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Abstract

Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to 

regulate embryogenesis and actin cytoskeleton, however its functions in different physiological 

systems are not well understood. Here we analyzed the role of ATE1 in brain development and 

neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous 

system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, 

resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects 

in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite 

outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 

prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 
mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA 

targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ 

hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to 

zipcode-mediated targeting, and this localization coincided with spots of localization of 

arginylated β-actin, which disappeared in the presence of protein synthesis inhibitors. We propose 

that zipcode-mediated co-targeting of Ate1 and β-actin mRNA leads to localized co-translational 

arginylation of β-actin that drives the growth cone migration and neurite outgrowth.

1. Introduction

Protein arginylation mediated by arginyltransferase ATE1 is an emerging regulatory 

modification that consists of posttranslational tRNA-mediated addition of arginine to 

proteins. Multiple prior studies demonstrated the essential role of arginylation in 

embryogenesis (Kwon et al., 2002), cell migration (Karakozova et al., 2006), and protein 

homeostasis (Kashina, 2014). Arginylation targets a large number of proteins in vivo, 

including some of the major components of the cytoskeleton (Saha and Kashina, 2011; 
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Wong et al., 2007). Our prior data show that non-muscle β-actin is arginylated in migratory 

fibroblasts (Karakozova et al., 2006). Lack of arginylation has been linked to impairments in 

cell migration (Karakozova et al., 2006) and actin network maintenance (Saha et al., 2010), 

however it is not known whether these effects are global or locally targeted to the leading 

edge of the cell, and whether similar arginylation-dependent regulation also drives the 

migration of other cell types.

Multiple studies over the years have implicated arginylation in neuronal function (Galiano et 

al., 2016). It has been suggested that arginylation facilitates nerve regeneration after injury 

(Wang and Ingoglia, 1997) and, more recently, participates in neural tube closure (Kim et 

al., 2016). Despite these intriguing observations, no direct functional studies of protein 

arginylation in the brain and neurons have ever been conducted.

Here we used conditional mouse knockout model to address the role of protein arginylation 

in the brain. Our results demonstrate that lack of arginylation in the brain leads to a defect in 

neurite outgrowth, resulting in behavioral abnormalities and high rates of postnatal lethality 

in mice. We find that Ate1 mRNA contains a putative zipcode binding sequence that likely 

targets it for local synthesis at the neuronal growth cones. Both ATE1 and arginylated β-

actin are localized at the growth cones, and lack of arginylation leads to a marked reduction 

in growth cone spreading, accompanied by the corresponding decrease in the actin polymer.

Our results suggest a novel mechanism that regulates neurite outgrowth during development 

via arginylation and potentially involves targeted cotranslational arginylation of β-actin in 

the developing growth cones.

2. Results

2.1. Mice lacking arginylation in the brain exhibit abnormalities at birth suggesting defects 
in neuronal migration

To test the role of arginylation in brain development, we produced a brain-specific Ate1 
knockout mouse by crossing our existing Ate1flox/flox mouse line (with the first four critical 

exons of the Ate1 gene flanked by LoxP sites) with the commercially available mice 

expressing Cre recombinase under the brain-specific Nestin promoter that activates in mouse 

nervous system progenitor cells at E10.5 (Dahlstrand et al., 1995). In Nes-Cre mice the 

transgene expression can be detected in multiple structures throughout the body (Fig. S1), so 

their crossing into the Ate1flox/flox mouse line would drive Ate1 deletion in the nervous 

system.

Unlike the complete Ate1 knockout mice, which die at E12.5–E14.5 during development 

(Kwon et al., 2002), Nes-Ate1 mice developed to full term and were born at the expected ~ 

25% ratio, with the body weight and appearance at birth indistinguishable from their wild 

type littermates. However, these newborn mice were visibly less active than wild type, easily 

pushed away by their littermates during feeding and showing no inclination to explore the 

environment within days after birth. These newborns exhibited dramatically reduced growth 

in the first days of postnatal life, likely due to their inability to compete for the mother's milk 

with wild type littermates. Without intervention, most of these mice died within the first two 
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weeks. Keeping them alive required nutritional supplementation (yogurt drops) and extended 

time with the mother in the absence of wild type littermates, and with this kind of care Nes-

Ate1 mice could survive to adulthood.

