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Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the pas-
sive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases,
monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic
viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displace-
ment measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and
stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region.
The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contrac-
tion, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that
quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters.
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1. INTRODUCTION

Major heart diseases including ischemia, hypertrophic my-
ocardiopathy, and myocardial dilatation are growingly per-
vasive with high morbidity and mortality at tremendous so-
cial and healthcare costs [1]. It is commonly observed that
heart diseases are accompanied with impaired myocardium,
which typically shows increase in the passive viscoelastic stiff-
ness and/or decrease in active contractile ability. For exam-
ple, in ischemia, there is loss of blood supply with the sub-
sequent development of localized or diffuse fibrosis. The is-
chemic muscle thus becomes stiff with passive properties [2–
4], and its active contractility is commonly weakened [5]. In
the dilatation/hypokinesis states, the myocardial contractility
is weakened [6]. Such impairments reduce the heart pump-
ing ability at normal ventricular wall stress, and require in-
crease in stress to maintain the need of circulation. Chronic
high myocardial stress may lead to further damages, and
may eventually cause complete heart failure. Thus, modal-
ity development for detecting, localizing, and evaluating the

impaired myocardium should have far-reaching impacts on
diagnosis of heart diseases, monitoring therapy, and design
of surgery.

Cardiac biomechanics [7–14] has been developed to sim-
ulate anatomically accurate heart model undergoing dy-
namic deformation, taking into consideration the sheet-like
myofiber architecture, finite-strain deformation, nonlinear-
ity and passive/active behaviors of myocardium. With pre-
scribed material properties of the myocardial tissue, cardiac
biomechanics calculates myocardial motion and intramural
strain/stress in response to ventricular blood pressure and
bioelectric stimulus. Importance of the wall stress has been
well recognized, as it influences major physiological factors
including the ventricular pumping performance, the energy
consumption in the myocardial tissue, the coronary blood
flow, the vulnerability of regions to ischemia and infarction,
and the remodeling of myocardium and risk of arrhythmias
[15–18]. However, stress can only be calculated from the
strain with knowledge of the material properties. Inaccurate
constitutive description of myocardium will necessarily lead
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to inaccurate wall stress, and may mislead the clinical evalu-
ations.

There have been in vitro experiments to characterize the
passive elastic properties of heart muscle [19–25]. While
these experiments provide important knowledge of the me-
chanical behaviors of myocardium, the main disadvantages
are that the cut specimens are not in intact condition, and
that the varieties due to the diversity of location, species, sex,
age and health condition of the heart, and so forth, cannot be
fully addressed. Furthermore, such tests are inappropriate in
clinics. Therefore, the fundamental importance of accurate
constitutive description of an individual living heart urges a
cost-efficient, in vivo and noninvasive modality that reveals
the passive viscoelastic properties and active contractility of
normal and abnormal myocardium.

Elastography is a biomechanical technique that quantifies
the material properties of an object based on in vivo measure-
ments of deformation and force, instead of in vitro tests with
cut specimens. A comprehensive elastography framework for
heart tissues should include the following key elements: ma-
terial anisotropy due to the sheet-like myofiber architecture,
nonlinearity and viscosity of the passive mechanical proper-
ties, bioelectricity-stimulated active contraction stress, inho-
mogeneity and dynamic deformation, and so forth. The pio-
neering cardiac elastography studies include [26–31]. Han et
al. [28] and Gotteiner et al. [31] conducted a series of cardiac
elastography simulations, in which the heart muscle is mod-
eled as a uniform (homogeneous) and isotropic nonlinear
material, and the heart beating is approached as being qua-
sistatic. The 2D simulations of Creswell et al. [29] and Moul-
ton et al. [30] further took into consideration the myocardial
anisotropy. In these works, the effects of time-dependent de-
formation have yet to be investigated, and no attempt has
been made to characterize the active contraction capability
of normal and impaired heart muscles. Therefore, the result-
ing myocardial material parameters may not be adequate and
sufficiently accurate for clinical applications.

There have been tremendous developments in high-
speed, high-resolution biomedical imaging technologies.
The 3D anatomic structures of a living heart can now be ac-
curately depicted [32–35]. The laminar orthotropic myofiber
architecture can be reconstructed from diffusion-tensor MRI
data [36–38]. The dynamic deformation has also become
measurable, for instance, Lin and Robb [34] and Eusemann
et al. [35] used a CT-based dynamic spatial reconstructor
to track the endocardial and epicardial displacement, Kanai
et al. [39] developed ultrasonic phased-tracking method to
obtain the velocity field in the heart wall. Therefore, it is
time to develop a dynamic cardiac elastography methodol-
ogy that takes advantages of these information-rich measure-
ments and gives accurate material parameters for both the
passive behaviors and active contractibility of normal and
impaired myocardium.

The proposed DCE is to identify the material parameters
of myocardium, with which the computed time-dependent
displacement matches optimally to the experimentally mea-
sured displacement, as described in Sections 2.1 and 2.2.
In Section 2.3, a dynamic adjoint method is derived for

cost-efficient computation of the gradients of the objective
function with respect to the material parameters, and is com-
pared to the previous direct method. The overall DCE frame-
work is described in Section 2.4. Simulations are presented in
Section 3 using a numerical left ventricle (LV) phantom con-
taining an ischemic region, whose passive stiffness is much
higher than the normal tissue and the active contractility
is much weaker. An orthotropic viscoelastic model is em-
ployed for the passive behavior, according to the myofiber
architecture. A simplified active contraction stress model is
applied. The displacement on endocardial and epicardial LV
surfaces is extracted from the forward simulation at discrete
time steps, and is used as measurement for DCE reconstruc-
tion. Material parameters for the passive viscoelastic behav-
iors are identified with the LV passive (filling) phase, as in
Section 3.5, and those for the active contraction are identi-
fied with the LV active (contraction) phase, as in Section 3.6.
In Section 4, simulations are conducted to investigate the ef-
fects of measurement errors with the myofiber architecture
and the displacement, respectively. To demonstrate the ne-
cessity of using dynamic deformation for cardiac elastogra-
phy, reconstruction assuming quasistatic deformation is con-
ducted, and is compared with the present results. Conclusion
is given in Section 5.

