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ABSTRACT

The RNA exosome degrades transcripts in the nucle-
oplasm of mammalian cells. Its substrate specificity
is mediated by two adaptors: the ‘nuclear exosome
targeting (NEXT)’ complex and the ‘poly(A) exosome
targeting (PAXT)’ connection. Previous studies have
revealed some DNA/RNA elements that differ be-
tween the two pathways, but how informative these
features are for distinguishing pathway targeting, or
whether additional genomic features that are infor-
mative for such classifications exist, is unknown.
Here, we leverage the wealth of available genomic
data and develop machine learning models that pre-
dict exosome targets and subsequently rank the fea-
tures the models use by their predictive power. As
expected, features around transcript end sites were
most predictive; specifically, the lack of canonical 3′
end processing was highly predictive of NEXT tar-
gets. Other associated features, such as promoter-
proximal G/C content and 5′ splice sites, were in-
formative, but only for distinguishing NEXT and not
PAXT targets. Finally, we discovered predictive fea-
tures not previously associated with exosome target-
ing, in particular RNA helicase DDX3X binding sites.
Overall, our results demonstrate that nucleoplasmic
exosome targeting is to a large degree predictable,
and our approach can assess the predictive power of
previously known and new features in an unbiased
way.

INTRODUCTION

The mammalian genome produces a large repertoire of
RNAs (1). Excessive RNAs pose a potential threat to cel-
lular homeostasis by interfering with productive cellular

processes, such as transcription and genome maintenance
(2). To control nuclear RNA levels, transcripts are tar-
geted by the RNA exosome, a highly conserved 3′–5′ exo-
and endonucleolytic multisubunit complex (3–8). Nuclear
RNA exosome substrates include prematurely terminated
RNAs from within protein-coding loci as well as many long
noncoding RNAs (lncRNAs), such as promoter upstream
transcripts/upstream antisense RNAs and enhancer RNAs
(eRNAs) (7,9–13).

While the RNA exosome itself is a highly efficient and
processive degradation machine, it lacks substrate selectiv-
ity. In the nucleoplasm of mammalian cells, this is achieved
through its ability to connect to one of two main adap-
tors: the ‘nuclear exosome targeting (NEXT)’ complex and
the ‘poly(A) exosome targeting (PAXT)’ connection (14–
16). NEXT and PAXT both connect to the RNA exo-
some through the common RNA helicase MTR4/Skiv2l2
(17,18). Besides MTR4, the NEXT complex consists of the
Zn-knuckle protein ZCCHC8 and the RNA recognition
motif-containing RBM7 protein (14), whereas the core moi-
ety of PAXT consists of MTR4 heterodimerizing with the
Zn-finger protein ZFC3H1, and making additional more
transient contacts with the ZC3H3 and RBM26/RBM27
proteins as well as an RNA-dependent link with the nuclear
poly(A) binding protein (PABPN1) (15,16).

NEXT primarily targets short, unspliced and nonadeny-
lated RNAs (14,19,20), whereas PAXT mediates the exo-
somal degradation of polyadenylated RNAs that are often
longer and include spliced RNAs with extended nuclear res-
idence times (15,21,22). In line with this, high-resolution
analyses of the 3′ ends of NEXT and PAXT targets revealed
major differences in their 3′ end processing pathways (20).
Besides, several sequence features have previously been as-
sociated with nuclear exosome targets: such transcripts are
generally transcribed from loci with high densities of tran-
scription start site (TSS)-proximal poly(A) sites (PASs) and
low densities of 5′ splice sites (5′ SSs) (21,23–25); it is not
entirely clear whether these features contribute equally to
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the substrate specificity, and whether they carry enough in-
formation to guide a specific transcript to one or both path-
ways.

Here, we develop a machine learning framework to as-
sess (i) whether NEXT and PAXT pathway targeting is pre-
dictable using transcript features drawn from existing large
and diverse genomic datasets, and (ii) if so, what the most
informative features for respective prediction are.

To this end, we first identified NEXT and PAXT tar-
gets by performing differential expression analysis of RNA-
seq data from NEXT/PAXT adaptor knockdowns, and
then systematically collected relevant molecular features to
serve as prediction features in random forest-based machine
learning models that predict NEXT/PAXT targeting path-
ways of transcripts. Finally, we ranked the features by quan-
titatively assessing their contributions to the prediction.

Our results demonstrate that the most informative fea-
tures for prediction are drawn from molecular signals pre-
viously associated with exosome sensitivity. We found that
RNA processing-related features are generally more in-
formative for NEXT/PAXT targeting than other features
such as chromatin modifications. Specifically, lack of RNA
3′ end processing was most predictive for distinguishing
NEXT/PAXT pathways; as expected, lack of canonical 3′
end processing by cleavage and polyadenylation (CPA) ma-
chinery was found to be most characteristic of NEXT tar-
gets. Moreover, other reported features, such as G/C con-
tent around TSSs and TSS-proximal 5′ SSs, were also highly
predictive for NEXT targets but were not able to distin-
guish PAXT from non-NEXT/PAXT targets. Finally, we
found that interaction data for several RNA binding pro-
teins (RBPs) that were not previously associated with exo-
some targeting were informative for distinguishing NEXT
and PAXT pathways, in particular the binding of RNA he-
licase DDX3X.

MATERIALS AND METHODS

Public data acquisition and processing

HeLa S3 NET-seq was described in (26) and obtained
from Gene Expression Omnibus (GEO): GSE61332. The
ChIP-seq datasets used in this study were described in
the ENCODE project (1); HeLa S3 H3K4me1, H3k4me2,
H3K4me3, H3K9ac, H3K9me3, H3K27me3, H3K27ac,
H3K36me3, H4K20me1, H2A.Z and PolIIb were obtained
from GEO: GSE29611; and DNase-seq was obtained from
ENCODE: ENCSR959ZXU. The hg19 genome coordi-
nates were converted to hg38 using the UCSC liftOver tool.
For data with replicates, replicates were pooled and signals
were averaged over replicates for subsequent analysis. CLIP
binding sites for RBPs were obtained from POSTAR2 (http:
//lulab.life.tsinghua.edu.cn/postar/index.php) (27). Binding
site datasets called by different peak calling methods from
the same CLIP data were treated as independent datasets
when extracting the features.

Transcriptome annotation

De novo HeLa transcriptome annotation from (28) was used
in this study.

Classification of exosome targets by pathways

For classification, we used RNA-seq counts derived
from total RNA of siEGFP-, siRBM7-, siZCCHC8-
and siZFC3H1-treated HeLa cells first described in (15)
(GSE84172) and similar data from siZC3H3-treated cells
first described in (16) (GSE131255). Counts in exonic re-
gions of major transcript isoforms in our in-house HeLa
transcriptome annotations were collected using the fea-
tureCounts tool from Subread package (v2.0.0) (29), us-
ing parameters [-p -C -s 2 -t exon]. These counts were then
subjected to differential expression analysis using DESeq2
(v1.22.2) (30) using default settings except that batch infor-
mation [see (16) for details] was included in the design. Tran-
scripts significantly upregulated [log2 fold change (log2FC)
> 0 and Padj < 0.1] in siRBM7, siZCCHC8, siZFC3H1
and siZC3H3 were selected and used to define the set of
NEXT targets (significantly upregulated in siRBM7 and
siZCCHC8, but not significantly upregulated in siZC3H3
and siZFC3H1), PAXT targets (significantly upregulated in
siZC3H3 and siZFC3H1, but not significantly upregulated
in siRBM7 and siZCCHC8) and non-NEXT/PAXT targets
(log2FC > −1 and log2FC ≤ 0 in any of the four knock-
downs).