Brains from Nes-Ate1 neonates were similar to control in overall morphology and size (Fig. 

1, top left), suggesting that the large-scale brain patterning was not affected by Ate1 
knockout. However, sections through the whole head revealed that Nes-Ate1 neonates had a 

larger skull cavity compared to control (Fig. 1, bottom left and right panels), somewhat 

reminiscent of hydrocephalus. To test for hydrocephalus, we performed magnetic resonance 

imaging (MRI) on the fixed newborn pups, but saw no gross dilations in the ventricles (Fig. 

S2), suggesting that the skull cavities seen on paraffin-embedded sections are due to tissue 

collapse during flxation and processing rather than the presence of cavities at the start. This 

defect could potentially be associated with the previously observed abnormalities in the 

neural tube closure in Ate1 knockout (Kim et al., 2016), or with the reduction of the tissue 

stiffness due, e.g., to actin cytoskeleton defects previously reported in Ate1 knockout 

(Cornachione et al., 2014; Kurosaka et al., 2012; Leite et al., 2016; Saha et al., 2010).

Since arginylation is known to regulate cell migration, we next assessed the overall 

distribution of doublecortin, a common marker for neurogenesis that supports neuronal 

migration and neurite outgrowth in embryogenesis and early postnatal development 

(Friocourt et al., 2003; Weimer and Anton, 2006). In sections of cortex and hippocampus, 

doublecortin staining showed abnormal distribution in Ate1 knockout, prominently 

diminished in neurite-rich areas on the outside of the cortex and in hippocampus layers 

(arrows in Fig. 2, left). At the same time, the overall levels of doublecortin remained 

unchanged (Fig. 2, right). In addition, no overall reduction in the levels of doublecortin 

mRNA, as well as several other cytoskeletal proteins typically associated with neuronal 

migration, was seen (Fig. S3), suggesting a specific defect in doublecortin distribution rather 

than systemic change in protein levels.

2.2. Lack of arginylation causes defects in neurite outgrowth

To further test the effects of Ate1 deletion on neurons, we isolated primary cortical and 

hippocampal neurons from WT and Nes-Ate1 neonates and examined their morphology 

after 3–7 days in culture. Overall, both types of neurons looked morphologically similar as 

they attached to the tissue culture dishes and developed a network of processes over time. To 

analyze their morphology in more detail, we transiently transfected cultured primary 

hippocampal neurons with GFP (to enable easy visualization of individual neurons), and 

used fluorescence microscopy to measure the total cell volume, neurite outgrowth and 

length. While the volume was similar in both types of neurons, suggesting an overall similar 

cell morphology and thickness, Ate1 knockout neurons had 20–25% lower total neurite 

length compared to wild type, indicating defects in neurite outgrowth (Fig. 3).

We next stained cultured neurons with antibodies to doublecortin, which promotes neurite 

outgrowth through association with the microtubule cytoskeleton and facilitating actin-

microtubules cross talk (Coquelle et al., 2006; Jean et al., 2012; Lambert de Rouvroit and 

Goffinet, 2001; Tsukada et al., 2005). In wild type neurons, double-cortin localized 

throughout the cell body and processes and showed prominent staining at the tips of the 

Wang et al. Page 3

Dev Biol. Author manuscript; available in PMC 2017 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



growing neurites, where it is believed to play a role in growth cone guidance (Fig. 4). In 

Ate1 knockout neurons, doublecortin showed similar localization throughout the cell, but no 

prominent staining at the neurite tips. Since GFP distribution in GFP-transfected neurons 

suggested no apparent change in the thickness of neurite and growth cone area in Ate1 
knockout (Fig. 3), we conclude that this decrease in doublecortin staining at the neurite tips 

is due to specific doublecortin redistribution rather than non-specific change in cell 

morphology. No corresponding changes in tubulin levels or distribution was observed (Fig. 