2. DYNAMIC CARDIAC ELASTOGRAPHY FRAMEWORK

In this section, an optimization-based algorithm is derived
for DCE to identify the passive properties and active con-
tractility of heart muscle. The myocardium is assumed un-
dergoing viscoelastic deformation, involving active contrac-
tion stress. An objective function is proposed to measure the
discrepancy between measured and computed displacements
in a cardiac cycle. A dynamic adjoint method is developed
for analytical gradients of the objective function with respect
to the to-be-identified material parameters, for the purpose
of improving the numerical efficiency for elastography re-
construction. A flowchart is given of the optimization-based
DCE reconstruction procedure.

2.1. Material model and motion equation

A biological object Ω0 is described as undergoing viscoelas-
tic deformation, with active contraction stress. Its boundary
consists of Γ0

T, where surface force is applied, and Γ0
u on which

displacement and velocity are prescribed. The displacement
at location x and time t is u(x, t), the corresponding exper-
imental measurement is Um(x, t). The displacement-strain
relation is assumed linear, that is, the strain is ε = (�u +
(�u)T)/2. We use “�” to denote time derivatives, for exam-
ple, strain rate is ε̇ and acceleration is ü. The stress σ(x, t) of
myocardium is calculated with a Voigt-type viscoelastic con-
stitutive relation:

σ = ∂W
(
ε; pp

)

∂ε
+ Cv

(
pv
)

: ε̇ + σ f
(
Ca2+, ε; pa

)
. (1)
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The first term describes passive elastic behavior with a strain
energy W that depends on material parameters pp. The sec-
ond term is a viscous stress proportional to the strain rate
ε̇ by a forth-order tensor Cv(pv), where pv denotes viscos-
ity parameters. The third term is the active contraction stress
σ f due to the calcium concentration Ca2+. It is described by
active parameters pa, and depends on the local strain ε. The
mechanical properties for myocardium is very complex, and
there may not be an accurate yet neat constitutive model [26–
31]. In general, the viscous stress depends on the whole de-
formation history. For a heart, however, the effects of history
have been “shaken down” after many beating cycles, and can
be equivalently described with the current strain ε and strain
rate ε̇, and so forth. Thus the Voigt-type viscoelastic model
(1) is considered a first-order approximation. The proposed
DEC itself can adapt to more complex material model.

Assuming no body force, the viscoelastic motion equa-
tion and the corresponding boundary and initial conditions
are

� � σ = ρ0ü
(

x � Ω0),

n � σ(x, t) = T(x, t)
(

x � Γ0
T

)
,

u(x, 0) = U(x, 0), u̇(x, 0) = V(x, 0)
(

x � Ω0)

(2)

for t � [0,T0], where ρ0 is the mass density, T is the sur-
face force and n is the unit outer normal to the boundary
Γ0

T. For a heart, T is well approximated as zero on the epi-
cardial surfaces and is �P(x, t)n on the endocardial surfaces.
Here P(x, t) denotes the blood pressure. It changes with time
and varies in the four heart chambers. The dynamic dis-
placement u and its time derivative u̇ are continuous in Ω0

and prescribed on Γ0
u, that is, u � κ = �u � u(x, t) �

C0(x) in Ω0, u(x, t) = U(x, t) and u̇(x, t) = V(x, t) on Γ0
u�.

The variational weak form of (2) can be shown as

0 =
∫

Ω0
σ : εwdV +

∫

Ω0
ρ0w � üdV �

∫

Γ0
T

T �wdA, (3)

for arbitrary virtual displacement w � κ0 = �u � u(x, t) �
C0(x) in Ω0, u(x, t) = 0 and u̇(x, t) = 0 on Γ0

u�, and εw =
(�w + (�w)T)/2.

2.2. Objective function

The elastography reconstruction is thus to find material pa-
rameters, denoted with p = �pp, pv, pa�, with which the dis-
placement u calculated via (1) and (2) approaches experi-
mental measurement Um optimally. This is to minimize the
objective function

Φ(p)=
∫ T0

0

(∫

Ω0
h � χΩ(x, t) � hdV+

∫

Γ0
T

h � χΓ(x, t) � hdA

)

dt,

h = u(x, t; p)�Um(x, t),
(4)

in which the time interval [0,T0] is typically a part of a
cardiac cycle. Second-order tensors χΩ(x, t) and χΓ(x, t) are

weight functions defined in Ω0 and on Γ0
T, respectively. In

medical applications, displacement Um is typically measured
at M discrete time steps t = tI (I = 1, 2, . . . ,M). Therefore,
χΩ(x, t) and χΓ(x, t) should be interpreted as δ-functions

with respect to time, that is, χΩ(x, t) = ∑M
I=1 χ

(I)
Ω (x)δ(t � tI)

and χΓ(x, t) =∑M
I=1 χ

(I)
Γ (x)δ(t� tI). In fact, these δ-functions

lead to impulsive force on the adjoint system described be-
low.

2.3. Dynamic adjoint method for the gradients

The simplest optimization methods only require user-
supplied objective function Φ(p). The material parameters
p are searched with trial-and-error method, finite-deference
gradients [30], or approximate gradients [40]. Without user-
supplied gradients, the optimization-based reconstruction
procedure is very time-consuming, considering the large
number of iterative steps needed for convergent results and
the high computational expense for solving time-dependent
equation (2) in each step. The difficulty for calculating the
analytic gradients ∂Φ/∂p comes from the fact that the de-
pendency of u on p is implicit and highly nonlinear. Here,
we derive a dynamic adjoint method for efficient and accu-
rate computation of ∂Φ/∂p.