Sequence analysis

Sequences were extracted from the reference genome (hg38)
using getfasta from bedtools. The R package Biostrings
(version 2.54.0) was used for the following sequence anal-
ysis. G/C content is defined as the percentage of DNA that
is G or C, and was computed using the letterFrequencyInS-
lidingView function over a 10 bp window. Raw position fre-
quency matrix of the TATA box, initiator (INR) element,
5′ SS and pA site motifs were obtained from (31), and con-
verted to position weight matrix (PWM) using R function
PWM. RBP motif PWM was obtained from the CISBP-
RNA database (32). The countPWM function was used to
scan for motif occurrences; a minimum score of 90% was
used for counting a motif hit.

Extraction of signals from sequencing data

Signals from ChIP-seq and strand-specific signals from
NET-seq over a given window were extracted using the R
package rtracklayer (version 1.46.0).

Low information feature filtering

Bit entropy was calculated for assessing the empirical distri-
bution of each feature by taking the values across three exo-
some target categories using the entropy function from the
R package entropy (version 1.2.1). Features with entropy
smaller than 0.8 bits were removed.

GC spread estimation

The GC spread metric was designed as a proxy to quan-
tify the boundary of the G/C enriched region immediately
downstream of TSS. It was calculated as the width of re-
gions with 75% of the total G/C content in a defined region
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downstream of TSS. G/C content for each nucleotide is first
computed as in the ‘Sequence analysis’ section and normal-
ized as max(0, G/C − 0.5); the normalized G/C content is
then multiplied by a dynamic scaling factor calculated using
a Gaussian function as follows: s = 2∧(−(x/a)∧2) ∈ (0, 1),
where x is the width of the region immediately downstream
of TSS (1 kb in this study) and a is set to half of the re-
gion width so that the scaling factor will be decreased to 0.5
at the middle point of the region. By using the scaling fac-
tor, we put more weight on nucleotides close to TSS and less
weight on those more distant, thus minimizing the influence
of the random G/C content fluctuation more distant from
TSS. In addition, to avoid high GC spread from TSSs with
generally low G/C content, we reduce the GC spread if the
average of normalized and unscaled G/C content (GC’avg)
in the calculated GC spread is less than 0.1, by a factor of
GC’avg/0.1.

PAS strength estimation

PAS strengths were estimated as described in (20) using the
deep neural network model APARENT (Python package
V0.1) (33) and depicted as log odds of the prediction score.

Expression match sampling

Transcript expression levels were estimated as the nascent
RNA levels measured by NET-seq and calculated as the
sum of NET-seq signals around −100 to +500 bp window
around TSS. To select samples with matched expression lev-
els from two or more exosome target categories, we first ob-
tained the largest potential expression range by taking the
minimum and maximum expression levels of all exosome
target categories. We then divided the expression range into
2000 bins, and for each bin we randomly selected a number
of samples from each exosome target category correspond-
ing to the number of samples in the smallest exosome target
category. As shown in Supplementary Figure S1B, the sam-
pling process yielded similar distributions of expression lev-
els for the three exosome target categories. By performing
the expression match sampling, we obtained 2277 samples
in NEXT versus non-NEXT/PAXT targets, 1090 samples
in PAXT versus non-NEXT/PAXT targets, 1085 samples
in NEXT versus PAXT targets and 1080 samples in multi-
class classification.

Random forest model and prediction performance evaluation

The random forest model was built using the R package
caret (version 6.0.86) by choosing the ‘parRF’ method.
We first performed expression match sampling to obtain
balanced and expression matched data for different exo-
some target categories. We then used the resulting balanced
dataset for classification, where 70% of the dataset was used
for training and the remaining part for testing. When train-
ing the model, we chose the default 500 trees as we consider
it an ample amount given the number of features we have
and used 5-fold cross-validation with five repeats in order to
tune the parameter ‘number of randomly selected features
at each tree split’; the optimal model with the largest aver-
age accuracy value was selected to evaluate the performance

on the test data. To measure the prediction performance, we
used ‘area under the receiver operator characteristic’ (AUC)
and F1 score, i.e. the harmonic mean of precision and recall.

To ensure the downsampling process accurately reflects
the larger exosome target category and to minimize the bi-
ases of random splitting training and testing data, we re-
peated the above processes 10 times, and calculated the
mean and standard deviation of AUC and F1 score.

Feature importance score calculation

The feature importance score is calculated using the varImp
function from the caret package. The importance score of a
feature was measured by calculating the average values of
the difference in prediction error rate with and without per-
muting the values of the feature on the out-of-bag portion
of data over all trees, normalized by the standard deviation
of the difference yielding a z-score. We averaged the impor-
tance score of each feature from the 10 independent random
forest models by repeating random splitting of training and
test data 10 times. In addition, we compared the significant
features identified by our iterative selection with the signif-
icant features identified by the Boruta method (34), which
overall supports our conclusion.

Data visualization

We used R and the ggplot2 R package (35) unless otherwise
noted for visualizations.

RESULTS

NEXT and PAXT target classification, feature selection and
machine learning framework

To identify determinants for PAXT- and NEXT-mediated
RNA decay pathways, we used the analysis outline sum-
marized in Figure 1. We first used the de novo HeLa tran-
scriptome annotation from (28) as a transcription unit (TU)
framework. To this set of TUs, we mapped previously pub-
lished RNA-seq libraries (15,16) derived from HeLa cells
depleted for RBM7, ZCCHC8, ZFC3H1, ZC3H3 or EGFP
(control) and used differential expression analysis to de-
fine TUs that were targeted by PAXT or NEXT or were
unaffected (Figure 2A; see the ‘Materials and Methods’
section). Briefly, RNAs from 2575 TUs that compared to
their controls were upregulated [DESeq2 log2FC > 0 and
false discovery rate (FDR) < 0.1] in siRBM7 and siZC-
CHC8 samples and unaffected in siZC3H3 and siZFC3H1
samples were defined as NEXT targets, RNAs from 1116
TUs that were upregulated in siZC3H3 and siZFC3H1 sam-
ples but unaffected in siRBM7 and siZCCHC8 samples
were defined as PAXT targets and RNAs from 3664 TUs
were defined as non-NEXT/PAXT targets (log2FC > −1
and log2FC ≤ 0 in siRBM7, siZCCHC8, siZC3H3 and
siZFC3H1 versus control) (Supplementary Table S1).

Consistent with previous observations (15,21), non-
NEXT/PAXT targets mostly consisted of full-length multi-
exonic protein-coding RNAs, whereas NEXT targets were
generally short and mono-exonic, while PAXT targets
mainly consisted of mono-exonic protein-coding RNAs and
lncRNAs with lengths between those of non-NEXT/PAXT
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Figure 1. Overview of the computational framework for identifying molecular features for NEXT/PAXT targeting.

and NEXT targets (Figure 2B). In order to find biological
information with the potential to classify pathways, we con-
sidered four classes of features based on their location with
respect to TUs, summarized below, and in Figure 2C, and
described in greater detail in Table 1.