4), indicating that this difference was not due to the perturbation of the microtubules.

2.3. ATE1 is targeted to the tips of the growing neurites

It has been previously shown that ATE1 facilitates migration of non-muscle cells 

(Karakozova et al., 2006; Kurosaka et al., 2010). Some of the prior studies reported a 

transient increase of the ATE1 signal at the edge of migratory fibroblasts (Kwon et al., 1999; 

Wang et al., 2011). Since neuronal growth cones share many similarities with migrating non-

muscle cells, it is possible that ATE1 may act similarly in neurons, localizing at the neurite 

tips and facilitating growth cone migration. To test this, we stained cultured neurons with 

antibodies to ATE1. Consistent with prior observations, ATE1 in neurons localized diffusely 

throughout the cell bodies and neurites, and appeared to prominently target the neurite tips 

(Fig. 5A).

It has been previously found that many proteins essential for growth cone migration and 

guidance are targeted to the distal neural tips prior to their translation as zipcode-bound 

mRNA particles, which become unpackaged and locally translated during active migration 

of neurites (see, e.g., Tiruchinapalli et al., 2003; Yao et al., 2006). One such zipcode-targeted 

protein is β-actin, a prominent substrate of ATE1, whose arginylation is essential for cell 

migration in fibroblasts (Karakozova et al., 2006). To test the possibility that ATE1 

localization to the growth cone tips may be zipcode-mediated, we first analyzed the mRNA 

sequences of all four ATE1 isoforms to search for the zipcode-binding consensus sequence 

(Chao et al., 2010; Patel et al., 2012), normally located in the 3′ UTR. Two out of four 

ATE1 isoforms (the more abundant and active ATE1-1 and ATE1-2 (Rai and Kashina, 

2005)) contained a near-conventional zipcode-binding sequence that initiated in its 5′ UTR 

immediately upstream of the first ATG and spanned the first few codons of the coding 

sequence (Fig. S5), suggesting that ATE1-1 and ATE1-2 mRNA may be zipcode-localized. 

To test this, we performed fluorescence in situ hybridization (FISH) to detect Ate1 mRNA in 

the cultured neurons. This staining revealed that, in addition to the localization of Ate1 
mRNA in the cell body, a subset of FISH signal was distributed throughout the neurites and 

prominently localized to the growth cones (Fig. 5B). This localization pattern strongly 

resembles that of other zipcode-localized mRNA in neurons reported in other studies, 

confirming that Ate1 mRNA is likely zipcode-localized.

Thus, ATE1 is targeted to the neuronal growth cones, most likely through zipcode-mediated 

localization of its mRNA.
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2.4. Arginylated β-actin localizes to the tips of the growing neurites

Our prior studies showed that cell migration in non-muscle cells is facilitated by arginylation 

of β-actin (Karakozova et al., 2006), a protein that is also known to localize to the neuronal 

growth cones through the mRNA/zipcode-mediated targeting. To analyze the distribution of 

arginylated β-actin in the neurons, we used arginylated β-actin antibody, recently developed 

by EMD Millipore. Staining with this antibody revealed a prominent increase of the 

arginylated β-actin in the growth cones, concentrated mostly inside the filopodia that 

facilitate the growth cone extension (Fig. 6A). This arginylated β-actin staining was far more 

pronounced in the growth cones than anywhere else in the neurites, suggesting that most of 

the actin arginylation is likely happening at these sites.

To test whether arginylated actin signal coincides with the distribution of Ate1 mRNA FISH 

signal, we performed a double staining for these two markers in the neurons. Under the 

harsh flxation conditions favorable for FISH, arginylated actin staining was less pronounced 

than during milder flxation used for neuronal staining in Fig. 6A, however it still localized 

mostly to the neurite tips and growth cones. Moreover, where seen, these patches of 

arginylated actin signal strongly coincided with those for the FISH signal (Fig. 6B). These 

data strongly suggest that ATE1 locally synthesized in the growth cones correlates with local 

β-actin arginylation.