Following the standard treatment for constrained opti-
mization, the weak form (3) is introduced into the objective
function (4), and a Lagrangian is formed as

L(p; u; w)

=
∫ T0

0

⎛

⎜
⎜
⎜
⎝

∫

Ω0
h�χΩ�hdV+

∫

Γ0
T

h�χΓ�hdA+
∫

Ω0
σ : εwdV

+
∫

Ω0
ρ0w�üdV �

∫

Γ0
T

T�wdA

⎞

⎟
⎟
⎟
⎠
dt,

(5)

where u � κ and w � κ0. Noting that the weak form (3)
is satisfied by u with any w � κ0, it can be shown that
Φ(p) = L(p; u, w) and δΦ = δL for arbitrary displacement
fields w, δw, and δu that belong to κ0, where “δ” represents
variation. This allows suitable choice for w, with which only
simple terms are kept in δL and δΦ. To find the optimal
choice, variational derivations are conducted. First, the vari-
ation of L(p; u, w) is expanded as

δL =
∫ T0

0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

Ω0
2h � χΩ � δudV +

∫

Γ0
T

2h � χΓ � δudA

+
∫

Ω0

(
LT : δε + Cv : δε̇

)
: εwdV

+
∫

Ω0
ρ0w � δüdV +

∫

Ω0
δpσ : εwdV

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

dt,

(6)

for which the terms related to δw have been canceled out
since δw � κ0 and u satisfies the weak form (3). The forth-
order tensor LT = ∂2W/∂ε∂ε + ∂σ f /∂ε is the tangent elastic
modulus. The stress variation due to the change of material
parameters p is denoted as δpσ . By integrating by part, the
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terms with δü and δε̇ are simplified as

∫ T0

0

∫

Ω0
ρ0w � δüdV dt

=
∫ T0

0

∫

Ω0
ρ0ẅ � δudV dt

+
∫

Ω0
ρ0
(

w
(

x,T0
)
� δu̇

(
x,T0

)

� ẇ
(

x,T0
)
� δu

(
x,T0

))
dV ,

∫ T0

0

∫

Ω0

(
C:δε̇

)
: εwdV dt

= �

∫ T0

0

∫

Ω0
δε : Cv : ε̇wdV dt

+
∫

Ω0
δε
(

x,T0
)

: Cv(x) : εw
(

x,T0
)
dV ,

(7)

noting that δu(x, 0) = 0, δu̇(x, 0) = 0, and δε(x, 0) = 0.
Now, with selection w(x,T0) = ẇ(x,T0) = 0, which yield
εw(x,T0) = 0, the integrals in (7) can be further simplified,
and (6) becomes

δL =
∫ T0

0

⎛

⎜
⎜
⎜
⎝

∫

Ω0

(
LT : εw�Cv : ε̇w

)
: δε+

(
2h � χΩ+ρ0ẅ

)

� δudV +
∫

Γ0
T

2h � χΓ�δudA+
∫

Ω0
δpσ : εwdV

⎞

⎟
⎟
⎟
⎠
dt.

(8)

Compared to the variational weak form (3), it is readily
shown that the following choice for w will eliminate the first
two integrals in (8) for arbitrary δu � κ0, that is, w � κ0 and

� �
(

LT : εw � Cv : ε̇w
)

+ ρ0ẅ = �2h � χΩ
(

x � Ω0),

(
LT : εw � Cv : ε̇w

)
� n = �2h � χΓ on Γ0

T

(
x � Γ0

T

)
,

w
(

x,T0
) = 0, ẇ

(
x,T0

) = 0
(

x � Ω0).

(9)

Note that (9) gives end conditions for w, instead of initial
conditions. Thus, only the last term remains in (8), that is,
δΦ = δL = ∫ T0

0

∫
Ω0 δpσ : εwdV dt, and the gradients ∂Φ/∂p

are

∂Φ

∂pp
=
∫ T0

0

∫

Ω0
εw :

(
∂2W

∂ε∂pp

)
dV dt,

∂Φ

∂pv
=
∫ T0

0

∫

Ω0
εw :

(
ε̇ :

∂Cv

∂pv

)
dV dt,

∂Φ

∂pa
=
∫ T0

0

∫

Ω0
εw :

(
∂σ f

∂pa

)
dV dt.

(10)

The above variational derivations reflect the original idea
of the continuum-based optimality criteria technique for
topology optimization [41], where w defined in (9) is called

the adjoint displacement. Recent elastography implementa-
tions of the adjoint method have been made by Tardieu and
Constantinescu [42] for determination of elastic coefficients
from indentation experiments, and by Oberai et al. [43] and
Liu et al. [44] for static isotropic and anisotropic problems,
respectively.

Alternatively, the gradients ∂Φ/∂p can be calculated with
a direct method. Denoting the gradient of u with respect to
the ith material parameter as u(i) = ∂u/∂pi, and the associ-
ated strain as ε(i) = (�u(i) + (�u(i))T)/2, it is shown that

∂Φ

∂pi
=
∫ T0

0

∫

Ω0
2h � χΩ � u(i)dV dt, (11)

where u(i) � κ0 and is the solution of

� � s(i) = � �

(
LT : ε(i) + Cv : ε̇(i) +

∂σ

∂pi
+
∂Cv

∂pi
: ε̇
)

= ρ0ü(i)
(

x � Ω0),

n � s(i) = 0
(

x � Γ0
T

)
,

u(i)(x, 0) = 0, u̇(i)(x, 0) = 0
(

x � Ω0).

