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SUMMARY

Membrane transporters are critical modulators of
drug pharmacokinetics, efficacy, and safety. One
example is the proton-dependent oligopeptide
transporter PepT1, also known as SLC15A1, which
is responsible for the uptake of the b-lactam antibi-
otics and various peptide-based prodrugs. In this
study, we modeled the binding of various peptides
to a bacterial homolog, PepTSt, and evaluated a
range of computational methods for predicting the
free energy of binding. Our results show that a hybrid
approach (endpoint methods to classify peptides
into good and poor binders and a theoretically exact
method for refinement) is able to accurately predict
affinities, which we validated using proteoliposome
transport assays. Applying the method to a homol-
ogy model of PepT1 suggests that the approach re-
quires a high-quality structure to be accurate. Our
study provides a blueprint for extending these
computational methodologies to other pharmaceuti-
cally important transporter families.

INTRODUCTION

The application of computational chemistry in drug development

has centered for a long time around indirect ligand-based tech-

niques, such as pharmacophoremodeling and 3D-QSAR studies

(Caporuscio and Tafi, 2011). Recently, the emergence of X-ray

crystal structures of pharmaceutically important membrane pro-

teins has shifted the paradigm toward direct structure-based ap-

proaches, for example, computing the free energy of binding of

relevant ligands to a protein, and thereby finding or optimizing

lead compounds. Scoring functions are currently the method

of choice due to their cheap computational cost (Chen and Shoi-

chet, 2009; Schlessinger et al., 2011; Geier et al., 2013). While

this method can work for screening a large library of compounds

to produce an initial list of candidates, more robust techniques

are needed for accurately predicting binding, such as for ranking

ligands, especially for highly dynamic proteins like membrane

transporters.

Understanding how a drug candidate interacts with membrane

transporters is becoming an important step in drug development

(Giacomini et al., 2010). Compelling clinical evidence indicates
Cell Chemic
that membrane transporters expressed in the epithelia of the in-

testine, kidney, and liver, and in the endothelia of the blood-brain

barrier influence not only drug absorption and distribution (Dob-

son and Kell, 2008) but also their therapeutic efficacy and poten-

tial adverse reactions (Shitara and Sugiyama, 2002; Cusatis et al.,

2006). A recent update of the U.S. Food and Drug Administration

guidelines includes extensive recommendations on in vitro and

in vivo studies of transporter-mediated drug-drug interactions

(U.S. Department of Health and Human Services et al., 2012).

Most of the key transporters that have been characterized belong

to two major superfamilies: ATP-binding cassette transporters

and solute carriers (SLCs). Of particular interest to this paper is

the well-studied and pharmacologically important proton-depen-

dent oligopeptide transporters (POT) family member, PepT1, also

known as solute carrier family 15 member 1 (SLC15A1), which is

the key representative of clinically important SLC transporters

involved in drug transport.

PepT1 is expressed predominantly in the intestinal epithelia

(Fei et al., 1994; Shen et al., 1999) and plays a crucial role in

maintaining nitrogen homeostasis by coupling the uptake of di-

peptides and tripeptides to the proton electrochemical gradient

(Daniel and Spanier, 2006). Based on the 20 naturally occurring

amino acids, there are more than 8,000 possible peptides that

could be its substrates, most of which are expected to be trans-

ported (Ito et al., 2013). PepT1, therefore, has a highly promiscu-

ous binding site that can accommodate a wide range of ligands

with diverse structures and chemistries. In addition to nutritional

peptides, it is well established that PepT1 also recognizes and

transports a range of drug compounds, such as many b-lactam

antibiotics (Luckner and Brandsch, 2005) and the tumor sup-

pressor bestatin (Inui et al., 1992). The promiscuity of this trans-

porter has been exploited in the development of prodrugs such

as the antiviral acyclovir (Ganapathy et al., 1998) and the anti-

hypotensive drug midodrine (Tsuda et al., 2006). In both cases,

an amino acid residue was attached to the active drug moiety

via an esterification reaction, leading to a compound that is

transported across the lining of the gut by PepT1, thereby

increasing its oral bioavailability. Understanding how ligands

interact with these transporters and being able to predict their

affinity could, therefore, enable the rational design of drugs

with better pharmacokinetics (Brandsch et al., 2008).

Structurally, PepT1 belongs to themajor facilitator superfamily

(Pao et al., 1998) and so consists of 12 core transmembrane he-

lices divided into N- and C-terminal bundles, with two additional

helices observed in the bacterial homologs (Newstead, 2011;

Solcan et al., 2012; Doki et al., 2013; Guettou et al., 2013;

Zhao et al., 2014; Boggavarapu et al., 2015). The binding site is
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B Figure 1. Modeling the Binding of Peptides

Based on the Crystal Complexes of PepTSt

(A) Superposition of the two binding modes of

peptides to PepTSt. The dipeptide AlaPhe (orange)

binds in a horizontal orientation (PDB: 4D2C),

whereas the tripeptide triAla (purple) binds in a

vertical orientation (PDB: 4D2D) (Lyons et al.,

2014). For clarity, transmembrane helices H2, H11,

HA, and HB are removed.