Class 1 contained chromatin and sequence features
around TSSs. This was motivated by our prior results of
chromatin and sequence differences between TSSs pro-
ducing exosome-sensitive versus exosome-insensitive tran-
scripts (13,21,24). For example, when compared to TSSs of
exosome-insensitive mRNAs, TSSs of exosome substrates,
like eRNAs, harbored higher levels of H3K4me1 and lower
levels of H3K4me3 (13). In terms of sequence content,
high-density G/C regions were often found to extend fur-
ther downstream of TSSs of exosome-insensitive transcripts
compared to those of exosome-sensitive ones (21,24). Be-
sides the mentioned features, we also included less stud-
ied ones for exploratory reasons, which might potentially
lead to new hypotheses. Specifically, we included HeLa cell
chromatin data from ENCODE (ChIP-seq for H3K4me1,
H3k4me2, H3K4me3, H3K9ac, H3K9me3, H3K27me3,
H3K27ac, H3K36me3, H4K20me1 and H2A.Z; DNase-
seq), and DNA sequence features, including the presence
of TATA and INR patterns, G/C content and GC spread,
which is a designed proxy of the width of regions with high
G/C content (above 50%) immediately downstream of TSSs
(Supplementary Figure S1A; see the ‘Materials and Meth-
ods’ section). Finally, as exosome targets were previously
found to generally have lower levels of transcription than
non-NEXT/PAXT targets (13), we also included levels of
transcription by including NET-seq and Pol II ChIP-seq
data.

Classes 2 and 3 consisted of features related to RNA pro-
cessing proximal to TSSs and transcript end sites (TESs),
respectively, including RNA sequence features and RBP

binding sites. Previous studies suggested a relevance for
TSS- and TES-proximal RNA processing to exosome tar-
geting (20,24,25). In TSS-proximal regions, low density of
U1 snRNP recognition sites (5′ SSs) and high density of
PASs were previously observed in exosome-sensitive tran-
scripts (24,25). With respect to TES-proximal RNA pro-
cessing, differences in 3′ end processing mechanisms were
observed between PAXT and NEXT targets, i.e. whether
these RNAs are processed by the CPA machinery or not
(20). Therefore, in Class 2, we included 5′ SSs and PASs,
and in Class 3 cleavage-related PAS features (PAS strength
and cleavage PAS motif match) as well as 5′ SS and PAS
motif match – the same as Class 2 – as a control. Addition-
ally, for exploratory reasons and given the importance of
RBPs in RNA processing, we included in both classes RBP
motif match and CLIP-based RBP binding data from the
POSTAR2 database (27), which includes CLIP-seq from
both the ENCODE consortium and other recent publica-
tions. We collected 401 sets of CLIP-seq peaks called from
171 RBPs across different cell lines.

Finally, Class 4 TES features included the same chro-
matin data as in Class 1 for exploratory reasons. While chro-
matin features around TES are known to play important
roles in transcription termination, their importance in RNA
exosome targeting is unclear.

An important consideration was that exosome targets
are generally less expressed than non-NEXT/PAXT targets
(Supplementary Figure S1B), and many of the features in-
cluded above, e.g. histone modifications and RBP binding
strengths, correlate with gene expression levels (13,36,37).
Hence, to avoid that our classification was confounded by
differing expression levels, we performed expression match
sampling between the three exosome target categories (see
the ‘Materials and Methods’ section and Supplementary
Figure S1B). To assess the diversity of the generated fea-
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Figure 2. Exosome target dataset, feature design and machine learning framework. (A) Schematic overview of nucleoplasmic exosome target definition
based on RNA-seq libraries of siRNA-depleted cofactors of NEXT and PAXT pathways versus wild-type (WT) cells. (B) Characterization of nucleoplasmic
exosome targets. Bar plots on the left show the percentage (%) (Y-axis) of specific RNA biotypes for each exosome target category [X-axis; the ‘Others’ bio-
type consists of 17 types: unprocessed pseudogene, transcribed unitary pseudogene, polymorphic pseudogene, processed pseudogene, rRNA pseudogene,
misc RNA, TEC, snRNA, snoRNA, histone coding, miRNA, NAT, intragenic, intergenic, TtT3, overlapping, nTtT, ambiguous; for details, see (28)]. Com-
bined violin box plots in the middle show the distribution of the number of exons (Y-axis) for each exosome target category; combined violin box plots
on the right show the distribution of TU length (Y-axis) for each exosome target category. (C) Schematic representation of the feature classes. For detailed
feature descriptions, see Table 1 and the ‘Materials and Methods’ section. (D) Schematic overview of the machine learning framework.
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Table 1. Molecular features used in this study

Feature definition Feature extraction
No. before

filtering
No. after
filtering

Class 1 TSS-localized transcription, chromatin and DNA sequence features
Chromatin
environment

Levels of histone modification and
chromatin remodeling (ChIP-seq
for H3K4me1, H3k4me2,
H3K4me3, H3K9ac, H3K9me3,
H3K27me3, H3K27ac,
H3K36me3, H4K20me1, H2A.Z;
DNase-seq)

Sum of signals in ±500 bp window around
TSS

11 11

Transcription levels Nascent RNA levels by NET-seq Sum of signals in −100 to +500 bp
window around TSS

1 1

Polymerase II loading (Pol II
ChIP-seq)

Sum of signals in ±500 bp window around
TSS

1 1

Sequence features G/C content G or C content in ±500 bp window
around TSS

1 1

GC spread Calculated (see the ‘Materials and
Methods’ section) in +1 to +500 bp
window to TSS

1 1

Presence of TATA box Frequency of motif hit in −50 to +1 bp
window to TSS

1 0

Presence of INR element Frequency of motif hit in −15 to +10 bp
window to TSS

1 0

Class 2 TSS-proximal RNA processing-related features
Sequence features Presence of 5′ SS motif Frequency of motif hit in +1 to +500 bp

window to TSS
1 1

Presence of PAS motif Same as above 1 1
RBP motifs and
binding sites

Presence of RBP binding motifs Same as above 193 77

Presence of RBP binding sites by
CLIP-seq

Frequency of binding sites in +1 to +500
bp window to TSS

401 26

Class 3 TES-proximal RNA processing-related features
Sequence features PAS strength PAS score calculated by APARENT (see

the ‘Materials and Methods’ section)
1 1

Cleaved PAS Frequency of motif hit in −50 to −1 bp
window upstream of TES

1 1

Presence of 5′ SS motif Frequency of motif hit in −500 to +1 bp
window to TES

1 1

Presence of PAS motif Same as above 1 1
RBP motifs and
binding sites

Presence of RBP binding motifs Same as above 193 96

Presence of RBP binding sites by
CLIP-seq

Frequency of binding sites in −500 to +1
bp window to TES

401 58

Class 4 TES-localized chromatin features
Chromatin
environment

Levels of histone modification and
chromatin remodeling (ChIP-seq
for H3K4me1, H3k4me2,
H3K4me3, H3K9ac, H3K9me3,
H3K27me3, H3K27ac,
H3K36me3, H4K20me1, H2A.Z;
DNase-seq)

Sum of signals in ±500 bp window around
TES

11 11

The features are divided into four classes by their locations with respect to TUs. To avoid misleading high z-score from features of low information content,
features are further filtered by entropy; only those with entropy > 0.8 across three exosome target categories are retained. The columns ‘No. before filtering’
and ‘No. after filtering’ correspond to the number of features before and after entropy filtering.

ture space, we calculated the pairwise Pearson correlation
coefficients between different features by taking values in all
three exosome target categories after expression sampling
matching (Supplementary Figure S1C). This showed that
only few features correlate strongly, while the whole feature
space does not, which confirmed the high dimensionality of
the data in the three exosome target categories.

