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BACKGROUND:  The preservation of the pelvic autonomic 
nervous system in total mesorectal excision remains 
challenging to date. The application of laparoscopy has 
enabled visualization of fine anatomical structures; 
however, the rate of urogenital dysfunction remains high.
OBJECTIVE:  To establish an artificial intelligence 
neurorecognition system to perform neurorecognition 
during total mesorectal excision.
DESIGN:  This is a retrospective study.
SETTING:  The study was conducted at a single hospital.
PATIENTS:  Intraoperative images or video screenshots of 
patients with rectal cancer admitted to the Department of 
Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, 
Sun Yat-sen University, between January 2016 and 
December 2023, were retrospectively collected.

MAIN OUTCOME MEASURE:  Mean intersection over 
union, precision, recall, and F1 of the model.
RESULTS:  A total of 1424 high-quality intraoperative 
images were included in the training group. The proposed 
model was obtained after 700 iterations. The mean 
intersection over union was 0.75, and it slowly increased 
with an increase in training time. The precision and 
recall of the nerve category were 0.7494 and 0.6587, 
respectively, and the F1 was 0.7011. The video prediction 
shows that the model achieves a high accuracy rate, 
which could facilitate effective neurorecognition.
LIMITATION:  This was a single-center study.
CONCLUSIONS:  The artificial intelligence model for real-
time visual neurorecognition in total mesorectal excision 
was successfully established for the first time in China. 
Better identification of these autonomic nerves should 
allow for better preservation of urogenital function, 
but further research is needed to validate this claim. 
See Video Abstract.

SISTEMA DE RECONOCIMIENTO CON INTELIGENCIA 
ARTIFICIAL DEL NERVIO AUTÓNOMO PÉLVICO DURANTE 
LA ESCISIÓN TOTAL DEL MESORRECTAL

ANTECEDENTES:  La preservación del sistema nervioso 
autónomo pélvico en la escisión mesorrectal total sigue 
siendo un desafío hasta la fecha. La aplicación de la 
laparoscopia ha permitido la visualización de estructuras 
anatómicas finas; sin embargo, la tasa de disfunción 
urogenital sigue siendo alta.
OBJETIVO:  Establecer un sistema de reconocimiento 
neurológico con inteligencia artificial para realizar 
el reconocimiento neurológico durante la escisión 
mesorrectal total.
DISEÑO Y ESCENARIO:  Este estudio retrospectivo se 
realizó en un solo hospital.
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PACIENTES:  Se recopilaron retrospectivamente 
imágenes intraoperatorias o capturas de pantalla de 
video de pacientes con cáncer de recto ingresados en el 
Departamento de Cirugía Gastrointestinal, del Hospital 
Memorial Sun Yat-sen, de la Universidad Sun Yat-sen, 
entre enero de 2016 y diciembre de 2023.
PRINCIPALES MEDIDAS DE VALORACIÓN:  Intersección 
media sobre unión, precisión, recuperación y F1 del 
modelo.
RESULTADOS:  Se incluyeron un total de 1424 imágenes 
intraoperatorias de alta calidad en el grupo de 
entrenamiento. El modelo propuesto se obtuvo después 
de 700 interaciones. La intersección media sobre la unión 
fue de 0,75 y aumentó lentamente con el aumento del 
tiempo de entrenamiento. La precisión y la recuperación 
de la categoría de nervio fueron de 0,7494 y 0,6587, 
respectivamente, y el F1 fue de 0,7011. A partir de la 
predicción del video, podemos observar que el modelo 
logra una alta tasa de precisión, lo que podría facilitar el 
neurorreconocimiento efectivo.
LIMITACIÓN:  Este fue un estudio de un solo centro.
CONCLUSIÓN:  El modelo de inteligencia artificial para el 
neurorreconocimiento visual en tiempo real en la escisión 
mesorrectal total se estableció con éxito por primera 
vez en China. Una mejor identificación de estos nervios 
autónomos debería permitir una mejor preservación de 
la función urogenital, pero se necesita más investigación 
para validar esta afirmación. (Traducción--Ingrid Melo)

KEY WORDS:   Artificial intelligence; Neurorecognition; 
Pelvic autonomic nervous system; Rectal cancer; Total 
mesorectal excision.