(B) Surface representation of the binding pocket of

PepTSt with the positions of key interacting resi-

dues outlined.

(C) Models of six dipeptides bound to PepTSt.
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positioned between the two bundles and is exposed to either

side of the membrane as per the alternating access mechanism

(Radestock and Forrest, 2011), with distinct helices controlling

this process in a cooperative scissor-like motion (Fowler et al.,

2015). The bacterial isoforms share a high sequence identity

with mammalian PepT1 within the peptide-binding site, suggest-

ing there may be universally conserved binding and transport

mechanisms (Newstead, 2014). Recent high-resolution struc-

tures of a homolog from Streptococcus thermophilus, PepTSt,

demonstrated that there are at least two binding orientations

within this cavity: the dipeptide AlaPhe (PDB: 4D2C) adopted a

horizontal pose with respect to the plane of the membrane,

whereas the tripeptide AlaAlaAla (triAla, PDB: 4D2D) bound verti-

cally (Lyons et al., 2014), consistent with the dual proton:peptide

stoichiometry observed for this transporter (Parker et al., 2014).

A second, lower-resolution study resolved the structures of two

tripepides (AlaAlaAla, PDB: 4TPJ, and brominated AlaTyrAla,

PDB: 4TPG) and a dipeptide (brominated AlaTyr, PDB: 4TPH)

when bound to PepTSo2 (Guettou et al., 2014). For this protein,

all three peptides bound in the same horizontal posewith respect

to themembrane. These studies have provided essential insights

into the molecular basis of promiscuity by the POT transporters,

but also raise a further question of how the numerous other di-

and tripeptides and, more importantly, drugs interact?

In this article, we develop a computational approach for accu-

rately predicting the affinities of ligands to the peptide trans-

porters. We modeled the binding of various dipeptides based

on the crystal structure of the PepTSt-AlaPhe complex, and

used a range of in silico free energymethods to predict their bind-

ing affinities. All thesemethods are very well established and have

been applied to a wide range of protein-ligand systems (Chodera

et al., 2011).Wefind that themoderately cheap endpointmethods

provide a fast way to classify these ligands into good and poor

binders. Our results suggest PepTSt generally prefers neutral

over charged substrates. Applying a more rigorous theoretical

method to a series of dipeptides reveals the importance of the

N-terminal side chain in determining the overall affinity. Using a

proton-driven competition uptake assay, we validated these pre-
300 Cell Chemical Biology 23, 299–309, February 18, 2016 ª2016 The Authors
dictions but found discrepancies with

basic dipeptides. We suggest that these

dipeptides bind in a vertical orientation,

similar to the previously observed triAla

PepTSt complex, to accommodate their

large side chains. Applying the method
to a homologymodel of humanPepT1 suggests that the accuracy

of this method depends on the quality of the available protein

structure. Nevertheless, our results help to explain how the pro-

drug approach hasworked for PepT1 by revealing the importance

of the N- and C-terminal interactions in the binding site. Overall,

this study demonstrates how in silico methodologies can work

in tandemwith in vitro assays to predict ligand affinities in a phar-

maceutically relevant membrane transporter.

RESULTS

Endpoint and Exact Free Energy Methods Accurately
Predict Affinities
To determine which computational methods can best predict the

binding of di- and tripeptides to PepTSt, we needed a test set of

peptides and a selection of computational methods to validate.

For the test set, we chose seven dipeptides and one tripeptide

(triAla) for which experimental transport data were available.

Crystal structures of one dipeptide (AlaPhe) and one tripeptide

(triAla) bound to PepTSt are known (PDB: 4D2C, 4D2D, respec-

tively; Lyons et al., 2014). The pose of the other six dipeptides

was assumed to be the same as AlaPhe, as illustrated in Figure 1.

We then selected a range of computational methods for calcu-

lating binding free energies which we would validate using the

test set. The methods can be categorized based on the amount

of computational resource each requires (Figure 2D); at the low

end is the structure-based scoring function found in AutoDock

Vina (Trott and Olson, 2010). Next we chose three different

endpoint methods: the linear interaction energy (LIE; Aqvist

et al., 1994), molecular mechanics generalized Born surface

area (MMGBSA; Onufriev et al., 2000), andmolecular mechanics

Poisson Boltzmann surface area (MMPBSA; Kollman et al.,

2000). All of these require some molecular dynamics (MD) simu-

lation and hence are more expensive. Finally, we selected a

theoretically exact method, thermodynamic integration (TI; Kirk-

wood, 1935) to calculate differences in binding free energies

(DDG) to refine the other predictions. Experimental binding

data for PepTSt, and POT transporters in general remain scarce,
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Figure 2. Endpoint and Exact Free Energy