Feature filtering and iterative feature selection

We next used random forests (38) as the machine learn-
ing framework to predict NEXT/PAXT targets. We chose

to make three initial binary classifications independently:
NEXT versus non-NEXT/PAXT, PAXT versus non-
NEXT/PAXT and NEXT versus PAXT. These were cho-
sen instead of multiclass classifications as it allowed us to
identify specific features distinguishing the individual cate-
gories from each of the other two categories. A primary aim
of our study was to identify molecular features distinguish-
ing two exosomal decay pathways. Hence, a key endpoint
was to be able to compare the relative contribution of the in-
put features and select the most discriminative features con-
tributing to learning a classification problem, rather than
focusing on the predictive performance alone. In the ran-
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dom forest method, feature ranking and selection can be fa-
cilitated by using the individual importance z-scores, which
are based on ‘out-of-bag’ errors in the decision tree process
employed by the algorithm. While useful, such z-scores have
two weaknesses.

First, feature importance assessment can overemphasize
features that have consistent but small effects on perfor-
mance, resulting in high z-scores (see the ‘Materials and
Methods’ section). As such features have low information
content and would not be considered to be generally dis-
criminative, we only retained features with an entropy > 0.8
across the three exosome target categories (Table 1, Supple-
mentary Figure S1D and Supplementary Table S2). This fil-
tering removed TATA box and INR features. For CLIP-seq
RBP binding sites, 26 sets of peaks of 24 RBPs for Class 2
and 58 sets of peaks of 37 RBPs for Class 3 were retained
after filtering. To investigate whether the retained RBP fea-
tures share certain functions, we performed Gene Ontol-
ogy over-representation analysis of RBPs from both CLIP-
seq and motif features using 1542 RBPs from (39) as back-
ground. We found that Class 2 and 3 input RBP features
were enriched for processes related to RNA splicing and
regulation of cellular metabolic processes (Supplementary
Figure S2).

Second, ranking of features by z-score can be arbitrary
if it is only based on a single prediction outcome and when
there are many redundant features, in which case the impor-
tance score of each feature will be diluted. To obtain consis-
tent results, we designed an iterative feature selection strat-
egy. We opted to choose a relatively low importance score
of 0.5 as a threshold and performed iterative feature selec-
tion by first training a model, then removing features be-
low the threshold and subsequently retraining the model
on the remaining features (Figure 2D). Training and fea-
ture selection was repeated until the feature set became sta-
ble. A stable feature set of consistently significant features
was obtained after five iterations in each feature class (data
not shown). Compared to other iterative feature selection
strategies, such as recursive feature elimination, in which
one feature with lowest rank is removed in each iterative
round, our method needed fewer iterative rounds and was
more efficient given that we have four feature classes. In ad-
dition, our method was based directly on importance score
instead of ranking, yielding a clear cutoff during the feature
selection process. The iterative feature selection resulted in
only minor changes of prediction performance and the im-
portance scores of the selected features of the final mod-
els were used for determining the most discriminative fea-
tures. To confirm our feature selection results, we compared
the selected features from our method with results from
another feature selection method, Boruta (34), which esti-
mates the importance threshold using ‘shadow’ features ob-
tained by shuffling the values of original features and selects
significant features by iteratively comparing the importance
score of original feature with estimated importance thresh-
old. As shown in Supplementary Figures S3–S5, the two
methods gave largely consistent sets of features, where the
top ranked features were consistent across the methods and
both methods identified the same features with largest effect
size.

Classification of NEXT versus non-NEXT/PAXT targets

We first attempted to distinguish NEXT targets from
non-NEXT/PAXT targets. The iterative feature selection
yielded a reduction of the number of features in Classes 2
and 3, while the number of features in Classes 1 and 4 re-
mained unchanged (Supplementary Figure S1D and Figure
3A). However, overall, this feature selection resulted in little,
if any, changes in classification performance for all classes
(Figure 3B). To explore the classification potential of each
class of features, we ran the classification algorithm using
each feature class separately, and subsequently using every
possible combination of feature classes. All single-class and
multiclass models showed moderate to very good perfor-
mance (F1 score ranging from 0.69 to 0.90 and AUC from
0.78 to 0.94; Figure 3B). Notably, classification using Class
1 of TSS features was substantially less predictive (F1 score
0.69, AUC 0.78) than the remaining feature classes (lowest
F1 score ∼ 0.870 and AUC ∼ 0.92, discussed further be-
low). Interestingly, combinations of different feature classes
did not affect the performance substantially, indicating that
there were little or no synergistic effects of features from dif-
ferent classes in terms of prediction.

Next, we assessed the most discriminative features in
each feature class (z-score > 1; top features are shown in
Figure 3C–F). For Class 1, the GC spread, a proxy for
the width of high G/C content regions downstream of
TSSs, was among the top discriminative features and more
discriminative than the accumulated G/C content around
the TSS (Figure 3C, left panel). Other top ranked fea-
tures included histone modifications H3K4me1, H3K4me3,
H3K4me2 and H3K27ac, the combination of which is com-
monly associated with enhancer/promoter activities (40).
To identify how differences of individual features between
the two target categories may affect classification, we plot-
ted the distributions for selected top ranked features (Fig-
ure 3C, right panel). This showed that the GC spread was
on average smaller in NEXT targets compared to the non-
NEXT/PAXT targets, and had higher variance, consis-
tent with previous observations (21,24). For histone mod-
ifications, NEXT target loci had higher average levels of
H3K4me1 and H3K27ac, and similar levels of H3K4me3
compared to non-NEXT/PAXT targets.

The top discriminative features in Class 2 were CLIP-seq
RBP binding and RBP binding motif matches, and much
of the predictive power derived from a single feature ––
the CLIP binding data of the DDX3X protein, which be-
longs to the DEAD-box RNA family of helicases (Figure
3D, left panel). DDX3X functions in both the nucleus and
the cytoplasm, and plays diverse roles in regulating tran-
scription, mRNA maturation, export and translation (41).
Aside from DDX3X, several RBP motifs related to RNA
splicing were among the most discriminative features, in-
cluding top ranked 5′ SS, MBNL3, SRSF1 and SRSF4 mo-
tifs (Figure 3D, left panel). Plotting distributions of the
top features showed a clear depletion of all these features
in NEXT compared to non-NEXT/PAXT targets (Figure
3D, right panel). This implied that NEXT targets are to
a lesser degree subject to RNA processing, such as splic-
ing, compared to non-NEXT/PAXT targets, which may be
due to the absence of relevant sequence motifs and/or the
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Figure 3. Predictive model of NEXT versus non-NEXT/PAXT targets. (A) Number of features retained after iterative selection, per feature class. Bar plot
shows the number of features (X-axis) for each feature class (Y-axis) after iterative selection. Numbers in the parentheses show the number of initial features
in each feature class. (B) Classification performance by random forest using single feature classes or combinations thereof. Bar plots in the upper panel
show the average performance (F1 score on the left, AUC on the right) over 10 repetitions for initial feature set and consistent feature set after iterative
selection, as indicated by bar color. Error bars show the standard deviation of the performance over 10 repetitions. The lower panel shows which feature
class (dots) or combinations thereof (dots connected by black lines) were used for classification. (C) Feature importance of Class 1 features. Bar plot (left
panel) shows the feature importance score (X-axis) of top ranked features (Y-axis) ordered by importance score. The distributions of feature values of
selected features, split by NEXT and non-NEXT/PAXT targets, are shown as density plots to the right. (D–F) Feature importance of Class 2, 3 and 4
features, organized as in panel (C). Distributions to the right are shown as either density plots or histograms, depending on data type.
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lack of actual RBP binding. While the enrichment of TSS-
proximal PAS motifs was previously observed in exosome
targets (21,24,25,42), it was not ranked as an important fea-
ture for distinguishing NEXT and non-NEXT/PAXT tar-
gets, likely owing to the specificity of NEXT toward un-
adenylated transcripts (20).

