 hits for searching “kininogen” keyword against RCSB PDB: https:
//www.rcsb.org/, accessed on 29 October 2021.

ID Title Released

4ECC Chimeric GST Containing Inserts of Kininogen Peptides 16 May 2012
4ECB Chimeric GST Containing Inserts of Kininogen Peptides 16 May 2012
6BFP Bovine trypsin bound to potent inhibitor 31 October 2018
4JD9 Contact pathway inhibitor from a sand fly 16 October 2013

6F3Y
Backbone structure of Des-Arg10-Kallidin (DAKD) peptide bound to
human Bradykinin 1 Receptor (B1R) determined by DNP-enhanced

MAS SSNMR
10 January 2018

6F3X
Backbone structure of Des-Arg10-Kallidin (DAKD) peptide in frozen
DDM/CHS detergent micelle solution determined by DNP-enhanced

MAS SSNMR
10 January 2018

6F3W Backbone structure of free bradykinin (BK) in DDM/CHS detergent
micelle determined by MAS SSNMR 10 January 2018

6O1S Structure of human plasma kallikrein protease domain with inhibitor 6 March 2019
6O1G Full length human plasma kallikrein with inhibitor 6 March 2019
6F27 NMR solution structure of non-bound [des-Arg10]-kallidin (DAKD) 10 January 2018

The purpose of this review article is to summarize the finding of structural studies
that involve kininogens and emphasize how a good-quality spatial structure would allow
for a better understanding of their role in disease and as therapeutic targets.

2. HK Biochemical and Evolutionary Characterization

The human high molecular weight kininogen (huHK) is a 626 amino acid glycoprotein
(devoid of signal peptide). The molecular mass is only 70 kDa, but because it undergoes nu-
merous post-translational modifications, the real mass is much higher and it run ~120 KDa
on SDS-PAGE under non-reducing conditions [1–4]. huHK circulates in plasma at a concen-
tration of approximately 70 µg/mL. The protein is mostly expressed by hepatocytes and se-
creted into the blood. huHK theoretical isoelectric point based on amino acid sequence was
calculated using Compute pI/Mw tool (https://web.expasy.org/compute_pi/, accessed
on 29 October 2021) to be 6.23, however the experimental reported pI is 4.9 ± 0.2 because
of high sialic acid content. The sialic acid constitutes almost 42% of HK molecular mass
content. A highly purified human kininogen has been established to be about 8.6 mol/mol
(50 kDa) [5]. This explains the discrepancy between the theoretical mass from the amino
acid sequence and the experimental values of HK weight.

In plasma, huHK circulates as non-covalent complex with PK [6–8]. Mouse plasma
studies as well as huHK case reports demonstrated an important carrier function of HK
where HK deficiency was accompanied with low PK levels [9]. Similar to its interaction
with PK, huHK also forms non-covalent complex with fXI (a PK homolog, produced by
duplication of the PK gene) [4,10–14]. There is enough huHK in the plasma to cover the
entire range of PK and fXI. In contrast to PK, the carrier properties of HK are not required
for maintaining fXI levels [10]. Kininogens, mostly HK, have many different biological
activities, including: the role in blood coagulation by helping to locate suitably plasma
prekallikrein (PK) and fXI next to fXII on negatively charged surfaces, inhibition of blood
platelets aggregation induced by thrombin and plasmin, and the liberation of vasoactive
peptide BK (Figure 1). BK manifests important physiological effects: smooth muscle
contraction, induction of hypotension, natriuresis and diuresis, and decrease in blood
glucose level. It is also a mediator of inflammation and causes and increase in vascular
permeability, release of mediators of inflammation like prostaglandins, stimulation of
nociceptors and has a direct and indirect cardioprotective effect [4].