Methods can Predict Affinities Accurately

(A–C) PredictedDG from free energy methods: (A)

scoring functions (fast method), (B) endpoint

methods (intermediate methods), and (C) theo-

retically exact method (slow method), compared

with IC50 values from transport assay. The mag-

nitudes of DG obtained from endpoint methods

are significantly larger than expected due to

the absence of an entropic term in the calcula-

tion. Spearman’s correlation coefficient, r, was

calculated to measure the ability of each method

to reproduce the same ranking as experimental

data. Y error bars indicate statistical errors from

de-correlated and equilibrated DG data during

MD simulations, while X error bars indicate the

standard deviations from triplicate experiments.

(D) The performance of all prediction methods

and the computational cost based on a quad

core processor. AutoDock does not require any

simulation and each docking protocol takes

around30s, and therefore isplottedas10�2CPUh.

Standard one-letter code abbreviations have

been used for all di- and tri-peptides.
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and the standard method for estimating affinities is to perform

competition transport assays and measure the half maximal

inhibitory concentration (IC50) values (Solcan et al., 2012). Unlike

certain enzymes, however, transporters have more complicated

kinetics such that the relationship between IC50 and DG is un-

clear (Eraly, 2008). We therefore compared these two datasets

in a qualitative manner using Spearman’s correlation coefficient

(Lehmann and D’Abrera, 1998), r, which assesses the ability of

each computational approach to reproduce the ranking of sub-

strates based on experimental IC50 values.

Since it does not require anyMD simulations, the scoring func-

tion is the fastest method to estimate binding affinities. Our re-

sults with AutoDock (Figure 2A), however, shows that it is also

the least accurate (r = 0.43). This is not surprising as AutoDock

uses a simplified scoring function (Wang et al., 2002). Although

not tested in this study, it is possible that other scoring functions

may produce better predictions for peptide transporters as no

single docking program performs best across all protein families

(Warren et al., 2006; Ross et al., 2013). Also, AutoDock does not

account for the conformational sampling of the ligand and the

residues in the binding site of the protein as it uses only one

snapshot of the protein-ligand complex for its calculation. It is

worth noting that this may be improved by using multiple con-

formers of the complex, for example from MD simulations, as

has been done with several other membrane transporters

(Schlessinger et al., 2011; Geier et al., 2013). As the binding of

the peptide test set was modeled using the same structure,
Cell Chemical Biology 23, 299–309, F
AutoDock Vina predicted that they all

have very similar DG values. For each

dipeptide, the range of DG values pre-

dicted for the nine poses generated is

small (�0.5 kcal/mol), although the score

for the pose most similar to the crystal

structure or homology model is not al-

ways the highest (Figure S1). We there-
fore conclude that AutoDock Vina does not accurately predict

peptide-binding affinities for PepTSt.

Encouragingly, all three endpoint free energy methods

managed to rank the peptide test set well (Figure 2B) compared

with the experimental data (rz 0.7). The predictedDGvalues for

the eight peptides span a wider range, allowing us to better

distinguish the subset of well-transported peptides (PhePhe,

AlaPhe, AlaAla, and AlaTyr) from poorly transported peptides

(triAla and GluGlu). We assume that this increase in accuracy

is primarily a result of using an ensemble of conformations

generated during the MD simulation, which accounts for the

conformational sampling of the ligand and the protein. As

endpoint methods require only simulations of the bound and

unbound states, the computational cost required for each calcu-

lation is relatively modest and therefore they are suitable candi-

dates for a high-throughput workflow to differentiate between

high-from low-affinity peptides.

Upon closer examination, however, we found that the

endpoint methods poorly ranked peptides with similar IC50

values, for example the r value of the MMPBSA methods for hy-

drophobic dipeptides with IC50 % 100 mM is 0.0, i.e., random

(Figure S2). We hypothesized that the more rigorous method,

TI might improve the ranking of AlaPhe, AlaAla, AlaTyr, and

PhePhe by calculating the change in DG (DDG) when the amino

acids in AlaAla were mutated into either Phe or Tyr. These values

were subsequently added to the results of the endpoint

methods. We found that by implementing this step, wemanaged
ebruary 18, 2016 ª2016 The Authors 301
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Figure 3. Further Predictions Suggest that

the N-Terminal Side Chain Contributes

More Toward the Binding of a Dipeptide

than the C Terminus

(A)DG values for all 400 dipeptides as predicted by

the LIE method, arranged according to the overall

chemical property of the peptide. Solid lines indi-

cate the average of DG for each category and the

dotted line represents the overall mean DG value.

The magnitudes of DG for all peptides were pre-

dicted to be above zero due to the lack of entropic

term in the calculation.