(12)

Compared to the direct method, the most favorable ad-
vantage of the adjoint method is that it calculates the gra-
dients ∂Φ/∂p most efficiently. With suitably chosen time
integral algorithm, for instance, the standard Newmark-β
scheme employed in our simulations, solutions for w and u
share the same finite-element effective stiffness matrix Keff =
[β(Δt)2KT +γΔtC+M] (Δt is time step, β = 1/12 and γ = 1/2
are used) and its Cholesky factorization at any time step,
which are most time consuming in finite-element computa-
tions. Note that matrix KT corresponds to the tangent elastic
modulus LT, C corresponds to viscosity tensor Cv, and M is
the mass matrix. Therefore, solving (9) for w and then inte-
grating (10) for ∂Φ/∂p just add a small fraction of cost to the
solution for u (2), which is required in optimization-based
elastography reconstruction. In contrast, the direct method
(11) and (12) involves solving dynamic displacement u(i) for
every ∂Φ/∂pi. When the number of material parameters in-
creases, the computational expense with the direct gradient
method increases proportionally, while that with the pro-
posed adjoint method rises slightly only because more in-
tegrals are calculated (10). The tradeoff for using adjoint
method is additional complexity in programming. Because
the solution for w (9) starts at T0 and ends at 0, it needs a
backward numerical scheme, which must be consistent with
the forward scheme for u. The method also needs additional
memory to store the factorization of Keff at every time step.
Recently, Oberai et al. [45] gave an in-detail evaluation on
the numerical efficiency of static elastography reconstruc-
tions using the adjoint method.

2.4. Optimization-based DCE reconstruction
procedure

The DCE framework involves data acquisition, material
modeling, and reconstruction of material parameters, shown
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Calculate objective
functional Φ(p) Eq. (4)
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Output p

Solve Eq. (9) for
adjoint field w(x, t)

Calculate gradients
∂Φ/∂p Eq. (10)

L-BFGS subroutine
updates p with Φ(p) &
∂Φ/∂p

Yes

No

Figure 1: Flowchart for the DCE reconstruction procedure with L-BFGS optimization subroutine and user-supplied gradients.

with the flowchart in Figure 1. Data acquisition includes re-
construction of the anatomic structures of a heart and the
myofiber architecture, extracting displacement data from dy-
namic cardiac imaging sequence, and measurement of the
blood pressures and calcium kinetics. In this work, data ac-
quisition is considered well ready (e.g., [33–38]). Formulas
for the passive and active stresses are chosen, with material
parameters p = �pp, pv, pa� to be reconstructed. The re-
construction procedure is optimization-based, making use of
a limited-memory BFGS (L-BFGS) optimization subroutine
[46], for which user-supplied gradients are required. When
solving u with finite-element method, the factorization of
Keff is stored at each time step, and is used for the adjoint
displacement w.

3. SIMULATIONS

This section presents DCE simulations with a three-
dimensional left ventricle (LV) phantom containing an is-
chemic region, demonstrating the validity and utility of the
proposed algorithm. The passive stress-strain relation is as-
sumed linear viscoelastic, and is orthotropic according to the
myofiber architecture. A simplified model is employed for
the active stress. Forward computation is first carried on the
phantom undergoing filling and contraction motions. Dis-
placement on the endocardial and epicardial LV surfaces is
then extracted from the forward results at discrete time steps,
and is used as measurement for DCE reconstruction of the
passive and active parameters of the normal and ischemic tis-
sues.

3.1. LV phantom and myofiber architecture

Our DCE simulations use a 3D LV phantom, as shown in Fig-
ures 2(a) and 2(b). To approximate the shape of a left ven-
tricle (e.g., [47]), a thick-wall hollow ellipsoid is employed,

whose surfaces are defined by

(
x

a

)2

+
(
y

b

)2

+
(
z

c

)2

= λ2(a = 3.6, b = 4, c = 5), (13)

where λ = λepi = 1 for the epicardial surface and λ =
λendo = 0.6875 for the endocardial surface. The length unit
is cm. The base is z = zBase = 2.5 cm, and the apex is
z = zApex = �5.0 cm. Shown with Figure 2(a), a red region is
embedded into the wall, simulating an ischemic region. Clin-
ically, the location, size, and shape of an impaired region can
be 3D depicted from medical imaging measurements.

The myocardial tissue exhibits laminar histological struc-
ture [36–38], and is described with the local myofiber
structure-based material axes (n f , ns, nn) as schematically
shown in Figures 2(b) and 2(c), where n f is the fiber di-
rection, ns is the cross-fiber direction in the plane of my-
ofiber layer, and nn = n f � ns. These material axes vary
continuously from epicardium to endocardium and from
base to apex. The present simulations use a mathematical
approximation to the myocardial architecture. At a point
(x, y, z) in the LV wall, local coordinates (eh, eη, eξ) are de-
fined (Figure 2(b)) as: eh is along the local thickness direc-
tion (x/a2, y/b2, z/c2); eη is along direction (�y/b2, x/a2, 0),
that is, it lies in the x � y plane and is perpendicular to
eh; the third direction is eξ = eh � eη. In consistency with
the descriptions of LeGrice et al. [36] and Costa et al. [48],
and as schematically shown in Figure 2(c), the myocardial
fiber is well approximated as lying in the tangential plane
(eη, eξ), that is, n f = cosαeη + sinαeξ , where α is the fiber
angle. There is a sheet angle β between ns and eh, so that
ns = cosβeh + sinβ(eh � n f ). Finally, nn = n f � ns. Angles α
and β change transmurally and from base to apex. According
to the experiment observations [36, 48], a linear transmural
distribution is assumed for α and a quadratic distribution is
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Figure 2: (a) A thick-wall hollow ellipsoidal LV phantom. Finite element mesh is shown on the surfaces. The red zone imitates an ischemic
myocardial region; (b) local coordinates (eh, eη, eξ) at point (x, y, z); (c) schematic plot of the spatial myofiber architecture described by the
local material axes (n f , ns, nn). The myofiber direction n f lies in the (eη, eξ) plane, and with a fiber angle α measured from eη. The cross-fiber
direction ns is perpendicular to n f , and with a sheet angle β measured from eh. The third axis nn = n f �ns is normal to the plane of myofiber
layer.

assumed for β, that is,

α = αendot + αepi(1� t),

β = βendot(2t � 1) + 4βmidt(1� t) + βepi(1� 2t)(1� t),

t = λ� λepi

λendo � λepi
, λ =

√
√
√
(
x

a

)2

+
(
y

b

)2

+
(
z

c

)2

,

(14)

where t is the relative wall depth measured from the epi-
cardial surface, the angles (αepi,αendo,βendo,βmid,βepi) are as-
sumed vary linearly from the basal site (zBase = 2.5 cm) to the
apical site (zApex = �5.0 cm), as

(
αepi,αendo,βendo,βmid,βepi

)
�z

= (αepi,αendo,βendo,βmid,βepi
)
�Apexh

+
(
αepi,αendo,βendo,βmid,βepi

)
�Base(1� h),

(15)

where h = (zBase � z)/(zBase � zApex). Based on the mea-
sured distribution of angles α and β in canine ventricular
myocardium [48], the following architectural parameters are
assumed (in degree) for the simulations:
(
αepi,αendo,βendo,βmid,βepi

)
�Apex = (�40, 80, 10,�18,�20),

(
αepi,αendo,βendo,βmid,βepi

)
�Base = (�65, 60,�35, 25, 0).