2.5. ATE1 and arginylated actin localization at the growth cones depends on active 
translation

Our previous studies suggest that β-actin arginylation happens co-translationally and is 

regulated via its nucleotide coding sequence (Zhang et al., 2010). We also found that a 

subset of ATE1 in the cell is associated with the ribosomes (Wang et al., 2011). Given that 

both ATE1 and β-actin mRNA co-localize in the neuronal growth cones where we also 

detect the majority of actin arginylation, it appears likely that β-actin arginylation at the 

growth cones may be coupled to translation of both ATE1 and β-actin. If true, actin 

arginylation in the growth cone would not occur in the absence of active translation. To test 

this prediction, we compared the distribution of ATE1 and arginylated β-actin in control 

cultured neurons and neurons treated with the translation inhibitor cycloheximide. 

Remarkably, this treatment greatly reduced ATE1 staining at the tips of the neurites, while 

not affecting the staining and distribution of ATE1 in the rest of the neurons (Fig. 7, left). 

Moreover, this treatment completely abolished the increased arginylated actin signal at the 

neuronal growth cones (Fig. 7, middle and right). These results demonstrate that localization 

of both ATE1 and arginylated β-actin to the neuronal growth cones requires active 

translation.

2.6. Lack of arginylation affects the spreading of the growth cones

In our previous work we found that lack of arginylation results in reduced cell spreading and 

disorganization of the actin cytoskeleton (Karakozova et al., 2006; Saha et al., 2010). During 

neurite outgrowth, the growth cones depend on similar migratory mechanisms, suggesting 

that lack of arginylation may exert similar effects on their spreading and actin 

polymerization in the growth cones. To test this, we quantified the total growth cone area 

and the levels of fluorescent phalloidin staining (which reflects the actin polymer level) in 
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the growth cones of WT and Ate1 knockout neurons (Fig. 8). We found that the growth cone 

area was prominently and significantly reduced in Ate1 knockout neurons compared to wild 

type, indicating the reduced spreading reminiscent of the defects seen in cultured fibroblasts. 

This defect could potentially underlie the impairment in the neurite outgrowth seen in Ate1 
knockout neurons.

3. Discussion

Our work for the first time addresses the role of ATE1 in brain development and neurite 

outgrowth. It has been previously found that arginylation is essential for normal 

development and functioning of the cardiovascular system (Kwon et al., 2002), neural crest 

morphogenesis (Kurosaka et al., 2010), and maintenance of skeletal muscle strength 

(Cornachione et al., 2014), however no study of ATE1 effect on the brain development and 

function has never been done. In this paper, we show that ATE1 drives neuritogenesis and 

facilitates neurite outgrowth, that lack of ATE1 leads to behavioral abnormalities and high 

rates of early postnatal lethality in mice, and that these effects are potentially mediated, at 

least in part, by zipcode-mediated co-targeting of Ate1 and β-actin mRNA to the neuronal 

growth cones, followed by localized arginylation of β-actin in the growth cones, likely by 

locally synthesized ATE1. While it is possible, and likely, that other ATE1 protein targets 

contribute to the overall mouse phenotype, this is the first indication that ATE1 can directly 

target a key component of neuronal migration with effects on the cellular level.

Our prior studies using cultured embryonic fibroblasts showed that lack of ATE1 leads to a 

decrease in cell's ability to spread on the substrate in culture (Karakozova et al., 2006; Saha 

et al., 2010). In agreement with this, Ate1 knockout neurons have a reduced outreach and 

neurite length, as well as a reduced area of growth cones compared to wild type, the 

parameters that define the neurons’ ability to spread. It appears likely that the underlying 

mechanisms for ATE1-dependent cell spreading may be similar in both cell types.