(B) DG values plotted in pair, each for two di-

peptides made of the same residues but in

different orders, e.g., GluMet and MetGlu. The line

drawn on the graph represents perfect linear cor-

relation.

(C) The TI method was used to calculate DDG of

alchemically changing the side chain of either the N

or C terminus of AlaAla into Phe, Asp, Glu, or Lys.

Errors were calculated by dividing all simulations

into an equal number of independent bins as indi-

cated by the reverse cumulative averaging method

(Yang et al., 2004).
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to significantly improve the prediction and reproduce the exact

experimental ranking (r = 1.0) (Figure 2C). It is acknowledged,

however, that due to the few data points, the apparently higher

correlation to experimental data may be artificial.

To quantify and compare the exact amount of resources

required for each prediction method, computational usage in

hours of single CPU usage (CPUh) was estimated based on

the performance of GROMACS for MD simulation using an Intel

quad core Xeon processor (Figure 2D). It is no surprise that

the more computational input fed into the methods, the more

accurate the predictions become. The endpoint methods are

an excellent compromise between good performance and

low cost. We therefore conclude that it is most efficient to

adopt a hybrid approach: using endpoint methods to broadly

classify the ligands into high- and low-affinity substrates and

then applying TI where necessary to further refine specific

predictions.

Binding of Dipeptides Sensitive to their N-Terminal
Residue
Having determined, using the test set of peptides, which free

energy methods are most accurate, we now make some predic-

tions for the bacterial transporter PepTSt and test them experi-

mentally. Since the LIE method ranked the test set the best,

we used it to predictDG for all possible 400 dipeptides.We again

assumed that all dipeptides bind in the same orientation as

AlaPhe, as has been elucidated by Lyons et al. (2014). In agree-
302 Cell Chemical Biology 23, 299–309, February 18, 2016 ª2016 The Authors
ment with previous studies on PepT1 (Vig

et al., 2006), PepT2 (Biegel et al., 2006),

and a peptide transporter from Saccharo-

myces cerevisiae, Ptr2p (Ito et al., 2013),

our results predict that neutral dipeptides

made of hydrophobic and polar amino

acids are the preferred substrates for

PepTSt with almost all binding free en-
ergies below average (Figure 3A). As expected, we also found

that acidic dipeptides bind least well with the lowest affinities

predicted if both side chains are negatively charged, e.g.,

AspGlu. However, our results suggest that dipeptides with basic

residues have moderate affinities for PepTSt, while an experi-

mental transport assay showed that LysLys has a high IC50

value, indicating poor transport (Solcan et al., 2012).

Previous modeling of PepT1 suggested that the binding site

predominantly recognizes the peptide backbone and therefore

substrate affinities should not be significantly affected by the

sequence of residues (Foley et al., 2010). To check if our results

agreed with this prediction, we replotted each DG value against

its sequence-reversed equivalent, i.e., Ala-X versus X-Ala (Fig-

ures 3B and S3). If order does not matter, then the points should

all fall on a straight line; however, we found a relatively low cor-

relation (r2 = 0.32) with some pairs differing significantly, for

example, AlaLys and LysAla. Our results therefore suggest that

the order of amino acid residues does influence the overall affin-

ity in PepTSt.

To explore this further, TI calculations were performed to

determine how the binding free energy changes when the N-

or C-terminal side chain of AlaAla is transmuted into either

phenylalanine, aspartate, glutamate, or lysine (Figure 3C). Nega-

tive DDG values (and therefore better binding) were obtained

when either side chain was substituted with Phe, exemplifying

the inclination of this transporter toward hydrophobic peptides

as shown by other POTs (Gebauer and Hartrodt, 2003; Biegel
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Figure 4. Proton-Driven Competition Up-

take Assays

(A) IC50 competition curves for AlaAsp and AspAla

showing residual uptake of 3H-AlaAla in a proteo-

liposome-based transport assay.

(B) Similar IC50 competition curves for AlaLys,

LysAla, and triAla.

(C) Apparent ‘‘DDG’’ values derived based on the

ratio of IC50 of Ala-X and X-Ala, compared with the

corresponding calculated DDG values from simu-

lation.

Errors were calculated as per Figure 3.
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et al., 2006; Doki et al., 2013; Fang et al., 2000). Transformation

into a charged residue, however, resulted in a reduction of

binding affinity (positive DDG), in agreement with our LIE predic-

tions. In all cases, when the N terminus was altered, the

magnitude of the change in binding affinity was larger than the

identical change at the C terminus. These results indicate that

the N-terminal residue is crucial in determining the selectivity

of PepTSt.