The top two features of Class 3 were also among the
top discriminative features in Class 2, but DDX3X was no
longer the single standout feature (Figure 3E). Instead, it
had more similar importance score as the rest of the top
discriminative features in Class 3. Examining these top fea-
tures, together with their distributions, we found that most
of them are relevant to canonical 3′ end RNA processing
by the CPA machinery, and as expected NEXT targets were
depleted of these features. For example, compared to non-
NEXT/PAXT targets, NEXT targets lack a well-positioned
PAS motif upstream of the transcript TES, weaker PAS
strength and lack of binding of RBPs involved in the 3′
end cleavage process, such as CSTF2, CSTF2T, CPSF7 and
NUDT21 (CPSF5). Again, this was consistent with previ-
ous studies that NEXT targets generally do not undergo
canonical CPA-dependent 3′ end processing (20,28).

The performance of Class 4 features, like those of Class
2, relied mostly on a single standout feature: H3K36me3
levels (Figure 3F, left panel). Lower average levels of
H3K36me3 around TESs were observed for NEXT ver-
sus non-NEXT/PAXT targets (Figure 3F, right panel).
H3K36me3 is known to be enriched in the gene body dur-
ing active transcription and associated with efficient tran-
scription elongation (43) and it has also been reported to
be deposited downstream of the first intron (44); thus, lower
levels of H3K36me3 around NEXT TESs agreed with the
notion that NEXT targets are usually short and unspliced,
and derive from inefficient transcription elongation (15,28).
In addition, and even though Class 4 features were centered
around TESs, other top ranked features were associated
with transcription initiation, including H2A.Z, H3K4me2
and H3K4me1 levels, and showed higher average values
around the TESs of NEXT than non-NEXT/PAXT tar-
gets (Figure 3F, right panel). We reasoned that because
many NEXT targets are short (Figure 2B), regions around
the TESs of such targets may, at least partially, share the
same larger chromatin environments with the cognate TSSs,
which might explain our observations. Specifically, in our
analysis, ±500 bp regions around TESs –– in which chro-
matin modification signals were collected (Table 1) –– might
overlap with those around TSSs of transcripts < 1 kb. We
found that the analyzed TSS and TES regions had a me-
dian overlap of 200 bp, which was substantially higher than
the corresponding overlap in PAXT and non-NEXT/PAXT
targets (median 0 bp) (Supplementary Figure S6A, upper
panel). However, when plotting the distribution of the lev-
els of these chromatin modification data in NEXT and non-
NEXT/PAXT targets that were long enough to not have
overlaps between the TSS and TES windows, we observed
similar levels of H3K36me3 as in Figure 3F (Supplemen-
tary Figure S6B). The differences are less prominent be-
tween NEXT and non-NEXT/PAXT targets for H2A.Z,
H3K4me2 and H3K4me1 (Supplementary Figure S6B), but
the levels of these histone features are consistently higher in
NEXT compared to non-NEXT/PAXT targets as in Fig-

ure 3F. Thus, overlap between NEXT TSS and TES regions
cannot fully account for the observed enrichment of TSS-
associated chromatin modifications. Taken together, our
observations support the idea that transcription of NEXT
targets is likely to fail transition into efficient elongation
(28).

To further validate the significance of the most important
features of the single-class models, we assessed the predic-
tive power of the features in the full model with features
of all four classes (Supplementary Figure S7). Consistent
with the prediction power (Figure 3B), the top ranked fea-
tures were mostly from Classes 2–4, while the Class 1 fea-
tures had lower ranks. In accordance with the individual
models, the two top ranked features, H3K36me3 levels and
DDX3X binding, corresponded to the two standout fea-
tures of Classes 4 and 2, followed by top ranked features
of Class 3 ATXN2.

NEXT targets are heterogeneous in terms of biotypes,
so we wondered whether the identified discriminative fea-
tures might only reflect the predominant biotypes. In fact,
the length filtering performed in Supplementary Figure S6B
increased the proportion of protein-coding biotype RNAs
in NEXT targets (Supplementary Figure S6A, lower panel),
which might account for changed distribution of certain hi-
stone features. Thus, we further investigated whether the
identified discriminative features are dependent on bio-
types by only assessing protein-coding RNA (252 NEXT
and 3204 non-NEXT/PAXT targets). The prediction per-
formance of the four feature classes was generally worse
for protein-coding NEXT versus non-NEXT/PAXT tar-
gets compared to the original analysis, but the trend of pre-
diction power between different classes remained similar
(Supplementary Figure S8A and Figure 3B). Class 1 TSS-
proximal features were least predictive, performing only
slightly better than random with F1 score 0.54 and AUC
0.58. Compared to Class 1, Class 4 TES-proximal chro-
matin features showed better prediction performance and
were moderately predictive with F1 score 0.64 and AUC
0.71. Class 2 and 3 RNA processing features were more
predictive compared to Classes 1 and 4, and Class 3 TES-
proximal features have the best prediction performance (F1
score 0.69, AUC 0.77). As Class 1 features were not very pre-
dictive, we only performed feature selection on Classes 2–4.
The top features of all the three classes were highly con-
sistent with those in the original analysis (Supplementary
Figure S8B–D and Figure 3D–F) and we did not identify
new significant features. These results suggest that Class 1
TSS features are mostly informative for predicting noncod-
ing RNAs but not protein-coding NEXT targets, while dis-
criminative features identified in Classes 2–4 are informative
for NEXT targeting irrespective of biotypes.

In summary, all four feature classes contained substantial
power to discriminate NEXT from non-NEXT/PAXT tar-
gets, suggesting that substantial differences exist in terms of
chromatin configuration, sequence content and RNA pro-
cessing capacity. Comparing the prediction performance
of the four feature classes, RNA processing features at
both transcript 5′ and 3′ ends possessed the highest dis-
criminatory power. The most informative features for TSS-
proximal processing consisted of RBP binding and se-
quence features mainly related to 5′ splicing, while the most
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informative TES-proximal features are mostly involved in
canonical 3′ end processing by the CPA machinery, in-
cluding both cleavage-related RBP binding and sequence
features, such as well-positioned PAS motifs. TES histone
modifications associated with efficient transcription elon-
gation could also separate NEXT from non-NEXT/PAXT
targets, but to a lesser extent. Interestingly, although many
TSS-related features were observed to be different between
exosome and non-exosome targets, such as H3K4 methy-
lation status and G/C content, they were substantially less
predictive for NEXT targeting. These features could only
partially distinguish NEXT from non-NEXT/PAXT tar-
gets and lacked predictive power to distinguish protein-
coding NEXT versus non-NEXT/PAXT targets.