Colorectal cancer, the third most common diag-
nosed cancer globally and the second most 
common cancer in China, accounts for approx-

imately one-third to half of all rectal cancers (RCs).1–3 
Currently, total mesorectal excision (TME) and perioper-
ative chemoradiotherapy are the primary treatments for 
RCs.4,5 Because standardized and effective treatments have 
resulted in a 5-year survival rate of approximately 70% for 
all stages of RC,6 postoperative urogenital dysfunction due 
to nerve injury during TME needs immediate attention.7

The adequate preservation of the pelvic autonomic 
nerve (PAN) during TME remains challenging for GI sur-
geons; however, it mainly depends on the experience and 
expertise of the surgeons.8,9 The application of laparoscopy 
has enabled visualization of fine anatomical structures, 
such as the PAN, owing to their high resolution, magni-
fication, and stereoscopic imaging. However, urinary and 
sexual dysfunction rates after laparoscopic TME are 10% 
to 30% and 20% to 50%, respectively.10,11 Advancements 
in surgical equipment have not effectively assisted in the 

preservation of PAN. Inadequate visualization of the sur-
gical field owing to a physiologically narrow pelvis and 
intraoperative bleeding may increase the risk of nerve 
injury. The nerve is usually nonregenerative; therefore, 
the urogenital dysfunction resulting from nerve injury is 
often difficult to treat and greatly reduces the quality of life 
(QOL) of patients with RC.

In recent years, artificial intelligence (AI) has been 
widely used in the medical field, mainly through machine 
learning and image recognition.12–14 This technology has 
been used most frequently in lesser complex procedures, 
such as the use of GoNoGoNet for safe cholecystec-
tomy.15 Kolbinger et al16 confirmed the feasibility of AI in 
robotic-assisted rectal resection. However, due to low vis-
ibility and unclear differences from surrounding tissues, 
the recognition of PAN in RC through computer vision 
is still being explored. Kojima et al17 established recogni-
tion models of the hypogastric nerve and superior hypo-
gastric plexus through AI but did not target the pelvic 
plexus, pelvic splanchnic nerve (PSN), and neurovascu-
lar bundle (NVB). The recognition of the pelvic plexus is 
equally important for the preservation of urinary and sex-
ual function of patients with RC. AI can aid in the preser-
vation of nerve structures through rapid and more secure 
identification of autonomic nerves. Literature on whole 
PAN identification during TME is currently lacking.18 
Therefore, we aimed to establish an AI neurorecognition 
system (AINS) to identify whole PAN and perform neu-
rorecognition during TME by delineating intraoperative 
autonomic nerve images and machine learning.

MATERIALS AND METHODS

Study Design and Patients
This study was approved by the Ethics Committee of the 
Sun Yat-sen Memorial Hospital, Sun Yat-sen University. 
Data from patients with RC admitted to the Department of 
Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, 
Sun Yat-sen University, between January 2016 and 
December 2023 were retrospectively collected. Patients 
who met the following criteria were included in the study: 
1) aged 18 years or older, 2) presence of histopathologi-
cally confirmed RC, 3) history of 3-dimensional (3D) lap-
aroscopic TME surgery, and 4) availability of clear surgical 
screenshots or surgical videos.

Development of the AINS Algorithm
This algorithm includes 3 processing steps: data anno-
tation, data preprocessing, and model training and 
verification.

Data annotation. Intraoperative images or video screen-
shots of different patients recorded at 1920 × 1080p reso-
lution, which clearly shows the PAN, were collected. After 
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the exclusion of low-quality images, such as those with 
poor resolution, blurring, and bleeding, 1780 high-quality 
images were included. The images were randomly divided 
into training and validation groups in a ratio of 4:1 
(1424 images in the training group and 356 in the veri-
fication group). The PAN images in the training groups 
were delineated by a team of 2 experienced GI professors 
(with >10 years of experience). Annotations from profes-
sors contributed to the subsequent model construction. 
Disagreements between them were resolved by a third 
GI professor with 20 years of experience to determine the 
final neural delineation.

Data preprocessing. The similarity coefficients among 
images were computed using the OpenCV project, and 
the cutoff for deduplication was defined at 0.58. Images 
with a similarity coefficient greater than the cutoff value 
were removed from the model. The images were rotated 
at different clockwise rotation angles to introduce extra 
nerve variables and increase the robustness of the model 
to face different orientations. Mirroring included horizon-
tal, vertical, and central mirror images. This procedure can 
enrich the diversity of the data set and expose the model 
to different viewpoints of nerves, thereby increasing its 
generalizability.