(16)

Figures 3(a) and 3(b) illustrate the transmural distribution
of α and β at the basal and apical sites, respectively.

3.2. Linear anisotropic viscoelastic passive behavior
and active contraction stress

In the present phantom simulations, a linear anisotropic
viscoelastic model is employed for the passive behaviors of

normal and ischemic myocardial tissues, and a directional
active contraction stress is adopted, that is,

σ = ∂WE

∂ε
+ γI : ε̇ + Tf

(
Ca2+, λ;Tmax

)
n f 	 n f , (17)

in which the strain energy WE is calculated on the local
structure-based material axes (n f , ns, nn) as

WE = 1
2

(
Ef f ε

2
f f + Essε

2
ss + Ennε

2
nn + 2Ef sε

2
f s

+ 2Ef nε
2
f n + 2Ensε2

ns

)
,

(18)

where ε f f = n f � ε � n f , εss = ns � ε � ns, εnn = nn � ε � nn,
ε f s = n f � ε �ns, ε f n = n f � ε �nn, and εns = nn � ε �ns. This is
a linear approximation to the exponential strain energy em-
ployed in the forward heart simulations of Guccione et al. [8]
and Usyk et al. [12]. An isotropic Voigt-type viscosity is as-
sumed. The active contraction stress is assumed directly re-
lated to the fiber direction n f . It depends on the current cal-
cium concentration Ca2+ and the relative sarcomere stretch
λ, which is calculated with λ = n f � ε �n f + 1 for small-strain
approach. There have been complex models for Tf [49, 50]
in heart muscle, and three-dimensional description of active
stress σ f [51, 52]. For the purpose of the present DCE phan-
tom simulations, a simplified model of Rachiev and Hayashi
[53] is employed:

Tf = Tmax
Ca2+

(
Ca2+

)
max

λ

(

1�
(

λ� λ0

λm � λ0

)2
)

, (19)

in which λ0 = 0.8 and λm = 1.2 are the reference sarcom-
ere stretches for myocardium [54], and Tmax is the reference
contraction stress.

The material parameters p = (Ef f ,Ess,Enn,Ens,Ef n,Ef s,
γ,Tmax) are given for normal and ischemic myocardial
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Figure 3: Mathematical approximation of the myofiber architecture at basal (solid line) and apical (dotted line) sites of left ventricle model.
(a) Linear transmural distribution of fiber angle α; (b) quadratic transmural distribution of sheet angle β.

tissues, respectively, as

pNormal = (185.0, 35.8, 35.8, 28.0, 28.0, 28.0, 1.0, 800),

pIschemic = (555.0, 107.4, 107.4, 84.0, 84.0, 84.0, 1.0, 200),
(20)

where E’s and Tmax are in kPa, and γ is in kPa � second. The
ratios between E’s reflect the material anisotropy, in consis-
tency with the exponential model of Guccione et al. [8] and
Usyk et al. [12]. The magnitudes of E’s are chosen such that
the end-filling sarcomere stretch lies mostly around 1.1 in
the LV wall, and that the ischemic region are three times as
stiff as the normal region [4]. For the normal tissue, a refer-
ence contractility Tmax = 800 kPa is chosen for most realistic
LV contraction deformation. The ratio between Tmax and the
passive stiffness E’s is consistent with those found in the lit-
erature [18]. The contractility of the ischemic myocardium
is typically much weaker than the normal tissue [5, 55], and
changes with the degree of damage and healing. Therefore,
its Tmax is assumed at 200 kPa, that is, 25% of the normal tis-
sue. Although the normal tissue is assigned with one set of
material parameters, it is heterogeneous owning to the spa-
tial variation of myofiber architecture. So is the ischemic tis-
sue. It is noted that the objective of the present simulations is
to investigate the feasibility of cardiac dynamic elastography,
instead of the actual mechanical responses in a real heart.
Therefore, the phantom, loading conditions, material mod-
els, and parameters are not exact.

Material parameters (Ef f ,Ess,Enn,Ens,Ef n,Ef s, γ,Tmax)
are to be identified in the following DCE reconstructions.
The reference stretches λ0 and λm show relatively small vari-
ations in different hearts [54], and are assumed known in
the simulations. The mass density of myocardium is also as-
sumed known at ρ0 = 1g/cm3. Kinetics of Ca2+ is described
in the next subsection.

3.3. LV pressure and calcium kinetics profiles

An empirical LV blood pressure profile P(t) (e.g., [16])
is used, as in Figure 4(a). The passive phase involves
rapid/reduced filling (time t < t0 = 0.34 second) and artery
contraction (t0 
 t < t1 = 0.48). The active phase includes
LV isovolumetric contraction (t1 
 t < t2 = 0.60) and
rapid/reduced ejection (t2 
 t < t3 = 0.88). In the active
phase, the calcium concentration Ca2+(t) is assumed uni-
form in the LV wall, and is modeled mathematically as [49]

Ca2+(t)
(
Ca2+

)
max

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 t �
[
0, t1

]
,

t � t1
t2 � t1

t �
[
t1, t2

]
,

1� s

1 + ks
, s = t � t2

t3 � t2
t �

[
t2, t3

]
,

(21)

where k = 10, as in Figure 4(b). In practice, LV blood pres-
sure and electromechanical activity in an individual heart
can be obtained noninvasively with established techniques
[56, 57], and are used for DCE reconstructions.