Determinants for classifying PAXT from non-NEXT/PAXT
targets

We next applied the model to classify PAXT versus non-
NEXT/PAXT targets. Iterative feature selection resulted
in fewer retained features than the NEXT versus non-
NEXT/PAXT classification for all classes, and this was par-
ticularly true for Class 2 and even more so for Class 3 (Fig-
ures 3A and 4A). This classification was not affected by
feature selection (Figure 4B). However, it was in general
worse for all four classes compared to NEXT versus non-
NEXT/PAXT (Figures 3B and 4B): the F1 score and AUC
for the best-performing class (Class 3) were ∼0.78 and 0.83;
the worst-performing class had values around 0.55 and 0.57
(Class 1), which were only slightly better than random clas-
sification. Indeed, the distributions of the three top features
of Class 1 were all largely similar between the two target cat-
egories (Figure 4C). Combinations of feature classes only
showed minor synergistic effects, if any (Figure 4B).

Class 2 features yielded a moderately good prediction
performance with an F1 score around 0.7 and AUC around
0.8. The top ranked features were all related to RBP bind-
ing, and, similarly to the NEXT versus non-NEXT/PAXT
target classification, DDX3X binding was the most in-
formative feature. Other top features consisted of bind-
ing of splicing-related RBPs, such as PRPF8, U2AF2 and
YTHDC1 (Figure 4D, left panel). Examination of the dis-
tribution of these features showed that, as for NEXT tar-
gets, the PAXT targets generally showed a lack of RBP
binding events (Figure 4D, right panel). Unlike NEXT ver-
sus non-NEXT/PAXT targets, the TSS-proximal 5′ SS mo-
tif and other RBP motifs were not highly ranked features.
Thus, classification relied on differences from the RBP bind-
ing instead of sequence features.

Class 3 features showed the best classification perfor-
mance (F1 score 0.78 and AUC 0.83). Similar to Class 2,
all the top ranked features were related to RBP binding
and with similar degrees of importance (Figure 4E). While
there was some overlap in terms of top class RBP features
between the PAXT and NEXT versus non-NEXT/PAXT
target classification, e.g. DDX3X, ATXN2, YTHDF1 and
LIN28B, 3′ end CPA-related features were not among
the most discriminative for classifying PAXT versus non-
NEXT/PAXT targets. This indicates that while PAXT
might differ from non-NEXT/PAXT targets in their TES-

proximal RNA processing, they may share similar canoni-
cal 3′ end processing, i.e. CPA.

Class 4 features were moderately predictive (F1 score
0.65 and AUC 0.7) but to a lesser degree than Class
2 and 3 features. The top ranked discriminative features
showed a clear similarity to those of the NEXT versus non-
NEXT/PAXT target classification, where H3K36me3 levels
were a single standout significant feature, with on average
lower levels around TESs of PAXT targets (Figure 4F). As
with NEXT classification features, transcription initiation-
associated chromatin features, such as H3K4me3, H3Kme2
and H2A.Z, were also informative, and more enriched in
PAXT targets than non-NEXT/PAXT targets.

Next, we assessed the feature importance of the four
classes in the full model with features of all four classes.
As with NEXT versus non-NEXT/PAXT classification, the
result was largely consistent with the prediction power and
the feature rank observed for the individual classes (Supple-
mentary Figure S9).

As in the NEXT analysis, we also trained and evaluated
on protein-coding biotype alone, comparing 388 protein-
coding PAXT with 3204 protein-coding non-NEXT/PAXT
targets. Compared to the original analysis, the prediction
performance of the four feature classes was worse but with
similar trends: as above, Class 1 features were the least
predictive and Class 3 the best with F1 score 0.66 and
AUC 0.70 (Supplementary Figure S10A). The top features
were to a large extent consistent with the original analysis
(Supplementary Figure S10B–D and Figure 4D–F). These
results indicate that the discriminative features, especially
TES RNA processing features identified in original analy-
sis, are generally informative for PAXT targeting.

In summary, the prediction performance showed that
PAXT targets were more challenging to distinguish from
non-NEXT/PAXT targets as compared to NEXT targets.
The poor prediction performance of Class 1 features sug-
gests that PAXT and non-NEXT/PAXT targets are to a
large extent similar with respect to their promoter proper-
ties, such as histone modifications, G/C content and spread.
The most informative features for distinguishing PAXT and
non-NEXT/PAXT targets were RBP binding features, es-
pecially those proximal to TESs. Notably, CPA-related fea-
tures were not highly discriminative, suggesting that the
CPA machinery is shared across the two classes. In addi-
tion, sequence features were not important for classifying
PAXT and non-NEXT/PAXT targets, which included fea-
tures previously known for exosome targeting such as pro-
moter G/C content, 5′ SS, PAS motifs and RBP binding
motifs.

Determinants for classifying NEXT from PAXT targets

Finally, we sought features distinguishing NEXT from
PAXT targets using the same framework as above. After it-
erative feature selection, fewer features of all classes were
retained, particularly for Classes 2 and 3, compared to the
other two classifications above (Figure 5A). Feature selec-
tion only had a small effect on classification performance
(Figure 5A), which was in general worse than the NEXT
versus non-NEXT/PAXT classification and slightly bet-
ter than the PAXT versus non-NEXT/PAXT classification,
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Figure 4. Predictive model of PAXT versus non-NEXT/PAXT targets. Panels (A)–(F) are organized as those in Figure 3A–F, but based on PAXT versus
non-NEXT/PAXT targets.
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Figure 5. Predictive model of PAXT versus NEXT targets. Panels (A)–(F) are organized as those in Figure 3A–F, but based on NEXT and PAXT targets.
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with F1 score and AUC ranging from 0.67 to 0.78 and
0.72 to 0.85, respectively. Class 3 features of TES-proximal
RNA processing were comparable to PAXT versus non-
NEXT/PAXT targets and gave the best prediction perfor-
mance (Figure 5B). Only minor synergistic effects were ob-
served when combining feature classes (Figure 5B).

Although Class 1 features were not highly discrimi-
native, H3K4me1, H3K4me2 and H3K4me3 levels and
GC spread were the top ranked features, similarly to the
NEXT versus non-NEXT/PAXT target analyses (Figures
3C and 5C). The shared top Class 1 features between
NEXT versus PAXT and NEXT versus non-NEXT/PAXT
targets indicated that PAXT and non-NEXT/PAXT tar-
gets are somewhat similar for Class 1 features, which was
also consistent with the poor prediction performance of
Class 1 features in PAXT versus non-NEXT/PAXT tar-
gets (Figure 4B and C). Similar to NEXT versus non-
NEXT/PAXT targets, we found that NEXT targeted loci
had on average higher levels of H3K4me1 and H3K4me2
and lower levels of H3K4me3, despite matched expression
sampling. The GC spread distribution indicated that the
width of the TSS-downstream G/C-rich region is on aver-
age smaller for NEXT than PAXT targets, which displayed
a more well-defined width as evidenced by the smaller
variance.

Class 2 features had slightly more classification power
than Class 1 features (Figure 5B). The top features consisted
of both sequence and RBP binding features. Examining
the top ranked features and their distribution, binding of
DDX3X and the 5′ SS motif were the two most outstanding
top ranked features (Figure 5D). Distribution plots showed
that NEXT targets in general lack RNA processing features
compared to PAXT targets (Figure 5D, right).

Class 3 features yielded the best classification perfor-
mance (Figure 5E, left panel). PAS strength around the TES
stood out as the most discriminative feature followed by
well-positioned PAS motif upstream of the TES, and both
had higher values for PAXT than for NEXT targets (Fig-
ure 5E, right panel). Most of the other top features were
RBP binding, which had less signal in NEXT compared to
PAXT targets. Examining these features, many were RBP
binding relevant to 3′ end processing by the CPA machinery,
including CSTF2, CPSF7 and NUDT21. The difference in
RBP binding, PAS strength and well-positioned PAS mo-
tif features between classes confirmed a major difference of
TES-proximal processing between PAXT and NEXT tar-
gets with PAXT targets being dependent on the CPA ma-
chinery (20).