Model Training and Verification
Model selection. DeepLabv3+, a series of semantic seg-
mentation algorithms proposed by the Google team 
that uses a grouped convolutional network to speed up 

recognition, was selected as the model architecture for 
this study.19,20 The core network adopted RestNet50_Vd 
(residual network), which is characterized by ease of opti-
mization and the ability to increase accuracy by adding 
considerable depth (Fig. 1).

Pretrained model. The Pascal VOC project was used for 
the pretrained model.21 The Pascal VOC data set includes 
30,000 images of eye identifiers and 80,000 objects in 20 
categories. Pretraining the model facilitates its learning of 
business characteristics.

Model verification. Parameters such as the mean inter-
section over union (mIOU), precision, recall rate, and F1 
index were calculated for model evaluation.

mIOU: An evaluation index of semantic segmentation that 
represents the average intersection ratio. The ratio of 
the intersection and union of the set of true values and 
predicted values. This value ranges between 0 and 1; the 
higher the value, the better the model.

Precision: This indicates the proportion of the true positive 
samples among the predicted positive samples.

Recall rate: Refers to the proportion of positive cases in the 
sample that were correctly predicted, which is similar to 
sensitivity.

F1 index: The F1 score was calculated as the harmonic mean 
of precision and recall, which is calculated using the 
following formula: 2 × precision × recall/(precision þ 
recall).
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FIGURE 1.   Schematic diagram of image sketching, model training, and model recognition. Conv = convolution, which is a mathematical 
operation used extensively in convolutional neural networks (CNNs). Concat = concatenation, which refers to combining feature maps from 
different layers or branches of a convolutional neural network (CNN) along the channel dimension. DCNN = deep convolutional neural 
networks, which is a type of deep learning model extensively used in computer vision tasks like image classification, object detection, and 
semantic segmentation
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To clarify the differences in recognition time and 
accuracy, the PAN region in the validation group images 
was delineated by a team of 2 younger GI surgeons (with 
<10 years of experience). The GI surgery professors used 
Likert scores to evaluate the recognition of model identi-
fication and delineation by young doctors (1: not delin-
eated, 2: identified a small part of the nerve, 3: identified 
most of the nerves, and 4: identified all nerves; Table 1). 
The younger surgeons’ annotations acted as an evaluation 
compared to those of the AINS.

A pathological examination was performed to con-
firm the accuracy of the neural output of the AINS. Nerve 
branches to the rectum from the pelvic plexus and the 
hypogastric nerve that were successfully identified by the 
model and within the standard TME resection range were 
marked during surgery using a small Hem-o-lok. After 
surgery, pathological examinations of the labeled tissues 
from the specimens were performed.

Statistical Analysis
The mIOU, precision, recall rate, and F1 index were calcu-
lated to evaluate the AINS model.16,18 The model parame-
ters were compared with those of young GI surgeons (<10 
years of experience). χ2 tests were used to compare the cat-
egorical variables between the 2 groups. The kappa con-
cordance test was used to analyze the consistency of neural 
annotation by 2 experienced GI professors. All statistical 
tests were performed using the R software (version 3.6.1). 
A p value of <0.05 indicated statistical significance.

RESULTS

A total of 1780 images were included and divided into 
training and validation groups in a ratio of 4:1; 1424 
high-quality images were included in the training group 
(the characteristic of patients from whom the images 
were obtained was supplemented in Table 2). The kappa 
value of consistency evaluation of GI professors on neu-
ral annotation was 0.78, indicating that interobserver 
agreement was strong. After 700 iterations, the current 
model was obtained, and the parameters are summarized 
in Supplemental Figure 1 at http://links.lww.com/DCR/
C439.

As shown in Figure 1, the mIOU of this training was 
0.75, which gradually increased with an increase in training 
time. The precision of the background category was 0.9754, 
which is relatively ideal, whereas the precision of the nerve 
category was 0.7494. The recall rate of the background cat-
egory was 0.9840 and that of the nerve category was 0.6587. 
Accordingly, the F1 index of our model was 0.7011. The 
recognition results outlined by the professor in comparison 
to our model are shown in Figure 2, Supplemental Figure 
2 at http://links.lww.com/DCR/C440, and Supplemental 
Figure 3 at http://links.lww.com/DCR/C441.