HK is organized into distinct domains designated D1 through D6 that can be listed as
follows with the amino acid positions numbering: D1: 1–113, D2: 114–234, D3: 235–357, D4:
358–383, D5: 384–502, and D6: 503–626. The domains 1, 2, 3, 5 and 6 are roughly 120 amino

https://www.rcsb.org/
https://www.rcsb.org/
https://web.expasy.org/compute_pi/
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acids in length and Domain 4 is only 26 amino acids long. Domains 1 and 6 are connected
by a single disulfide bridge involving Cys 10 and Cys 596 [4] (Figure 2).
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Figure 2. (A) Human plasma kininogen showing alternative splicing products of KNG1 gene mes-
senger RNA–HK and LK. Both forms of protein have similar D1, D2, D3, and D4 domains, but dif-
ferent D5 domains. Domain 6 is absent in LK and the molecular weight of this form is lower than 

Figure 2. (A) Human plasma kininogen showing alternative splicing products of KNG1 gene
messenger RNA–HK and LK. Both forms of protein have similar D1, D2, D3, and D4 domains, but
different D5 domains. Domain 6 is absent in LK and the molecular weight of this form is lower than
that of HK. (B) Human HK amino acid sequence according to UniProt P01042 with the indication
of domains. N-terminus and C-terminus marked by corresponding letters. Disulfide (SS) bonds
between the respective domains are marked.

Some features and functions are recognized for these domains. Domains 1–3 belong
to a family of cysteine protease inhibitors (Cystatins, MEROPS inhibitor family I25, clan
IH) [6–9] and sequence homology can be simply searched based on human HK sequence
using online databases of protein domains like PFAM (http://pfam.xfam.org/, accessed
on 19 October 2021) [15–24], PROSITE (https://prosite.expasy.org/, accessed on 19 Octo-
ber 2021) [25–35] or SMART (http://smart.embl-heidelberg.de/, accessed on 19 October
2021) [36–39]. As cystatins-like domains their inhibitory action was confirmed experimen-
tally with inhibition of atrial natriuretic factor by D1 and inhibition of calpain and papain
(cysteine or thiol proteases) by D2 and D3, respectively. HK is cleaved at two positions in
D4 (the smallest domain of HK) by plasma kallikrein (protease form of PK) to release the
nonapeptide bradykinin (RPPGFSPFR) and the two-chain HKa. BK boosts vasodilation
and vascular permeability and can develop soft tissue swelling that can be life threatening
as that observed in hereditary angioedema [4].

D5 and 6 are vital for the contact pathway of blood coagulation. D5 is rich in histidine
motifs facilitating binding to the negatively charged surfaces anchoring PK and fXI in close
proximity to fXII. D6 contains overlapping stretches of amino acids that interacts in the
complex formation with the coagulation fXI and PK [40–43].

Human HKa run as a two bands on SDS-PAGE under reducing conditions correspond-
ing to a heavy, spanning amino acid residues 1–362 (D1–D3 and the first six amino acids of
the short Domain 4), and a light chain consisted 255 amino acids (D5 and D6). huHK is
heavily glycosylated with 3 N-linked carbohydrates on the heavy chain and 9 O-linked
carbohydrates in the light chain of huHK. Many of the carbohydrate derivatives in huHK
are sialic acid polymers [4,5]. Messenger RNA alternative splicing transcript of the KNG1
gene is translated into a smaller protein variant (70 kDa)–low molecular weight kininogen
(LK). LK has identical domains 1–4 as huHK albeit Domain 5 is shortened by 38 amino
acids in length and designated D5L while D6 is lacking. Digestion of LK by tissue kallikrein
(TK) liberates a 10 amino acid peptide KRPPGFSPFR-Lysyl-Bradykinin (LBK) which is
subsequently split to BK by the enzyme arginine aminopeptidase. LK is not involved in
blood clotting but can still inhibit the aggregation of blood platelets. Domain interaction of
HK has been reviewed extensively in Winter et al. (2020) publication [4].