Our data show that Ate1 knockout is accompanied by abnormal distribution of doublecortin 

in the brain and its prominent reduction in the growth cone area. Doublecortin has been 

previously shown to bind microtubules and is proposed to mediate the actin-microtubule 

crosstalk during growth cone movement (Coquelle et al., 2006; Jean et al., 2012; Lambert de 

Rouvroit and Goffinet, 2001; Tsukada et al., 2005). Its altered distribution in Ate1 knockout 

is consistent with the previously proposed role of arginylation in actin cytoskeleton function 

and may reflect a directly or indirect link of arginylation in double-cortin-mediated 

migration of the growth cone via mechanisms that coordinate the action of actin and 

microtubules.

We previously found that the migratory fibroblasts depend on β-actin arginylation for their 

ability to form the leading edge lamellipodia (Karakozova et al., 2006) and to maintain 

directional migration (Kurosaka et al., 2010). Consistent with this, we find here that 

arginylated β-actin localizes to the leading edge in neuronal growth cones. Moreover, 

arginylated β-actin appears to target fllopodia, the structures essential for leading edge 

extension in neurons. While the exact effect of arginylation on actin properties is still under 
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investigation, its role in polarized elongation of the actin network to propel lamellipodia 

movement in the growth cone is an exciting possibility to be studied.

It has been shown in multiple studies that directional migration in many cell types depends 

on zipcode-mediated targeting of mRNA to the cell leading edge, where its local translation 

is believed to facilitate the protruding behavior of the cell (Perycz et al., 2011; Yao et al., 

2006). This mechanism is especially important in neurons, the specialized cells in which the 

leading edge areas in the growth cones are often located at a far great distances from the cell 

body, thus limiting the ability to transport newly synthesized proteins to the cell periphery as 

rapidly as needed. One of the most prominent proteins whose function in growth cone 

migration depends on this zipcode-mediated targeting is β-actin (Ross et al., 1997). 

Numerous studies show that this targeting is important for cell migration (Shestakova et al., 

2001), but the exact underlying mechanism has not been clearly understood, given the fact 

that β-actin is overall highly abundant in cells regardless of the sites of its localization. Our 

findings that Ate1 is also zipcode-localized and that β-actin arginylation targets the growth 

cones opens up an exciting possibility that zipcode-mediated mRNA transport may facilitate 

actin arginylation during leading edge extension and directional migration.

We have previously shown that arginylation of β-actin is coupled to its fast translation rate, 

suggesting that actin arginylation is likely a co-translational event. Our current study 

supports this idea by demonstrating that actin arginylation at the neuronal growth cones 

requires active translation. It is attractive to think that zipcode-mediated co-targeting of β-

actin and Ate1 mRNA and their colocalized translation in the growth cones are required to 

facilitate actin arginylation, required to facilitate actin's activity at the cell leading edge (Fig. 

9). Elucidating the global implications of this actin coding mechanism in various cell types 

constitutes an exciting direction of further studies.

4. Materials and methods

4.1. Mice

Ate1-floxed mice, previously generated in our lab (Kurosaka et al., 2010; Leu et al., 2009) 

were crossed with commercially available mouse line expressing Cre recombinase under 

Nestin promoter (Jackson Laboratory strain B6.Cg-Tg(Nes-cre)1Kln/J). Mice were bred and 

maintained in a mixed C57Bl6/129CVJ background according to the proper animal 

protocols.

4.2. Antibodies

Rat monoclonal ATE1 antibody (EMD Millipore, MABS436) was previously described in 

Wang et al. (2011). Rabbit polyclonal antibody to arginylated actin (R-actin) was obtained 

from EMD Millipore (ABT264) as part of their product validation study. Batch 13 of the 

antibody, not currently licensed for commercial use, is shown in the majority of the study. 

Anti-Doublecortin antibody (ab18723 dilutions: 1:200 for immunofluorescence) was 

purchased from Abcam. Mouse monoclonal anti- β-III tubulin was from R & D Systems 

(MAB1195, dilutions: 1:100 for immunofluorescence). Rhodamine-phalloidin was 

purchased from Sigma and used at the working concentration of 100 nM.
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4.3. R-actin antibody staining

Cultured neurons were fixed by incubation with 4% paraformaldehyde (PFA), washed twice 

with PBS, and permeabilized with ice-cold acetone for 5 min, followed by incubation for 30 

min in a blocking solution (5% horse serum in PBS). Cells were incubated overnight at 4 °C 

or for 2 h at room temperature with primary antibodies against polyclonal anti-R-actin, 

washed with PBS, and incubated for 1 h at room temperature with Alexa Fluor 488-

conjugated anti-rabbit antibody (Molecular Probes, Invitrogen) at 1:1000 dilution. After the 

staining, cover slips with cells were washed in PBS and mounted into ProLong Diamond 

anti-fade mounting media (Life Technologies).