Pathological Examination
Pathological examinations of the labeled tissues were per-
formed to confirm that the tissue recognized by the model 
was a nerve (see Supplemental Fig. 4 at http://links.lww.
com/DCR/C442). We only made corresponding judg-
ments during surgery when suspected nerve invasion 
or rare autonomic nerve branches to the rectum were 
detected. In this study, a total of 17 patients were identi-
fied, including 14 cases of autonomic nervous system, 2 
cases of small blood vessels, and 1 case of membrane fiber, 
with a correct proportion of 82.35%.

TABLE 1.   Scores of the 2 groups as evaluated by the GI 
professor

Score A B p

1 67 (18.82%) 43 (12.07%) 0.000
2 143 (40.17%) 106 (29.78%)
3 93 (26.12%) 131 (36.80%)
4 53 (14.89%) 76 (21.35%)

Group A consists of younger GI surgeons (<10 y) and group B represents model. 
Categorical variables in both groups were compared using the χ2 tests. P < 0.05 was 
considered statistically significant.

TABLE 2.  Patient demographics and clinical characteristics

Characteristic N = 244

Age, y 57.42 ± 8.52
Sex
 � Male 168 (68.9%)
 � Female 76 (31.1%)
BMI 23.00 ± 2.71
ASA score
 � I 154 (63.1%)
 � II 74 (30.3%)
 � III 16 (6.6%)
Tumor distance from AV
 � Low ≤8 cm 165 (67.6%)
 � Middle 8–12 cm 79 (32.4%)
Surgical procedure
 � Low anterior resection 237 (97.1%)
 � abdominoperineal resection 4 (1.6%)
 � Intersphincteric resection 3 (1.2%)
Clinical stage
 � I 56 (23.0%)
 � II 73 (29.9%)
 � III 115 (47.1%)
cT
 � 1 4 (1.6%)
 � 2 71 (29.1%)
 � 3 169 (69.3%)
cN
 � 0 125 (51.2%)
 � 1 79 (32.4%)
 � 2 40 (16.4%)
Adjuvant chemoradiotherapy 133 (54.5%)

Data presented as absolute number of patients (%) or mean ± SD. ASA score is 
calculated using the ASA physical status classification system.
AV = anal verge; cN = clinical N stage; cT = clinical T stage.

http://links.lww.com/DCR/C439
http://links.lww.com/DCR/C439
http://links.lww.com/DCR/C440
http://links.lww.com/DCR/C441
http://links.lww.com/DCR/C442
http://links.lww.com/DCR/C442
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Validation Model vs Younger GI 
Surgeons (Experience <10 y)
The overall accuracy, precision, recall, and F1 score of the 
model were 0.9609, 0.7494, 0.6587, and 0.7011, respectively. 
The precision, recall, and F1 score of the young GI surgeons’ 
group were 0.6548, 0.3508, and 0.4568, respectively. The 
validation set had 356 images, and the time for model rec-
ognition was 3 minutes, whereas young surgeons needed 25 
minutes to identify the images in the validation set.

Validation of the Model in Surgical Videos
The primary objective of our study was to establish a 
neuromonitoring and real-time recognition system for 
the TME (Videos 1–4 at http://links.lww.com/DCR/
C473, http://links.lww.com/DCR/C474, http://links.lww.
com/DCR/C475, http://links.lww.com/DCR/C476 and 
http://links.lww.com/DCR/C477). We can observe from 

the application of the AINS to our video that the model 
achieves a high accuracy rate, which is crucial for moni-
toring and recognition (Figs. 3 and 4). Moreover, recog-
nition of the sympathetic plexus around the roots of the 
inferior mesenteric artery, superior hypogastric plexus, 
bilateral hypogastric nerves, pelvic plexus, NVB, and PSN 
was remarkable. The practice of dual-screen display in the 
operating room was uploaded (see Video 5). One screen 
is the conventional display and the other screen is the dis-
play of the navigation system (green area). The real-time 
intraoperative videos are displayed for neural recognition 
so that surgeons can avoid nerve damage.

DISCUSSION

This novel attempt was successful for TME and autonomic 
nerve preservation (ANP) in RCs. Combining the key and 

FIGURE 3.  Screenshot of the prediction video. Autonomic nerves 
at the root of the inferior mesenteric artery are shown as green 
areas.

PAN

Ground truth

Prediction

A.

B.