3.4. Dynamic deformation of LV

In the phantom simulations, the endocardial surface is sub-
jected to uniform blood pressure P(t) (Figure 4(a)), and the
epicardial surface is force free. The basal surface (z = 2.5 cm)
is fixed, that is, u = 0 at z = 2.5 cm. With material model
(17)–(20), the dynamic deformation of LV in the time inter-
val [0, t3] is obtained. The ventricular deformations at t = 0.4
second (passive phase) and 0.6 second (active phase) are plot-
ted in Figures 5(a) and 6(a), respectively. Simulations are also
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Figure 4: (a) A model blood pressure profile P(t) in the left ventricle, in mmHg. The dots represent time steps when displacement Um is
measured. Solid dots: time t = 0.1, 0.2, . . . , 0.8 second; open dots: t = 0.05, 0.15, . . . , 0.85 second. (b) A model relative calcium kinetics curve
Ca2+(t)/(Ca2+)max in the left ventricular wall.
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Figure 5: (a) Deformation of ischemic LV phantom at t = 0.4 second (passive phase); (b), (c), and (d) differences of epicardial/endocardial
displacement components ux, uy , and uz, respectively, between ischemic and normal LV phantoms. View angles and contour levels are chosen
for best illustration.



Yi Liu et al. 9

x y

z

(a)

�0.1
�0.08
�0.06
�0.04
�0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

(b)

�0.5
�0.45
�0.4
�0.35
�0.3
�0.25
�0.2
�0.15
�0.1
�0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

(c)

�0.1
�0.08
�0.06
�0.04
�0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

(d)

Figure 6: Same as Figure 5, but at t = 0.6 second (active phase).

made with a normal phantom without the ischemic region.
The differences of epicardial/endocardial displacement com-
ponents, ux, uy , and uz, between ischemic and normal phan-
toms are plotted in Figures 5(b), 5(c), and 5(d) for t = 0.4
second and Figures 6(b), 6(c), and 6(d) for t = 0.6 second,
respectively. The comparison shows that the ischemic region,
which is passively stiffer and actively weaker, changes the dis-
placement characteristics. In other words, the material pa-
rameters of normal and ischemic tissues may be extracted
from the displacement measurements.

3.5. DCE reconstruction for the passive
viscoelastic parameters

The DCE reconstruction is divided into two steps. First, the
viscoelastic parameters E’s and γ are identified using the
epicardial/endocardial displacement measured in the passive
phase, where no active contraction occurs in the LV wall.
Then, the active contraction stress Tmax is reconstructed us-
ing the displacement in the active phase. The reconstruction
follows the optimization procedure (Figure 1), and uses the
proposed adjoint gradients (9), (10).

The epicardial/endocardial displacement is measured at
time t = 0.1, 0.2, 0.3, 0.4 second (Figure 4(a)). The initial
guess is picked near to the real parameters of the normal
tissue, in order to reach the global minimum of the objec-
tive function Φ(p), which corresponds to the exact material

parameters. In practice, the range of the normal tissue pa-
rameters may be obtained from available database. There-
fore, such an initial guess is feasible. The results are pre-
sented in row “Ideal Input” of Table 1. The reconstruc-
tion converges after about 250 iteration steps. It yields the
exact passive viscoelastic parameters pNormal for the nor-
mal tissue, and very accurate pIschemic for the ischemic tis-
sue. Very fast convergence of pNormal is observed. For in-
stance, parameters (Ef f ,Ess,Enn,Ens,Ef n,Ef s; γ) of normal
tissue reach (188.8, 37.45, 37.56, 28.14, 26.82, 29.39; 0.844) at
the 25th iterative step, and (185.59, 36.24, 36.33, 28.35, 28.06,
28.85; 0.922) at the 50th step, then the main adjustment is for
the viscosity coefficient γ. For the ischemic tissue, Ef f climbs
steadily from the initial guess 125.0, reaches the highest point
of 680 at around the 200th step, and decreases gradually to
the result of 559.3. The other parameters in pIschemic, however,
experiences fluctuations. There seems to be a combining ef-
fect of the elasticity E’s and viscosity γ in the monotonous LV
filling motion, that is, both contribute to the effective stiff-
ness. The weakening effect owning to low elasticity E’s may
be balanced by a high viscosity γ. During the reconstruction,
E’s and γ both growth from the initial guess, with a much
higher increasing rate for the latter. After about 150 steps,
when pNormal have converged very closely to the exact values,
the ischemic γ begins to decrease from the highest value of
about 6.6, and the E’s increase with faster speed toward the
exact values. For the ischemic tissue, the faster convergence
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Table 1: Guesses and reconstruction results for dynamic cardiac elastography: passive parameters.

Normal myocardium pNormal Ischemic myocardium pIschemic

Ef f Ess Enn Ens E f n E f s γ E f f Ess Enn Ens E f n E f s γ

Real 185.0 35.80 35.80 28.00 28.00 28.00 1.00 555.0 107.4 107.4 84.00 84.00 84.00 1.00

Guess 125.0 50.00 50.00 25.00 25.00 25.00 1.50 125.0 50.00 50.00 25.00 25.00 25.00 1.50

DCE reconstruction results

Ideal input 185.0 35.80 35.79 28.01 28.01 28.00 1.00 559.3 101.2 105.7 83.37 82.27 81.79 1.19

Errors-F 184.9 35.83 35.77 28.01 27.92 27.96 1.00 593.8 93.51 104.7 85.22 82.56 80.53 1.10

Errors-D 184.9 35.69 35.88 28.08 28.12 27.87 0.99 581.1 86.14 95.6 78.08 76.50 75.72 2.51

Errors-FD 184.9 35.51 35.76 28.03 27.97 27.76 1.07 554.5 107.5 106.2 91.49 89.22 88.68 0.43

Static A 114.7 46.40 77.19 43.91 47.05 59.74 — 326.3 613.5 130.2 0.285 33.27 19.43 —

Static B 149.7 57.43 116.2 66.62 55.61 93.13 — 311.9 403.5 190.4 3.988 55.99 39.72 —

Static C 131.4 52.49 99.8 57.48 50.03 79.85 — 290.7 549.9 169.1 2.293 49.41 30.81 —

and better accuracy of Ef f indicates its relatively stronger
role in the LV deformation. The primary deformation pat-
tern in the passive phase is LV dilatation, where the dominant
strain-stress relation occurs mainly along the myofiber direc-
tion, and the shear strains on the material axes (n f , ns, nn) are
relatively weak. Therefore, the influences of Ef f are most sig-
nificant. As a result, Ef f for ischemic region is much better
identified than the other E’s.