4.4. Immunohistochemistry

Paraffin-embedded brain sections were deparaffinized with xylene, re-hydrated with 

sequential ethanol:water series (95:5, 80:20, 50:50 and 30:70), washed with water, boiled in 

10 mM sodium citrate /0.05% Tween 20, pH 6.0 for 20 min for antigen retrieval, then 

blocked with 0.1 M Tris pH7.6 supplemented with 3% BSA for 1 h at room temperature, 

and treated with primary antibodies diluted in 0.1 M Tris pH 7.6 supplemented with 3% 

BSA overnight at 4 °C. After treatment with primary antibodies, samples were washed with 

0.1 M Tris, treated with fluorescent dye-conjugated secondary antibodies for 2 h at room 

temperature, then stained with DAPI for 10 min. After triple washes with water, samples 

were embedded in Aqua Poly/Mount (Polysciences, Inc., 18606).

4.5. Neuron cultures

Primary cultures of neurons from wild type and Ate1 knockout P0 newborn mice were 

prepared as described in Nunez (2008) for the rat neurons, except that mice were used 

instead. Embryos were euthanized by decapitation and their brains were immediately 

dissected to isolate cortex and hippocampus. Neurons from both regions of the brain were 

dissociated in 0.25% pre-warmed trypsin, and plated at approximate density of 0.5 × 106 

cells per 35 mm Glass Bottom Dishes (Matek Corportation, uncoated) pre-coated the day 

before the experiment with 0.1 mg/ml Poly-D-Lysine (Sigma). Cells were initially plated in 

Neurobasal medium (1× B27 from a 50× stock, 1× GlutaMAX from a 100× stock, 50 U/ml 

penicillin and 50 μg/ml streptomycin) containing 10% Fetal Bovine Serum (FBS), and 2–18 

h after the plating the medium was changed to Neurobasal medium without serum for 

continued neuronal growth.

For treatment with translation inhibitors and R-actin antibody staining, 3-days-old cultures 

of primary mouse hippocampal neurons were obtained from the Neurons-R-Us facility at the 

University of Pennsylvania and either kept intact or treated with 5 μg/ml cycloheximide (or 

DMSO for control) for 2 h, followed by fixation with 4% PFA at room temperature for 30 

min.

For GFP transfection experiments, primary neuron cultures 8–12 h after plating were treated 

with pEGFP-N2 vector (Clontech) in the presence of Lipofectamine 2000 reagent 

(ThermoFisher Scientific) according to the manufacturer's protocol. Cells were visualized 

approximately 3 days after transfection and individual GFP-expressing cells were 

photographed to examine the overall cell morphology and neurite outgrowth.
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4.6. Fluorescence in situ hybridization

Ate1 mRNA probes (conjugated to Quasar 570 dye) were designed and purchased from 

LGC Biosearch Technologies and fluorescence in situ hybridization was carried out as per 

manufacturers’ protocol. Briefly, 3 day old mouse hippocampal neurons growing on glass 

coverslips were fixed in 4% (w/v) PFA at room temperature for 30 min followed by 

treatment with 70% alcohol at 4 °C for 1 h. Cells were incubated with 125 nM probes at 

37 °C overnight. Cells were stained with DAPI (5 ng/ml) and mounted using Prolong 

Diamond (Life Technologies).

4.7. Imaging

All fluorescence images shown in the paper are wide-field images, acquired using Nikon 

fluorescence microscope and digital Hamamatsu Orca AG and Andor IXon Ultra EMCCD 

camera.