FIGURE 2.   Recognition of nerves at the root of the inferior mesenteric artery. A, The recognition results annotated by the professor of GI 
surgery (ground truth: truth of nerve course). B, The recognition results of our model (prediction of nerve course by model). PAN = pelvic 
autonomic nerve.

FIGURE 4.  Screenshot of the prediction video. The right 
hypogastric nerve is shown as a green area.

http://links.lww.com/DCR/C473
http://links.lww.com/DCR/C473
http://links.lww.com/DCR/C474
http://links.lww.com/DCR/C475
http://links.lww.com/DCR/C475
http://links.lww.com/DCR/C476
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difficult issues of preserving the PAN in TME+ANP with 
the current application of AI, a novel AINS was success-
fully developed through the fine delineation of the PAN 
in our high-definition surgical images and model training. 
The model was applied to video verification, which could 
identify the PAN in the surgical video. Furthermore, the 
AINS was connected to the laparoscope for a dual-screen 
display to enable routine intraoperative observation and 
for predicting the nerve route of the model, which plays an 
important role in neurorecognition in TME+ANP (Video 
5).

The preservation of PAN in the TME+ANP for RC 
remains unsolved. Urogenital and anal continence dys-
function due to intraoperative PAN injuries is an import-
ant factor leading to a decline in postoperative QOL. The 
corresponding PAN in TME+ANP mainly includes the 
sympathetic plexus at the root of the inferior mesenteric 
artery, superior hypogastric plexus, hypogastric nerve, 
pelvic plexus, PSN, and NVB. Aurore et al22 suggested that 
the PAN has many variations; approximately 25% of peo-
ple have accessory hypogastric nerves, and approximately 
18% of PSNs originate from S1. Röthlisberger et al23 sug-
gested that the pelvic plexus sends out the NVB in several 
ways that are morphologically different. Corresponding 
guidelines or consensuses on how to preserve the PAN 
are currently lacking. Based on our empirical anatomi-
cal observations, the autonomic nerves sent out branches 
to anastomose with each other, presenting a “network.” 
Therefore, we proposed that “TME + network ANP” pre-
serve not only the trunk of the autonomic nerve but also 
its branches and blood supply.24 Notably, ANP performed 
solely based on clinical experience or previous histo-
logical knowledge often yielded unsatisfactory results. 
Several studies have explored how to better preserve the 
PAN during TME+ANP.25,26 Some studies have focused 
on individualized preoperative magnetic resonance neu-
roimaging to clarify the course and variation of PAN.27,28 
However, nerve variations and small branches are diffi-
cult to visualize. Other studies focused on intraoperative 
advances and explored the impact of advancements in 
surgical equipment for TME+ANP.29 Compared with open 
surgery, the application of 3D laparoscopy can reduce the 
rate of postoperative urogenital dysfunction; however, 
the incidence rate remains high, and the rates of urinary 
and sexual dysfunction are 10% to 36% and 10% to 30%,10 
respectively. Approximately one-third of these injuries 
were due to surgery, and urogenital dysfunction rates var-
ied widely in different studies. Despite stereoscopic vision 
and high resolution, the surgery is complicated and cannot 
be performed exactly as planned in obese patients with a 
narrow, deep pelvis, further complicated by intraoperative 
bleeding or inadequate exposure. A European study on 
the visibility rate of the PAN during TME indicated that 
the visibility rate of many parts was low, such as the NVB 
(31.8%) and PSNs (12.9%), which are mainly preserved 
on the basis of personal experience when they are not 

visible.30 Attempts have been made previously to establish 
intraoperative nerve monitoring to avoid injury; however, 
it has not been extensively used because of the complex-
ity of the operation, tissue damage, and the inability to 
monitor delicate pelvic nerves.31 Therefore, we aimed to 
build an AINS model to recognize PAN without physical 
or chemical damage to the nerves.