There is also size effect, that is, small size of the is-
chemic region weakens the effects of pIschemic on the over-
all LV motion. As shown in Figures 5 and 6, deformation
variations due to the ischemic region are localized, that is,
occur mainly around the ischemic region. This may explain
the much faster convergence and higher accuracy for pNormal

than pIschemic. Furthermore, DCE reconstruction has been
performed using displacement at nine time steps, that is,
t = 0.05, 0.1, 0.15, . . . , 0.45 second (Figure 4(a), both solid
and open dots). The improvement is not significant. Better
results are expected if transmural displacement field can be
measured, for instance, with MRI tagging technique [58].
Reconstructions have also been performed using the direct
gradients (11), (12), and similar results are obtained. How-
ever, the computational expense is much higher, by a fac-
tor of about 5, noting that there are 14 displacement fields
u(i) = ∂u/∂pi to solve (12).

In comparison with our previous static anisotropic elas-
tography simulations [44], the present DCE needs more it-
erative steps and shows overall lower accuracy. This is due to
the approximate numerical scheme for solving the dynamic
motion equations (2), (9), that is, Newmark-β method in this
work.

3.6. DCE reconstruction for the active
contraction parameters

This section identifies the active contraction stresses Tmax

(19) for the normal and ischemic tissues, denoted as TNormal

and TIschemic, respectively. The epicardial/endocardial dis-
placement is measured at time t = 0.5, 0.6, 0.7, 0.8 second
during the active phase (Figure 4(a)). Two approaches are
made.

The first approach employs the exact passive material
parameters given in (20). The initial guess is 500.00 for
both TNormal and TIschemic. It is near to the exact value for
the normal tissue. Thirteen iterative steps are needed to
get convergent results, TNormal = 800.0 and TIschemic =
200.0, respectively, which are the exact values. Similar to
the above observation on the convergence of pNormal and
pIschemic, TNormal converges quickly toward the exact value,
then TIschemic accelerates its convergent speed. More specif-
ically, TNormal has reached 806.8 at the 8th iterative recon-
struction step, while TIschemic is at 445.2, about twice of
the exact value. Then, TNormal gradually drops to the ex-
act value, and TIschemic approaches rapidly to 200.0. As dis-
cussed above for pIschemic, two factors probably contribute
to the late convergence of TIschemic, that is, the small size
of ischemic region and the low value of TIschemic (25% of
TNormal).

The second approach uses the previously reconstructed
passive viscoelastic material parameters (Ef f ,Ess,Enn,Ens,
Ef n,Ef s; γ) (row “Ideal Input” of Table 1). The pattern of
convergence is similar to the above with exact passive param-
eters, while there are some reconstruction errors. At the 8th
iterative step, TNormal = 805.6 and TIschemic = 446.9. Then
TIschemic starts to converge quickly. After 13 steps, the gra-
dients ∂Φ/∂p approach zero, and reconstruction results are
TNormal = 799.5 and TIschemic = 197.8.

4. DISCUSSIONS

The above DCE reconstructions use exact measurements,
that is, exact myofiber architecture, exact epicardial and en-
docardial displacement, and exact blood pressure. The fol-
lowing simulations investigate the influences of the errors
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with myofiber architecture and displacement measurements,
respectively. Furthermore, a comparison is made between the
dynamic cardiac elastography and the previous quasistatic
approach.

4.1. Errors with myofiber architecture

In vivo measurement of the myofiber architecture has been
a challenge in cardiac imaging techniques. Recently, Scollan
et al. [38] developed a diffusion-tensor MRI to estimate the
fiber orientation in a living heart. Another feasible way is to
approximate the myofiber architecture using available ex vivo
experimental database [36, 55, 59–61], based on the under-
standing that variation of myofiber architecture in individual
hearts is relatively small after some anatomy-based mapping.

To simulate the errors with myofiber architecture, ran-
domly picked values between �5 and 5 degrees are added
to the “exact” fiber angle α and sheet angle β (14)–(16) in
each element. Reconstruction is then conducted to identify
the passive parameters (Ef f ,Ess,Enn,Ens,Ef n,Ef s; γ). The re-
sults are given in the row “Errors-F” of Table 1. It is ob-
served that pNormal are not sensitive to the errors. They
are (189.0, 37.57, 37.62, 28.12, 26.75, 29.34; 0.84) at the 25th
step, and reach (185.4, 35.68, 36.01, 28.16, 28.02, 28.46; 0.95)
at the 75th step. Due to the small size and weak influ-
ences of the ischemic region on the LV deformation, pIschemic

are more sensitive, and show reconstruction errors as large
as 10%. The overall patterns of convergence are similar to
those of DCE reconstruction with exact myofiber architec-
ture (Section 3.5).

4.2. Errors with displacement measurement

Epicardial/endocardial displacement of a beating heart can
be computed from dynamic cardiac imaging sequences (Lin
& Robb [34], Eusemann et al. [35]), and inevitably contains
errors. The response of DCE reconstruction to inaccurate
displacement measurement is investigated herein. Randomly
generated�5% to +5% relative error is added to each “exact”
epicardial/endocardial displacement component. The results
are shown in the row “Errors-D” of Table 1.