4.8. Image processing and quantification

In each experiment, the images were acquired with identical exposure for wild type and 

knockout, using a Hamamatsu Orca AG CCD camera (12-bit) or Andor IXon Ultra EMCCD 

camera (16-bit). For image quantification, the 12/16-bit raw gray level images (with the 

maximum gray value in the image well below the saturation limit of the detector) were 

thresholded to the identical gray scale values to remove the background for quantification. 

The thresholds were chosen manually as the maximally inclusive area covering the entire 

range of the detectable gray levels in a representative image and maintained constant for all 

the other wild type and knockout images in the set. Following thresholding, integrated 

morphometric measurement in Metamorph Imaging software was used to determine the total 

fluorescence signal in the image, quantified as total gray levels above threshold.

For presentation in the manuscript, the 12/16-bit raw images were converted to 8-bit images 

and re-scaled (with a gamma factor of 1) so that all images had the same lower and upper 

cut-off values. This form of processing does not alter the relative gray levels between 

images, while making the images suitable for display utilizing the maximum possible 

dynamic range. These identically re-scaled images were pseudo-colored using Metamorph 

“color combine” function and further processed in Adobe Photoshop, where the equally 

scaled wild type and knockout images were placed side by side into the same panel and 

uniform contrast was applied to the entire panel using the “levels” function in Adobe 

Photoshop.

For quantification of neurite length and total outgrowth, we used “neurite outgrowth” 

module of the Metamorph Imaging Software (Molecular Devices, Inc.) to analyze the 

thresholded images of GFP-transfected neurons. The growth cone area and intensity of 

different marker staining in the neurons and the growth cones was measured in thresholded 

images using the “integrated morphometry analysis” function of the Metamorph Imaging 

Software.
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4.9. Gene and protein nomenclature

Throughout the manuscript, we used the Guidelines for Nomenclature of Genes, Genetic 

Markers, Alleles, and Mutations in Mouse and Rat found at http://www.informatics.jax.org/

mgihome/nomen/gene.shtml

Following this nomenclature, gene and mRNA symbols were italicized, with only the first 

letter in upper-case (e.g., Ate1), and protein symbols were not italicized with all letters in 

upper-case (e.g., ATE1).

4.10. Statistics

P-values were determined by one-tailed Welch's t-test (for the RNAseq data in Fig. S3) and 

one-tailed and two-tailed unpaired Student's t-test (for all other figures, as indicated).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Brain-specific Ate1 knockout mice exhibit abnormalities at birth
Whole brain images(top left), and H & E stained coronal (two bottom left panels) and 

sagittal (right panels) sections through the whole heads of wild type (WT) and Nes-Ate1 
(CKO) mice. Scale bar, 1 mm.
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Fig. 2. Brain-specific Ate1 knockout mice have abnormal distribution of doublecortin in the 
brain
Left, sections of the cortex of the neonatal wild type (WT) and Nes- Ate1 (CKO) brain 

stained with antibodies to doublecortin. Images were equalized by gray levels to enable 

direct comparisons of the differences in the staining patterns and intensity. Arrows indicate 

the doublecortin-enriched areas in the WT, which are prominently absent in CKO. Scale bar, 

50 μm. Right, quantifications for thresholded intensities obtained from 12 difierent sections 

of 2 pairs of WT and CKO mice. Error bars represent SEM, n = 12. P = 0.34, determined by 

2-tailed unpaired t-test.
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Fig. 3. Ate1 knockout neurons exhibit reduced neurite outgrowth
Top, representative images of GFP-transfected wild type (WT) and Nes-Ate1 (CKO) 

cultured primary hippocampal neurons (left) and quantification of average and total GFP 

fluorescence per area (right). Scale bar, 20 μm. Bottom, quantification of neurite outgrowth 

from the images similar to those shown on top, using Metamorph Imaging Software. Error 

bars represent SEM, n = 401 neurites (WT) and 1608 neurites (CKO), quantified from 66 

images of neuron cultures derived from 2 embryos for WT and 214 images derived from 4 