We then investigated which residues in the binding site of the

transporter interact with the side chains of the dipeptides (Fig-

ure S4). The C-terminal side chain mainly occupies a hydropho-

bic pocket and forms hydrophobic interactions primarily with

Tyr68 and Trp296. The N-terminal side chain, however, con-

tacts a group of polar residues including Tyr30, Asn156, and

Asn328. All of these residues have been previously shown to

be important for peptide transport by PepTSt (Solcan et al.,

2012). These analyses suggest that the N-terminal side chain

potentially binds more strongly to the binding site via multiple

electrostatic interactions and hydrogen bonds, and thereby is

more sensitive to changes, whereas the C-terminal counterpart

is accommodated inside a hydrophobic pocket that can adapt

to various chemical groups without a large energetic penalty,

and therefore is less sensitive when perturbed to another side

chain.

To test these predictions, we performed proton-driven

competition uptake assays for AlaAsp, AspAla, AlaLys, and

LysAla using radiolabeled AlaAla as the reporter substrate. The

results were then compared with the uptake of the neutral

peptides, AlaAla and triAla (Figures 4A and 4B). To make com-

parison with our in silico predictions easier, we determined the

ratio of IC50 values between AspAla and AlaAsp as well as be-

tween LysAla and AlaLys, and calculated the apparent ‘‘DDG’’

values (Figure 4C). Consistent with our in silico predictions, hav-

ing the aspartate residue at the N terminus is more detrimental

to transport compared with having the same residue at the C ter-

minus, as exemplified by the larger IC50 of AspAla (300 mM)
Cell Chemical Biology 23, 299–309, February 18, 2016 ª2016 The Authors 303
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compared with AlaAsp (100 mM) and

therefore the negative apparent ‘‘DDG’’

value. A similar experiment for positively

charged dipeptides, AlaLys and LysAla,

however, showed the opposite trend. Ly-

sAla has a lower IC50 than AlaLys, i.e.,

150 mM and 2.1 mM, respectively, and

their apparent ‘‘DDG’’ value is therefore

positive. This indicates that for lysine,
positioning this residue on the C terminus of a dipeptide is

more detrimental to its affinity.

Lysine-Containing Dipeptides are Predicted to Bind in a
Tripeptide-like Pose
The discrepancy between our computational predictions and

experimental data for positively charged dipeptides could be

as a result of many different factors such as inadequate sampling

and force field errors. One other possible reason is that these

peptides do not bind in the same horizontal pose as AlaPhe

As the vertical pose is the only alternative binding mode

observed in crystal structures (Figure 1B), we explored this hy-

pothesis by modeling the binding of AlaAla, AlaLys, and LysAla

based on the crystal structure of PepTSt bound to triAla (PDB

4D2D; Lyons et al., 2014). TriAla has three residues, so there

are two possible ways of modeling a dipeptide: (1) removing

the C-terminal residue and using the first and second residues

as the template or (2) removing the N-terminal residue and using

the second and third residues as the template. The forme

approach positions the model dipeptide closer to the cyto-

plasmic side, and henceforth is called the bottom model

whereas the latter places the peptide nearer to the extracellula

side (top model) (Figure 5A). As before, we performed TI to

alchemically convert either the N- or C-terminal side chain o

AlaAla in this vertical binding modes into lysine, and subse-

quently calculated how the difference in binding free energy

(DDG) between LysAla and AlaLys.

Our results for both the bottom and top models suggest tha

AlaLys has a less negative DG value and thereby binds less

tightly compared with LysAla, as suggested by the positive

DDG (Figure 5B), in agreement with previously performed trans-

port assays. Further inspection of the alternative binding models

suggests that the strong binding of LysAla stems from favorable

salt bridges formed via the ε-amino group with Tyr68 and Glu300

in the bottommodel (Figure S5A) or Asn156 in the topmodel (Fig-

ure S5B). In contrast, the lysine side chain of AlaLys protrudes



A B Figure 5. Re-Modelling the Binding of

LysAla and AlaLys Based on a Tripeptide,

triAla

(A) Two ways to model the binding of a dipeptide

based on triAla: (1) by removing the C-terminal

residue, and using the first and second residues as

template (bottom models) and (2) by removing the

N-terminal residue, and using the second and third

residues as template (top). The figures overlay the

new models of AlaLys and LysAla (orange stick

representation) on top of triAla (purple).

(B) The TI method was used to calculate DDG of

alchemically transforming the N- or C-terminal side

chain of AlaAla (in both bottom and top models)

into lysine. These are compared with the apparent

‘‘DDG’’ values derived based on the ratio of IC50 of

AlaLys and LysAla from the transport assays.

Errors were calculated as per Figure 3.
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into a cavity that is in close proximity to Arg33, therefore resulting

in unfavorable electrostatic repulsion and hence a more positive

DG value (Figure S5D).

While our modeling appears to suggest that two possible verti-

cal binding sites exist for a dipeptide, i.e., the bottom and top

models, we acknowledge that in reality this might not be the

case. The binding of triAla to PepTSt in the original crystal struc-

ture showed fewer contacts with residues in the binding cavity

compared with AlaPhe, indicating a weak interaction, consistent

with the higher IC50 value (Lyons et al., 2014). Similarly, in our

simulation, a ligand bound in this orientation was able to move

up and down, suggesting that there are no distinct ‘‘bottom’’

and ‘‘top’’ binding sites, instead there is just one large vertical

cavity. Hence, one would expect to obtain similar values of

DDG for both models. That this is not the case suggests the TI

simulations have not converged, which is not surprising given

the likely timescale for the ligand to explore the vertical pocket.