http://pfam.xfam.org/
https://prosite.expasy.org/
http://smart.embl-heidelberg.de/
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Thanks to genome and transcriptome sequencing advancements, it is nowadays
known that a similar situation with KNG1 gene messenger RNA alternatively splicing
occurs not only in mammals, but also in reptiles, birds and amphibians, where HK and LK
share D1 through D4 domains, but have varied D5 domains. D6 was found in HK from all
tetrapods, suggesting HK carries PK in most terrestrial vertebrates. HK D5 is more mutable
and in amphibians, crocodilians, birds, and turtles it is shorter than in mammals and is
absent in lizards and snakes (Supplementary Figure S1A,B). Cartilaginous or ray-finned fish
kininogens are more like mammalian LK than to HK where D5 or D6 domains are absent.
Although kininogens are found in lobe-finned fishes, the coelacanth and the lungfish
have a D6 domain with short histidine-rich motifs corresponding to a more D5 domain
configuration. The appearance of HK in the lobe-finned fishes indicates an adaptation to
blood clotting activation upon contact with silica-rich soil or mud impurities, coinciding
with fXII appearance in the lungfishes, but fXII disappearance in birds and cetaceans where
contact with the soil is much less frequent may indicate that contact activation is not very
vital. Moreover, bird HK has shorter D5 domains (Domains 5 and 6 are important for the
contact), but it seems it is still needed for kinin generation, as well as in cetaceans, where
HK seems normal (Supplementary Figure S1), however, fXII and PK are not expressed
as corresponding DNA fragments are degraded, pseudogene and non-gene junk DNA
fragment, respectively [13]. Evolutionary and functional links between orthological HK
sequences can be enriched after solving the spatial structure for the human protein to
provide an adequate template for homology modeling.

3. The Importance of Kininogen in Civilization and Infectious Diseases

HK significance, beyond physiological BK production, is participation in thrombotic
disorders as it participates as cofactor for the contact activation system on many neg-
atively charged surfaces (e.g., silica, nucleic acids, polyphosphates of different origins,
misfolded proteins, collagen, bacteria, or viruses). Thrombosis and embolism are signifi-
cant problems connected to civilization diseases related to the circulatory system where
the role of HK should not be neglected. Thrombotic complications and coagulation dis-
orders appear frequently secondary to infections with various pathogens where contact
activation is triggered. BK released from HK during either contact activation or as part
of the KKS contribute to the pathology of many inflammatory diseases like hereditary
angioedema. Coronavirus SARS-CoV-2 the virus causing COVID-19 pandemic is known to
bind Angiotensin-Converting Enzyme 2 (ACE2). Such binding increases BK release which
promotes inflammation in the lungs, causing cough and fever, as well as further activation
of the coagulation and the complement system. Emerging thrombotic complications associ-
ated with COVID-19 infection and reports of post-vaccination thrombotic reactions indicate
the need to investigate the relationship within the hemostatic system, including contact
factors [44,45]. Understanding the structure of HK is important for a better understanding
of the changes and processes it undergoes not only in physiological state, but pathologi-
cal situations like thrombotic disorders accompanying various civilization and infectious
diseases, with the activation of the immune system, inflammation, and coagulation.

4. Literature Describing the Structure of Kininogen

Although images of huHK were made many years ago by transmission electron
microscopy (TEM) using various negative staining techniques, they do not shed much light
on the actual shape of the kininogen [3,13,14]. In the oldest work by Weisel et al. (1994) [3],
where TEM images of human kininogen were taken, the samples were applied to a substrate
from mica with tungsten shading and an 80 kV Philips 400 microscope was used to obtain
pictures at 60,000× magnification. Using the scale provided by the authors, 3 domains
of the kininogen seem to have a total of 130–180 Å, while one domain was 50–90 Å. In
this work, together with HK images, IgG antibodies (mass ~150 kDa, length 100–150 Å)
were visualized in some figures. Based on these data (Supplementary Figure S2), it can be
calculated that the length of the antibody is about 150 Å, and the kininogen associated
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with this antibody is ~180 Å long. Perhaps what the authors of this study showed were
not individual kininogen molecules, but rather their aggregates, where a single domain is
actually one kininogen molecule.