Class 4 features had slightly better prediction perfor-
mance than Class 1 but worse than Class 2 and 3 features
(Figure 5B). Top ranked features were similar to those ob-
served in NEXT versus non-NEXT/PAXT and PAXT ver-
sus non-NEXT/PAXT targets (Figure 5F, left panel). Here,
H3K36me3 was still the most important feature for the clas-
sification performance, which on average had higher levels
around TES of PAXT than NEXT targets, followed by fea-
tures correlated to active transcription initiation, such as
H3K27ac and H2A.Z with higher levels around TES of
NEXT than PAXT targets (Figure 5F, right panel). This
suggests that NEXT and PAXT targets both undergo less
efficient elongation compared to non-NEXT/PAXT tar-

gets, but to a different extent. This fits with the exosome’s
role as a quality control pathway to remove transcripts that
would arise from misconfigured RNAPII/nonproductive
elongation (28).

Assessing the feature importance of four classes in the full
model with features of all four classes showed consistent
results that agree with prediction power and feature rank
observed in the individual classes (Supplementary Figure
S11).

As with NEXT and PAXT analyses above, we also
performed prediction using protein-coding biotype RNAs
alone (252 NEXT with 388 PAXT targets). Because enough
data were available, we repeated this analysis also in the
lncRNA biotype RNAs independently (492 NEXT with
386 PAXT targets). Classes 1 and 4 were only predictive
for lncRNA with limited power, and the top features for
lncRNA biotype were largely consistent with the original
analysis (Supplementary Figure S12). Both Class 2 and 3
RNA processing features showed similar predictive power
for protein-coding RNA and lncRNA (Supplementary Fig-
ure S12A). Class 3 TES RNA processing features had the
best prediction performance. Examining the top discrimi-
native features, we found Class 2 TSS-proximal 5′ SS was
only important for distinguishing NEXT and PAXT in the
lncRNA but not protein-coding biotype. While a few new
significant features were identified in Class 2 and 3 fea-
tures, many top features overlapped between biotype strati-
fied analysis and original analysis (Supplementary Figure
S12D), suggesting in spite of biotypes, the differences of
TES RNA processing are generally most informative for
distinguishing NEXT and PAXT targets.

In summary, NEXT could be distinguished from PAXT
targets by both sequence and other types of features, es-
pecially RBP binding. While both TSS- and TES-proximal
RNA processing features had good prediction performance,
the latter can best distinguish NEXT from PAXT targets,
reiterating that a prominent difference between NEXT and
PAXT targeting is dictated by 3′ end processing, where the
top ranked features, such as PAS motifs and CPA-related
RBPs, suggest that the difference is determined by the CPA
machinery.

Identification of NEXT and PAXT pathway-specific features

A general pattern derived from the three binary classifi-
cations discussed above was that Class 2 and 3 features
overall had good prediction performances with Class 3
yielding the best results. Therefore, we investigated whether
NEXT- and PAXT-specific features could be identified
from these two classes. For NEXT specificity, we consid-
ered features retained after iterative selection and that oc-
curred in both NEXT versus PAXT and NEXT versus
non-NEXT/PAXT target classifications. Similarly, features
that occurred in both NEXT versus PAXT and PAXT
versus non-NEXT/PAXT target classifications were con-
sidered PAXT specific. Finally, features that occurred in
both NEXT versus non-NEXT/PAXT and PAXT versus
non-NEXT/PAXT target classifications were considered as
‘non-NEXT/PAXT’-specific features and features shared in
all comparisons were considered discriminative for all three
target categories (Figure 6, top panel).
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Figure 6. Exosome target pathway-specific features. Schematic Venn diagram in the top panel shows the definition of pathway-specific features. Lower
panels show the corresponding Venn diagram of Class 2 (upper box) and Class 3 (lower box); the pathway-specific and shared features are listed in colored
boxes. Arrows in front of NEXT- and non-NEXT/PAXT-specific features indicate whether the feature is depleted (arrow downward) or enriched (arrow
upward) in NEXT or non-NEXT/PAXT targets compared to the other two targets.
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Notably, we found no PAXT-specific features (as defined
above) in either Class 2 or 3. The NEXT-specific features
from Class 2 were mostly sequence features in which the
5′ SS motif was the most informative and with an impor-
tance score that was roughly 3.2-fold higher than the sec-
ond highest ranked feature. While some of these NEXT-
specific sequence features (indicated by red upward arrow in
Figure 6) were more enriched in NEXT compared to non-
NEXT/PAXT targets, these patterns could most likely be
explained by the distinct TSS-proximal nucleotide composi-
tions of NEXT targets that generally have higher A/U than
G/C contents (20). Consistently, the enriched RBP motifs
in NEXT targets contained high AU content, while depleted
ones were more G/C rich (Supplementary Figure S13). In
Class 3, NEXT-specific features consisted of both sequence
and RBP binding features, all of which were depleted in
NEXT targets, and which are mostly relevant to RNA 3′
end cleavage, e.g. PAS strength, cleaved PAS motif, and
RBP binding of CSTF2T, NUDT21, CPSF7 and CSTF2.
Most shared and non-NEXT/PAXT-specific features of
Classes 2 and 3 were RBP binding signals, which were ob-
served to be generally enriched in non-NEXT/PAXT tar-
gets compared to PAXT and NEXT targets (Figure 6).

As mentioned in the ‘Materials and Methods’ section, we
compared our results with pathway-specific features iden-
tified by the Boruta feature selection method. In general,
there was high agreement between the features selected by
either method: in both, most Class 2 NEXT-specific fea-
tures were RBP motifs, Class 3 NEXT-specific features
were mostly relevant to RNA 3′ end cleavage and pro-
cessing, and most shared and non-NEXT/PAXT-specific
features were RBP binding signals (Supplementary Figure
S14). Although the Class 2 5′ SS motif was considered a
shared feature by the Boruta method instead of a NEXT-
specific feature, this feature ranked much higher in NEXT
versus non-NEXT/PAXT (ranked 5 of 64) and NEXT ver-
sus PAXT (ranked 2 of 50), compared to PAXT versus non-
NEXT/PAXT (ranked 31 of 34). Thus, it seems reasonable
to consider the 5′ SS motif more informative for NEXT pre-
diction.

We then asked how well features of the four classes
were able to distinguish the respective exosome degradation
pathways in a multiclass classification model. To this end,
we used both the initial feature sets and the consistently
retained feature sets of the four classes established across
all three pairwise comparisons above, and then trained a
multiclass random forest model. The feature selection had
only a very minor influence on the prediction performance
(Figure 7). Consistent with the individual binary models,
Class 1 TSS features had a poor prediction performance
with an average accuracy of around 0.5, albeit with a better
than random expectation (0.33). Class 2 features of TSS-
proximal RNA processing and Class 4 features of TES
chromatin environment both had better prediction perfor-
mances with accuracies around 0.6, while Class 3 features
of TES-proximal RNA processing had the best accuracy of
around 0.7. We observed minor positive synergistic effects
of Class 1 and 2 features. Examining the confusion matrix of
the multiclass classification model using the combined con-
sistently significant features across all three comparisons,
we found that for all four feature classes, NEXT targets were

Figure 7. Multiclass classification. Bar plots (upper panel) showing the av-
erage accuracy over 10 repetitions for all features of the four classes and
combined consistent significant features in four feature classes across all
three comparisons. An error bar shows the standard deviation of the per-
formance over 10 repetitions. The lower panel shows the feature class (dark
dots) or combination of feature classes (dark dots connected by black solid
line) used for classification.

generally correctly classified with a higher confidence com-
pared to PAXT targets, which could be best classified only
by Class 3 features, consistent with the binary classification
results (Supplementary Figure S15).