Despite this, as they both show the same trend as experiment,

our current results suggest thatAlaLysandLysAlabind in a similar

orientation to triAla, rather than the horizontal pose of AlaPhe.

Nevertheless, further high-resolution crystal structures are still

required to verify the validity of our prediction for these peptides.

Experimental Structures are Essential for Accurate
Predictions
A primary goal of this study is to develop a transferable approach

of relevance to drug discovery. We therefore tried our method on

a homology model of the pharmaceutically relevant human

PepT1 (Beale et al., 2015) and expanded the test set to include

14 drug compounds that are known substrates of this trans-

porter. Peptides were assumed to bind to PepT1 in the same

way as to PepTSt. The binding of drugs was modeled based

on the conformations of either AlaPhe or triAla according to

their size. Our predicted DG values were then compared with

the IC50 data from whole-cell transport assays (Biegel et al.,

2005; Vig et al., 2006). Unfortunately, all methods failed to distin-
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guish between good and poor binders

with correlation coefficients of �0.0 (indi-

cating that the predictions are random)

(Figure S6).
One potential reason for this loss of predictive ability is the lack

of a high-resolution crystal structure of human PepT1. To inves-

tigate how much the approach depends on the quality of the

protein structure, a series of homology models for the bacterial

homolog PepTSt were built using as templates, in decreasing

order of quality: (1) the crystal structure of PepTSt itself (PDB:

4D2C and 4D2D), (2) the crystal structure of GkPOT (PDB:

4IKV) that shares �50% sequence identity with PepTSt, and (3)

the crystal structure of LacY (PDB: 1PV6), which has only

�25% sequence homology compared with PepTSt. For the

same peptide test set as before, all three homology models

showed lower correlations for all methods compared with pre-

dictions using the crystal structure of PepTSt. Interestingly, the

predictive ability of all the endpoint methods degrades propor-

tionally to the quality of the protein structure (Figure 6), with the

best model showing a slight decrease in the r value, followed

by larger decreases for the intermediate and poor-quality

models. Taken together, these results suggest that, while our

current approach can be applied to other members of the pep-

tide transporter family, a high-resolution crystal or electron mi-

croscopy structure is essential to achieve accurate results.

DISCUSSION

We have demonstrated that computational modeling, molecular

simulation, and free energy calculations can accurately predict

protein-ligand interactions for a membrane transporter. Using

an endpoint method, LIE, we first classified all 400 possible

dipeptide ligands into strong and weak binders. In agreement

with experimental data from other peptide transporters (Vig

et al., 2006; Biegel et al., 2006; Ito et al., 2013), we found that un-

charged peptides are, on average, the best substrates, while

acidic residues bind weakly. Refining these results using a

theoretically rigorousmethod, TI, we then found that theN-termi-

nal residue of a dipeptide contributes significantly toward

selectivity. These predictions were tested experimentally, which



Figure 6. Comparison of Performance of Binding Affinity Predic-

tions Using a Scoring Function (AutoDock) and Endpoint Methods,

LIE, MMGBSA, and MMPBSA, for Homology Models of PepTSt as

Marked with Asterisks

The template used for each model is shown in parentheses. The number in

each box represents Spearman’s correlation coefficient, r, between predicted

DG and experimental IC50 data for a test set of eight peptides (as shown in

Figure 2). These are colored from white (0.0) to blue (1.0).
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showed good agreement except for basic dipeptides. Remodel-

ing the basic peptides based on the vertical binding orientation

restored agreement between simulation and experiment, there-

fore we hypothesize that these basic dipeptides may not interact

with PepTSt in the canonical dipeptide-binding pose, but instead

possibly mimic a tripeptide.

It is important at this stage to highlight the limitations of our

computational approach. The MD simulations were performed

using a molecular mechanics force field, which is a classical

approximation of a more complex quantum mechanical reality

at the atomic level. It is well established, however, that this force

field is accurate at reproducingmany experimental results (Shirts

et al., 2003). Themagnitude of the absoluteDG values calculated

by the endpoint methods are large and mostly positive, rather

than small and negative as one would expect (Figures 2B and

3A). This is due to various assumptions we have made. The

MMGBSA andMMPBSAmethods neglect the entropic contribu-

tions, DS, from the protein and ligand, although we expect the

change in entropy to be similar since all of the ligands are

structurally similar (Oehme et al., 2012). In principle, one could

estimate the change in entropy; however, the currently available

methods are not precise and return very large standard errors

(Kar et al., 2011). For the LIE method, we implemented

hydroxyl-based scaling factors (Hansson et al., 1998) for

simplicity, instead of the more sophisticated parametrizations

that take into account other chemical groups (Wang et al.,

1999; Almlof et al., 2007). While these computed DG values

should not be considered as the true binding free energy, they

give meaningful results when used qualitatively, for example, in

the comparison between various ligands to understand the gen-

eral trend of binding affinity. Our modeling is also limited to the

inward open conformation, so the DG calculated might not be

representative for other conformations of the transporter.