embryos in CKO. *** indicates P value < 0.000003, determined by 2-tailed unpaired t-test.
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Fig. 4. Ate1 knockout neurons have reduced doublecortin staining in the neurites and growth 
cones
Representative immunofluorescence images of cultured primary cortical neurons from wild 

type (WT) and Nes-Ate1 (CKO) neonates, stained with antibodies to doublecortin (green) 

and beta III tubulin (red). Arrows in the right-hand middle panels indicate the distal areas of 

neurites showing prominent doublecortin staining in WT and a reduction in doublecortin 

staining in CKO. Scale bars, 20 μm, shown separately for the top four images on the left, 

bottom left pair, and six right-hand panels.
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Fig. 5. ATE1 localizes at the tips of the growing neurites
A. Representative images of primary cultured wild type mouse hippocampal neurons 

double-stained with antibodies to ATE1 (red) and beta III tubulin (green). The column of 

inset images on the right shows enlarged view of a set of growth cones taken from merged 

images to enable simultaneous view of ATE1 and beta III tubulin distribution. B. Heat maps 

of the fluorescence in situ hybridization (FISH) signal in wild type neurons using probes 

against Ate1 mRNA.
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Fig. 6. Arginylated β-actin and Ate1 mRNA co-localize at the tips of the growth cones
A, Representative images of primary cultured wild type mouse hippocampal neurons 

double-stained with antibodies to arginylated β-actin (red) and F-actin (stained with 

phalloidin-Alexa 488, green). The bottom row shows enlarged views of growth cones. B, 

Representative images of the neurons showing the heat map of Ate1 mRNA FISH signal 

(top) and staining with antibodies against arginylated β-actin (bottom). Arrows indicate 

points of colocalization of the two signals at the growth cones. Scale bar, 20 μm.
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Fig. 7. Localization of ATE1 and arginylated β-actin at the neuronal growth cones depends on 
active translation
Representative images of control (top) and cycloheximide-treated (bottom) primary cultured 

mouse hippocampal neurons stained with antibodies to ATE1 (red) and arginylated β-actin 

(green). Scale bar, 20 μm.
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Fig. 8. Arginylation knockout leads to reduced growth cone area and reduced F-actin in the 
growth cones
Top, representative images of wild type (WT) and Nes-Ate1 (CKO) growth cones stained 

with Rhodamine-Phalloidin to detect F-actin. Bottom, quantification of growth cone area 

and total and average F-actin fluorescence in the growth cones quantified from the images 

similar to those shown on top, using Metamorph Imaging Software. Error bars represent 

SEM, n = 50 (WT) and 46 (CKO). P-values were calculated using 1-tailed unpaired t-test. 

Scale bar, 20 μm.
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Fig. 9. Regulation of neurite outgrowth by localized co-translational arginylation of β-actin
Zipcode-mediated transport of β-actin and Ate1 mRNA to the growth cones leads to their 

co-localized translation and subsequent co-translational arginylation of β-actin. We propose 

this to be the mechanism that facilitates the neurite outgrowth by maintain polarized actin 

elongation in the growth cones.

Wang et al. Page 21

Dev Biol. Author manuscript; available in PMC 2017 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Results
	2.1. Mice lacking arginylation in the brain exhibit abnormalities at birth suggesting defects in neuronal migration
	2.2. Lack of arginylation causes defects in neurite outgrowth
	2.3. ATE1 is targeted to the tips of the growing neurites
	2.4. Arginylated β-actin localizes to the tips of the growing neurites
	2.5. ATE1 and arginylated actin localization at the growth cones depends on active translation
	2.6. Lack of arginylation affects the spreading of the growth cones

	3. Discussion
	4. Materials and methods
	4.1. Mice
	4.2. Antibodies
	4.3. R-actin antibody staining
	4.4. Immunohistochemistry
	4.5. Neuron cultures
	4.6. Fluorescence in situ hybridization
	4.7. Imaging
	4.8. Image processing and quantification
	4.9. Gene and protein nomenclature
	4.10. Statistics

	References
	Appendix A. Supporting information
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9