The parameters pNormal converge stably, and reach accu-
rate results. In comparison, pIschemic are affected by the dis-
placement errors more significantly. The ischemic parame-
ters Ess,Enn,Ens,Ef n, and Ef s show error as high as about
15%. However, the material anisotropy, described by the ra-
tios between E’s is maintained very well, as well as the hetero-
geneity due to the ratios between pNormal and pIschemic. The is-
chemic viscosity parameter γ shows the largest error, that is,
the result is 2.51, compared to the exact value 1.00. This may
probably be explained by the combining effect of E’s and γ,
as mentioned above, and the weak influence of ischemic γ on
the deformation, which may be somehow concealed by the
errors with displacement measurements.

DCE reconstruction has also been conducted with both
�5 degree myofiber architecture errors and �5% displace-
ment errors. The errors are randomly picked, and are dif-
ferent from the above. The results are given in the row

“Errors-FD” of Table 1. In overall, pNormal are robust against
these errors, with maximum error 7% for γ. While pIschemic

are more sensitive to the measurement errors, the material
anisotropy and heterogeneity are well maintained. In fact,
the resulting ischemic E’s are somehow more accurate than
those with displacement errors only, probably due to the dif-
ferences in the random errors.

Based on our other DCE reconstructions with randomly
picked measurement errors, it is shown that the influences
of myofiber architecture errors are in general less significant
than the displacement errors. This could be explained with
concept of homogenization, that is, the random myofiber ar-
chitecture errors at a material point may be compensated by
the errors in its neighborhood. In fact, the perturbation on
deformation due to material variation at a point is highly
localized in a solid. In view of the less accurate reconstruc-
tion results for the viscosity parameters, we speculate that
methods may be needed to bring out or isolate the viscos-
ity effects, or instance, a modality to use ultrasonic impulse
to stimulate a low-magnitude jump-type deformation in the
myocardium.

4.3. On the quasistatic approach

The previous cardiac elastography studies [28–31] made
quasistatic assumption for the LV passive (filling) defor-
mation. Consequently, the effects of inertia and viscosity
were omitted. In those studies, the displacement is typically
taken near to the highest filling pressure, that is, around
t = 0.4 or 0.45 second for the present blood pressure pro-
file (Figure 4(a)). To investigate the quasistatic assumption,
reconstruction is conducted by deactivating all the terms re-
lated to inertia and viscosity in our DCE algorithm and the
codes. Exact myofiber architecture data and displacement at
t = 0.4 and 0.45 second are used. The results are given in
the last three rows of Table 1. “Static A” and “Static B” use
displacement measured at 0.4 and 0.45 second, respectively,
and “Static C” uses displacement at both 0.4 and 0.45 second.
Note that the viscosity parameters γ cannot be identified with
quasistatic assumption.

It is shown clearly that the quasistatic elastography does
not yield accurate material parameters for either the nor-
mal or the ischemic myocardium. This may indicate the ne-
cessity of dynamic description for cardiac elastography. In a
real heart, the left ventricle dilates to about the maximum
chamber volume near to the end-filling stage, where the ve-
locity field in the wall is overall very low and the effects of
viscosity are about minimal. From this point of view, qua-
sistatic elastography is probably a good approach for the elas-
tic parameters E’s, and failure of the present quasistatic re-
construction may only indicate that the “real” material pa-
rameters we chose do not give almost static deformation
at the highest filling blood pressure (around t = 0.4 and
0.45 second). On the other hand, it is not clear if the real
acceleration field at the end-filling stage is low enough for
omitting the inertia effects. Another concern is that, even at
the end-filling stage where the overall velocity could be very
low, the quasistatic displacement may still be qualitatively
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Figure 7: Differences between dynamic and static displacements on the epicardial surface, at t = 0.45 second. (a) Displacement component
ux ; (b) uy ; and (c) uz. View angles and contour levels are chosen for best illustration.

different from the dynamic displacement. Consider a one-
dimensional spring-mass-dashpot system, for example, the
dynamic maximum displacement (at zero velocity) is higher
than the quasistatic maximum displacement under the same
force. For the present LV phantom, the differences between
dynamic and static displacements on the epicardial surface,
with the same material parameters and blood pressure, are
given in Figure 7 at t = 0.45 second. It is shown that the dif-
ference are global and have clear distribution patterns, com-
pared to the much more localized differences due to the is-
chemic region (Figures 5 and 6), and are much more sig-
nificant in magnitude than the latter. This suggests that the
errors due to quasistatic assumption may overwhelm the ef-
fects of the ischemic region. In fact, the quasistatic recon-
struction results for pIschemic (Table 1) are qualitatively incor-
rect. Therefore, quasistatic cardiac elastography needs careful
evaluations, particularly using in vivo measurements. For the
viscosity and active contraction parameters, like γ and Tmax

in the present model, however, the proposed dynamic cardiac
elastography is indispensable.

5. CONCLUSION

In this work, a dynamic cardiac elastography (DCE) frame-
work has been developed for identification of the mate-
rial parameters for the passive viscoelastic behaviors and
active contractility of myocardium, using time-dependent
displacement extracted from dynamic cardiac imaging se-
quence. The DCE method takes into consideration the my-
ofiber architecture-induced orthotropy and heterogeneity of
the material properties. The reconstruction algorithm em-
ploys an iterative optimization procedure, and uses user-
supplied gradients of the objective function. A dynamic ad-
joint method is derived for cost-efficient calculation of the
gradients. DCE simulations have been conducted to identify
the passive and active parameters for normal and ischemic
myocardium in a left ventricle phantom. For the normal my-
ocardium, the passive viscoelastic parameters and reference
active contraction stress are identified with high accuracy,

and are not considerably sensitive to the errors with the my-
ofiber architecture and displacement measurements. For the
small ischemic region in the ventricular wall, which is stiffer
passively and weaker actively than the normal tissue, the re-
construction results are very accurate with ideal measure-
ments, and are satisfactory when errors are added to the
myofiber architecture and displacement measurements. The
previous quasistatic assumption for cardiac elastography is
investigated. It is suggested that consideration of dynamic de-
formation may be necessary, particularly for the viscosity and
active contraction parameters.
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