Despite these limitations, our predictions for PepTSt using the

peptide test set show good agreement with experimental data,

suggesting that these methods are indeed sufficient to study

ligand interactions.

A ligand-based substrate template of PepT1 (Bailey et al.,

2000) suggested that dipeptides are better substrates than tri-
Cell Chemic
peptides. However, this template fails to account for the gener-

ally poor transport behavior of basic dipeptides that show worse

affinities than neutral tripeptides (Eddy et al., 1995; Terada et al.,

2000). Here, we propose based on computer modeling and

competition assays that the lower affinities of these dipeptides

arise from a different binding pose. Unlike neutral and acidic di-

peptides, a dipeptide with lysine residues is proposed to bind

like a tripeptide in a vertical binding orientation, which results

in poorer transport as this binding mode is less tightly coordi-

nated (Lyons et al., 2014). The large extended lysine side chain

makes the total length of AlaLys and LysAla �10 Å, which is

about the same as the backbone of a tripeptide. As such,

positioning these dipeptides laterally like AlaPhe may cause un-

favorable steric clashes and the only way for them to bind is by

treating their large side chain effectively as an additional residue.

As the side chain of an arginine residue is of similar length and is

also capped by a positive charge, we conjecture that dipeptides

with arginine may also interact this way, which would explain

their poor uptake.

The importance of the N terminus for peptide binding to PepT1

has been demonstrated by previous studies (Borner et al., 1998;

Meredith et al., 2000), which suggested that the amino group is

responsible for aligning the rest of the molecule in the central

binding cavity. Similar results were observed for Ptr2p (Ito

et al., 2013), where the N-terminal residue showed a higher pro-

pensity toward determining whether a substrate belongs to a

high- or low-affinity group. Our studies lend further support to

this idea by showing that the side chain on the N terminus is

the primary determinant of binding selectivity in PepTSt. The

structural reasoning behind this observation is that this side

chain contacts a group of polar residues in the binding site via

multiple electrostatic interactions, while the C-terminal side

chain is surrounded by an electro-neutral binding cavity. As

PepTSt and human PepT1 share 80% sequence identity within

the peptide-binding site, it is likely that PepT1 has a similar

substrate recognition mechanism. This would explain why the

peptide prodrug approach targeting PepT1 has been very suc-

cessful. These prodrugs are structurally analogous to a dipep-

tide, and the added amino acid acts as a pseudo N terminus

and the active drug moiety the C terminus (Figure 7). While the

N-terminal amino acid is crucial to gain affinity to the transporter,

the drug compound itself fits well inside the large hydrophobic

cavity, and hence the prodrugs are recognized and transported

by PepT1. This prodrug recipe has been employed for various

drugs such as the antivirals valacyclovir (Ganapathy et al.,

1998), valganciclovir (Sugawara et al., 2000), and cidofovir

(McKenna et al., 2005).

Generating a substrate-binding model for a membrane trans-

porter presents enormous possibilities for rational drug design.

Previous studies of the mammalian PepT1 transporter pro-

duced a simplified two-dimensional model (Meredith et al.,

2000), followed later by three-dimensional pharmacophores

(Biegel et al., 2005; Vig et al., 2006; Foley et al., 2010; Pedretti

et al., 2008). A more detailed structure-based model is

imperative following the recent crystallographic and thermody-

namic evidence that this transporter operates with at least

two distinct binding modes (Parker et al., 2014). We made

the best use of these data by combining various computational

techniques alongside experimental transport assays to suggest
al Biology 23, 299–309, February 18, 2016 ª2016 The Authors 305
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Figure 7. A Model of Peptide Prodrug Bind-

ing to PepT1

(A) Structural comparison of an antiviral prodrug

valacyclovir and AlaPhe suggests that the

attached amino acid, valine (red), acts as a pseudo

N terminus, whereas the active drug, acyclovir

(blue), mimics the position of the second residue of

a dipeptide.

(B) Surface representation of the binding site of

PepTSt-AlaPhe (crystal structure) and PepT1-

valacyclovir (homology model) highlighting the

position of the phenylalanine side chain and

acyclovir inside a hydrophobic cavity, depicted by

dotted circles.

(C) Other prodrugs that target PepT1 following the

approach of adding an amino acid residue to form

an N terminus.
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how other peptides and drugs interact with this transporter.