In 2001, Herwald et al. (2001) [44] used 5 µL of sample with a concentration of 5–19 µg
per mL in 50 mM Tris. HCl, pH 7.4 buffer plus 150 mM NaCl to carry negative stain
imaging on a glow discharged carbon-coated copper grids using JEOL 1200 EX 60 kV
transmission electron microscope. In this work, according to the scale given in some
figures, the cation-free (EDTA treated) or Mg2+ treated protein molecules have estimated
dimensions of 95 ± 30 Å (width) and 150 ± 30 Å (length) (Supplementary Figure S3A–C)
with two larger domains (55 ± 20 Å) and three smaller domains (35 ± 20 Å) of 130–150 Å,
and the substructure (subdomain) were visible. In the presence of Zn2+ ions, the protein
was more spherical and compact, with the dimensions reduced to 90 ± 30 Å (width) and
110 ± 30 Å (length) (Supplementary Figure S3D).

In 2009, Oehmcke, Mörgelin, and Herwald reported TEM images of HK [45], and
according to the image scale (Supplementary Figure S4), the molecule should have only
about 45 Å diameter. The internal structures corresponding to five to six domains were
visible in those images. The dimensions of a given domain are only 15–20 Å. The authors
did not describe the TEM methodology in the paper but referred to an earlier work by the
group [44], and they did not provide numerical dimensions. In this study, the scale appears
to underestimate the results and is not in agreement with previous reports.

In conclusion, based on the available literature with published TEM results of kinino-
gen, there is no clarity and consistency as to the size of this molecule and its domains. This
underscores the need for microscopic examination using more modern techniques than
those from more than a decade ago.

The failure to publish the structure of HK may be due to the difficulty of its crystal-
lization even in parts and inability to use the NMR technique, as the protein is too large.
Unfortunately, all classic structure prediction methods, based on homology, threading,
and de novo (ab initio), have failed. In the first two cases, it was due to the lack of ap-
propriate, similar enough templates, and in the last, it was due to the huge size of this
protein. Using new tools such as AlphaFold Protein Structure Database, a structure for
HK by DeepMind calculations de novo (https://www.alphafold.ebi.ac.uk/entry/P01042,
accessed on 19 October 2021) could be predicted (Figure 3) [46–49]. Unfortunately, despite
the solution of cystatin domains (D1–D3) with good model confidence, the other domains
of the protein have very low confidence and appear as almost unfolded floating chains,
and no glycans were present (Figure 3).
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A potential solution for this large 120 kDa protein containing many sugar residues
is the use of cryogenic electron microscopy (cryo-EM). This will omit the bottle neck in
traditional crystallography, as the formation of crystals is no longer needed. In contrast,
a sample of low concentration protein solution is frozen to cryogenic temperatures by
liquid ethane and fixed in an environment of thin film of vitreous ice to take electron
microscope pictures of plenty protein molecules in different random orientations. Such flat
two-dimensional images are classified and processed by powerful computers to generate
a three-dimensional structure [52–56]. Nowadays, available cryogenic microscopes with
sensitive detectors and appropriate software are available and enable the resolution of
some proteins at 1.22 Å using a 300 kV beam of electrons [52,53,55]. More common
and accessible dissemination of this technique should allow the solution of good-quality
kininogen structures.

5. Conclusions

Kininogens are important proteins playing a role in normal human physiology and
pathology. Kininogens are part of the intrinsic coagulation system and the kallikrein–kinin
systems and the source of the vasoactive nonapeptide BK. BK in turn has role in normal
physiology as well as in disease. Despite the knowledge of the primary structure and the
domain organization, still, there are no known spatial 3D structures of the whole proteins or
its individual domains. Developed and improved visualization techniques providing near
and/or atomic-level resolution provide the light at the end of the tunnel to resolve these
structures. The application of cryo-EM to determine the spatial structure of kininogens
will draw new frontiers in understanding the function of these proteins and open new
pathways for drug development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222413370/s1.
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