AI can learn various unique features of a certain dis-
ease or structure by training AI models through manual 
annotations by medical experts.32,33 Kojima et al17 estab-
lished recognition models of the hypogastric nerve and 
superior hypogastric plexus through AI but did not target 
the pelvic plexus, PSN, or NVB. Therefore, we explored 
whether AI could be used for intraoperative neuromoni-
toring and recognition for whole PAN in TME+ANP. This 
was the first study in China that attempted PAN mon-
itoring and neurorecognition using AI for TME+ANP. 
We primarily performed PAN delineation training on 
high-definition surgical images recorded using 3D lapa-
roscopy. The anatomical structure of the PAN is complex 
and diverse; the thickness, branches, and blood supply of 
the nerves differ in different parts. Therefore, identify-
ing PAN through the lens during surgery warrants a long 
learning curve, and not all GI surgeons can judge it in 
time, especially those who do not perform many surger-
ies or lack high-definition laparoscopy. The PAN mainly 
comprised white fibers running on the fascia (shown as 
light white fibers) under laparoscopy, and some were 
accompanied by a vascular supply (shown as red fibers 
attached to white fibers). Owing to the large heteroge-
neity of the nerve and its light color, distinguishing it 
from the surrounding fascia, tissues, and organs is dif-
ficult. Assessing autonomic nerves is time-consuming, 
even for experienced GI surgeons, and errors are inev-
itable. This requires a wealth of clinical experience and 
adequate anatomical knowledge of the PAN rather than 
seniority. Therefore, the heterogeneity of the nerve and 
the indistinct distinction between the autonomic nerve 
and the surrounding tissues pose a great challenge to 
nerve delineation.

The PAN was delineated by 2 experienced GI sur-
geons. DeepLabv3+, a classic graph segmentation model 
used in the industry that consists of a series of semantic 
segmentation algorithms proposed by the Google team, 
was selected for our study. Our results indicated that the 
overall recognition accuracy, precision, and recall of the 
trained model were 0.9609, 0.7494, and 0.6587, respec-
tively, and the calculated F1 index was 0.7011.

Although the values of the parameters in this model 
were not high, the neural recognition was complex. The 
nerve course may not be completely visualized in some 
images owing to factors such as being out of focus, reflec-
tion issues, and angle changes. Nevertheless, the evalu-
ation of the professors of GI surgery revealed that this 
model demonstrated good results in surgical videos and 
was able to recognize almost all autonomic nerves. This 
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could be attributed to a few reasons. First, a video is 
a continuous image, not just an image, and a 1-second 
video may contain 5 to 10 images. Our model identified 
all images, and its quantitative advantage compensated 
for the lack of accuracy. For instance, when there are 5 
images in one second, our model should have a precision 
of 1 – (1 – 0.7494)5 at this site with a result of 0.999, and 
the same recall should be 1 – (1 – 0.6587)5 with a result 
of 0.995. Therefore, the model plays a considerable role in 
neural recognition. Second, images and videos during the 
operation were captured by the camera-holding surgeon 
by constantly adjusting the focus and angle. Although 
the nerves in different parts may not be displayed well 
simultaneously, the surgical team can make certain 
adjustments to enhance the display. Third, this procedure 
requires sufficient traction and exposure. The surgeon 
and assistant will have sufficient coordination and adjust-
ment during surgical separation so that the autonomic 
nerves will be fully displayed and monitored. Therefore, 
our model can identify the PAN during TME+ANP sur-
gery and assist in intraoperative neurorecognition. Large 
variations exist in the pelvic plexus, and it is sometimes 
difficult to determine the anatomical range of the pelvic 
plexus. Preventing intraoperative damage to the PAN is 
imperative, as recovering postoperative urogenital func-
tion is difficult after a nerve injury. The application of this 
system is expected to promote network ANP and improve 
the near- and long-term QOL. In the past, many young 
surgeons did not receive sufficient guidance because of 
a lack of learning methods. If this system can be pro-
moted, it will deepen our understanding of the PAN and 
is expected to promote the standardized preservation 
of autonomic nerves in TME+ANP surgery for RCs. 
Moreover, we plan to conduct a multicenter randomized 
controlled trial to determine whether the application of 
this model in TME surgery can better preserve the auto-
nomic nerves and reduce the rate of postoperative uro-
genital dysfunction.

The main limitation of this study was that the number 
of images was insufficient. Another limitation is the lack of 
external validation. Currently, comprehensive recognition 
systems for the TME are lacking. Further developments 
will be made for the precise recognition of fascia separa-
tion layers, lymph node recognition, and integration with 
our current recognition system for TME+ANP compre-
hensive recognition.

CONCLUSIONS

This study was the first in China to successfully establish 
a new real-time AINS during TME+ANP. Better identifi-
cation of these autonomic nerves should allow for better 
preservation of urogenital function, but further research is 
needed to validate this claim.
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