While it is currently not possible to directly apply our methods

to the human PepT1 due to the lack of a high-resolution

crystal structure, our promising results with its model system,

PepTSt, demonstrate its potential for the study of drug-trans-

porter interactions. With the ever-increasing computational

power and available crystal structures of membrane trans-

porters, we expect this approach to be extended to other rele-

vant transport systems and larger compound libraries in the

near future.
SIGNIFICANCE

When a drug is taken orally, it has to pass through the lining

of the gut to enter the blood circulation and reach its target.

Membrane proteins found in the gut epithelium, for example,

the human peptide transporter, PepT1, play key roles in

mediating the absorption of orally prescribed drugs.

Designing drugs that can strongly bind to PepT1 will there-

fore improve bioavailability, and in turn optimize dosing

and minimize undesirable side effects. Here, we demon-

strate an accurate way to computationally determine how

well a ligand binds to a bacterial homolog of PepT1. This

approach is capable of discriminating strong and weak

binders and elucidating the origin of ligand selectivity in

this transporter, which we then validate using in vitro trans-

port assays. Studying drug-transporter interactions is

becoming an important component of rational drug design.

We foresee that this method will be more widely employed

in the future to study other medically relevant membrane

transporter families.
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EXPERIMENTAL PROCEDURES

The binding of both peptides and drugs was

modeled based on the structure of PepTSt-AlaPhe

(PDB: 4D2C) and PepTSt-triAla (PDB: 4D2D) com-

plexes (Lyons et al., 2014). For predicting the bind-

ing free energy, DG, using a scoring function

(AutoDock Vina; Trott and Olson, 2010), each pep-

tide and drug compound was docked to the bind-

ing site of the protein and the affinity score from the

pose most similar to the crystal structure (for
AlaPhe and triAla) or model (for other ligands) was taken as the DG value.

For DG predictions using the endpoint methods, 1-ns MD simulations were

performed using GROMACS 4.5.4 (Hess et al., 2008) with parameters ex-

plained in detail in the Supplemental Information. We performed two simula-

tions for the LIE method: (1) a protein-ligand complex in membrane and (2)

the ligand in bulk solution. The GROMACS tool, g_lie, was used to compute

DG values with the a scaling constant set to 0.18 (Luzhkov and Aqvist, 2001;

Osterberg and Aqvist, 2005) and the b scaling constant set to either 0.5,

0.43, 0.37, or 0.33 based on the number of hydroxyl groups on the ligandmole-

cule (Hansson et al., 1998). For MMGBSA and MMPBSA, the single trajectory

protocol was used (Hou et al., 2011), where only the simulation of protein-

ligand complex was run and the trajectories of unbound protein and free ligand

were extracted from it. The calculation of DGwas done using the MMPBSA.py

program (Miller et al., 2012) with the implicit solvation parameters (saltcon and

istrng) set to 0.15 M.

For predictions of DDG by the TI method, alchemical MD simulations were

performed using either the PepTSt-AlaPhe crystal complex or PepTSt-AlaAla

model for the starting coordinates. The dual topology approach was employed

where both the vanishing and growing atoms were represented separately. All

transformations involved only the non-bonded interactions, while bonded

interactions were kept the same throughout the simulations (Boresch and

Karplus, 1999; Boresch, 2002). Two set of MD simulations were run: (1) the

transformation of peptide ligand bound to PepTSt (bound state) and (2) the

transformation of peptide ligand in bulk solution (unbound state). The transfor-

mation of both states was divided into three steps: (1) removing the partial

charges of the disappearing chemical groups, (2) removing the van de Waals

interactions of the disappearing groups while adding that of the emerging

groups, and (3) adding the partial charges of the emerging groups. A soft

core potential (Beutler et al., 1994) was applied in step (2) to avoid singularities

and instabilities. These transformations were coupled to a scaling parameter,

l, where at l = 0, the non-bonded terms of the initial peptide were used,

while at l = 1, the non-bonded terms of the final peptide were used. Eleven

independent 5-ns MD simulations were performed at l = 0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1. The trapezoid rule was used to integrate the vU/vl

values to obtain DG. In the transformations with a change in the charge of

the ligand, the one-box approach described by Rashid et al. (2013) was

employed.
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The performance of each prediction method was assessed by Spearman’s

rank correlation coefficient (Lehmann and D’Abrera, 1998) using the following

equation:

r= 1� 6
P ðxi � yiÞ2
nðn2 � 1Þ ;

where xi is the ranking for experimental IC50 values, yi is the ranking for pre-

dictedDG values and n is the size of the dataset. To validate our computational

predictions, proteoliposome-based competition transport assays were per-

formed as described in Solcan et al. (2012).
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into substrate recognition in proton-dependent oligopeptide transporters.

EMBO Rep. 14, 804–810.

Guettou, F., Quistgaard, E.M., Raba, M., Moberg, P., Löw, C., and Nordlund,
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