DISCUSSION

The NEXT and PAXT exosome adaptors define two main
nucleoplasmic targeting pathways for RNA decay via the
nuclear RNA exosome. Previous observations have shown
that RNPs targeted by these pathways harbor different
characteristics with respect to features of the transcribed
loci as well as RNA processing elements, such as splicing
and 3′ end processing patterns (15,20,23–25). Here, lever-
aging the wealth of available genomic datasets, we utilize
predictive models for unbiased and comprehensive explo-
ration of molecular features associated with NEXT and
PAXT targeting. Our goal was to find out to what degree
NEXT/PAXT targets are predictable by either already es-
tablished features or additional biological features previ-
ously not associated with NEXT/PAXT sensitivity.

To rank how informative these established and newly hy-
pothesized biological features would be for predicting tar-
gets of these two pathways, we categorized features into four
different classes, stratifying by location (i.e. TSS or TES),
RNA processing or TSS/TES-related configurations. Based
on the different feature classes, we trained random forest
models to assess their abilities to distinguish targets and to
identify relevant features within each class that drive the
prediction performance. In contrast to many machine learn-
ing models that often display a ‘black box’ character, the
importance of individual features can, with random forest
models, be quantitatively assessed directly. The degrees of
feature importances were therefore used to eliminate less
relevant features in an iterative process, which led to a fi-
nal model containing a consistent set of high-priority and
discriminative features.

Given most exosome targets are noncoding RNAs while
non-exosome targets are primarily protein-coding RNAs,
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it is interesting to evaluate how informative molecular fea-
tures previously known to differ between coding and non-
coding RNAs are for exosome targeting, for example fea-
tures like G/C content and histone modifications. In our
analysis, these features are less informative compared to
RNA processing-related features and they are only distinc-
tive for NEXT targets and unable to distinguish PAXT from
non-NEXT/PAXT targets. This may be due to the fact
that we are controlling for expression levels in our analy-
sis, which otherwise would be expected to be higher on av-
erage for protein-coding genes. While NEXT targets could
be most accurately classified from the other two target cat-
egories by all four feature classes based on both binary and
multiclassification models, NEXT specificity seems more
likely to be driven by features relevant to the RNA pro-
cessing, especially 3′ end processing, than chromatin state.
Moreover, these NEXT-specific features showed that one of
the major differences contributing to distinguishing NEXT
from the other two categories is related to sequence: many
top ranked features are RBP binding motifs. Previous anal-
ysis of the nucleotide composition showed that NEXT tar-
gets are enriched for A and U and depleted of G and C.
Thus, the RBP binding motifs in NEXT targets likely result
from this distinct nucleotide composition, where many en-
riched motifs are AU rich while depleted ones are GC rich.

In terms of TSS-proximal RNA processing, it is well es-
tablished that some exosome targets are depleted of 5′ SSs
and enriched with PAS motifs (21,24,25,42). We found that
a lack of 5′ SSs is only a characteristic for NEXT targets,
while enrichment of PASs is not a discriminative feature.
Previous studies have suggested that 5′ SSs may serve as
a regulatory step to keep Pol II in active transcription via
the binding of U1 snRNP, which subsequently suppresses
3′ end processing and premature transcription termination
(42,45,46). However, it makes sense that this is not rele-
vant for NEXT targets since their transcription termination
was found to be mostly mediated by integrator rather than
CPA complex (20,28). Consistently, among TES-proximal
RNA processing features, well-positioned PAS motifs, PAS
strength and RBP binding related to the RNA cleavage pro-
cess in canonical 3′ end processing were found to be most
discriminative and yielded the best prediction performance
to distinguish NEXT targets from the other two categories.

Compared to NEXT targets, PAXT targets were more
difficult to distinguish from non-NEXT/PAXT targets by
the designed features in both binary and multiclass mod-
els. From prediction performance, PAXT targets were more
similar to non-NEXT/PAXT targets in terms of TSS-
relevant features, including histone modifications and G/C
content. Prediction from histone modifications around the
TES showed that PAXT targets share some similarities
with non-NEXT/PAXT targets and some with NEXT tar-
gets. RNA processing-related features gave an overall bet-
ter prediction performance for classifying PAXT from non-
NEXT/PAXT targets. However, unlike NEXT targets, the
most discriminative features were not sequence motifs but
RBP binding sites. This suggests that the major differences
between PAXT and non-NEXT/PAXT targets derive from
differential RBP binding patterns instead of sequence. In
line with this, we found that NEXT versus PAXT and
NEXT versus non-NEXT/PAXT targets share many dis-
criminative sequence features.

In addition to known features, our study also found that
binding of yet unexplored RBPs is informative for dis-
tinguishing NEXT and PAXT pathways, especially RNA
binding of the DDX3X helicase. While this may lead to
new hypotheses, some technical biases need to be taken
into consideration. We note that many of these discrimina-
tive RBP binding features were in general least abundant
(had less average signal) in NEXT targets compared to the
other two categories and less abundant in PAXT than non-
NEXT/PAXT targets. This may indicate that both NEXT
and PAXT targets generally lack RBP binding, which agrees
with models suggesting that nuclear decay is considered as
a default fate for all transcripts that lack specific protec-
tive features (47). However, technical biases introduced by
CLIP-seq cannot be ignored. The instability of exosome
targets in normal conditions with a fully functional exo-
some makes RBP binding difficult to capture by CLIP-seq
and may only be revealed upon inactivation/perturbation
of exosome-mediated decay pathways.

There are three important limitations to our approach.
First, discrimination power in any classification is correl-
ative and may at best give hypotheses for causal relation-
ships. Second, as mentioned above, there may be additional
features that are highly discriminative but that are not in-
cluded in the model: this is highly likely for the classifica-
tion of PAXT targets since the classification power is lim-
ited as well as protein-coding biotypes where the prediction
performance is generally worse, and such features may in-
clude RNA modifications and exact isoform usage, includ-
ing choice and efficiency of splice sites and 3′ end process-
ing signals. Lastly, not all the NEXT and PAXT targets
are included in the de novo HeLa transcriptome annota-
tion that we use. For example, prematurely terminated tran-
scripts originating from protein-coding gene TSS, which are
often PAXT and/or NEXT targets (20–22), are often not
included as they are uncharacterized transcripts that are
typically not sequenced from 5′ to 3′ end. Because these
transcripts are often lowly expressed and overlapping with
highly expressed protein-coding transcript isoforms, it is
difficult to accurately infer the exact isoform and quantify
the abundance based on RNA-seq only. It would be interest-
ing to include this class of targets in the future using quan-
titative full-length sequencing approaches.

In summary, our study systematically evaluated the abil-
ity and contribution of different molecular features to spec-
ifying the RNA exosome decay pathways, and directly com-
pared 5′ end and 3′ end features. Our results show that
NEXT, and to some degree PAXT sensitivity is feasible
to computationally predict with current features, and our
analysis of feature importance in predictions qualitatively
validates previously identified differences between NEXT
and PAXT targeting.
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