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Latency and interval therapy 
affect the evolution in metastatic 
colorectal cancer
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While comparison of primary tumor and metastases has highlighted genomic heterogeneity in 
colorectal cancer (CRC), previous studies have focused on a single metastatic site or limited genomic 
testing. Combining data from whole exome and ultra-deep targeted sequencing, we explored possible 
evolutionary trajectories beyond the status of these mutations, particularly among patient-matched 
metastatic tumors. Our findings confirm the persistence of known clinically-relevant mutations (e.g., 
those of RAS family of oncogenes) in CRC primary and metastases, yet reveal that latency and interval 
systemic therapy affect the course of evolutionary events within metastatic lesions. Specifically, our 
analysis of patient-matched primary and multiple metastatic lesions, developed over time, showed 
a similar genetic composition for liver metastatic tumors, which were 21-months apart. This genetic 
makeup was different from those identified in lung metastases developed before manifestation of 
the second liver metastasis. These results underscore the role of latency in the evolutionary path of 
metastatic CRC and may have implications for future treatment options.

Results of somatic mutational analysis increasingly guide treatment decisions in oncology. In colorectal can-
cer (CRC), activating mutations in KRAS (codons 12, 13, 61, 117 and 146), NRAS (codons 12, 13, 61, 117 and 
146), and BRAF (V600E) confer resistance to anti-epidermal growth factor receptor (EGFR) therapy including 
Cetuximab and Panitumumab1–4. This has resulted in extended RAS testing to more comprehensively determine 
treatment sensitivity in CRC5,6. Additionally, microsatellite instability (MSI) caused by deficiency of mismatch 
repair (MMR) proteins, has predictive value for response to adjuvant chemotherapy and immune checkpoint 
inhibitors in CRC7,8. Comparison of primary and metastatic tumors within individual patients underscores the 
heterogeneous nature of tumors and the varying responses of sub-clones to different treatment strategies9. Despite 
increasing use of molecular testing into clinical practice, this is typically performed using tumor tissue from a 
single anatomic location, at a single time point, obtained from archived diagnostic specimens or a freshly pro-
cured biopsy. Genomic evaluations of tumor tissue specimens from different sites within tumor or over time are 
rarely performed, due to several factors including risks associated with invasive procedures, cost, sample accessi-
bility, and DNA quality. Current analyses of primary and metastatic CRC indicate low rates of variation between 
tumor sites for the clinically-relevant mutations that may impact upon treatment decisions10,11. However, these 
comparisons have surveyed the presence or absence of somatic mutations without specifically assessing their 
allelic frequency, which can reflect on genomic evolution of metastatic CRC. Likewise, our knowledge about the 
extent to which systemic therapy can influence this evolutionary path is limited. Here, we explore the evolution 
of metastatic CRC by analyzing the dynamic changes in frequency of somatic mutations identified through whole 
exome sequencing (WES) of patient-matched primary and metastatic tumors. Investigating the genetic architec-
ture of different metastatic lesions from the same patient in the presence or absence of systemic therapy provides 
insight into both inherent and therapy-driven evolutionary paths. We further study the contribution of specific 
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mutations in six clinically-relevant genes (APC, TP53, KRAS, NRAS, PIK3CA and BRAF) to the mutational bur-
den of CRC by measuring variant allele frequencies using targeted ultra-deep sequencing.

Methods
Patients and samples.  The study cohort comprised 350 patients with advanced malignancies enrolled in the 
initial phase of the Integrated Molecular Profiling in Advanced Cancer Trial (IMPACT) at the Princess Margaret 
Cancer Centre (NCT 01505400)12. All patient information and tissue were collected under the University of 
Toronto/University Health Network Research Ethics review board-approved protocol (REB#12-5453-TE) with 
written informed consent obtained from all participants. We reviewed medical records of these patients and 
selected those with multiple tumor samples (n = 62) and with CRC as the primary diagnosis (n = 27). From 
these, 15 patients had tissue available from multiple tumor samples with 11 having more than one tumor sample 
with adequate tissue for evaluation (26 samples in total) and were included in the current study (Supplementary 
Fig. 1). The cohort of 11 patients included eight patients with available tissue from the primary tumor and ≥1 
metastatic site, two patients with pairs of metastases only, and one patient with an anastomotic recurrence five 
years after initial resection of the primary tumor (Supplementary Table 1). One sample from each patient had pre-
viously been genotyped using a customized 23-gene panel via the Sequenom MassARRAY12. All procedures and 
experiments were conducted in accordance with University of Toronto/University Health Network guidelines.

Tissue preparation and targeted capture.  Representative slides or tissue blocks from tumor specimens 
were collected. A hematoxylin and eosin–stained section from each tumor was reviewed by a specialized gastroin-
testinal pathologist. Tumors were macrodissected to maximize tumor content where necessary, and the percent-
age of viable tumor cells was estimated by the pathologist. DNA was isolated from the 36 available formalin-fixed 
paraffin embedded (FFPE) tissue specimens using QIAamp DNA micro kit (QIAGEN Inc, Valencia, CA), fol-
lowing instructions provided by the manufacturer. Loci harboring clinically-relevant mutations of TP53 (codons 
175, 213, 245, 248, 273 and 306), APC (codons 1378 and 1450), KRAS (codons 12, 13, 22, 61, 117 and 146), NRAS 
(codons 12, 13 and 61), PIK3CA (codons 539, 542, 545 and 1047), and BRAF (codon 600) were captured by multi-
plex amplification on Fluidigm access arrays (South San Francisco, CA) using 50 ng of DNA. PCR primers specific 
to each locus are provided in Supplementary Table 2. Hotspots were selected following literature review and use 
of publicly available datasets, with input from our molecular diagnostics laboratory3,4,13–15. Of note, NRAS codon 
117 and 146 mutations were not included in this analysis due to their relative rarity4.

Whole-exome sequencing and data analysis.  WES libraries were generated using the Nextera Rapid 
Capture Enrichment library preparation kit (Illumina) according to the manufacturer’s recommendations and 
were sequenced on an HiSeq. 2500 paired-end 100 base pair reads. Quality controlled reads processed by trimmo-
matic16 (v0.32) to remove adapters and low quality reads were aligned to the human genome build GRCh37 using 
bwa-mem17 (version 7.6). Mapped reads were further refined using GATK18 (v3.2.2) and Picard program suites19 
(v1.118) to improve mapped reads near indels (GATK indel realignment) and improve quality scores (GATK 
base recalibration) as well as mark duplicate reads with the same paired start locations (Picard mark duplicates). 
Somatic calls generated using Mutect (v1.1.6) for SNVs and scalpel (v0.5.2) for indels20 were further processed 
with the addition of functional annotations using snpEff 21 (v3.6b) and genomic annotation using Gemini22 
(v0.11.1a). All non-silent variants were inspected manually for quality control using Integrative Genome Viewers 
(IGV)23, and were predicted for functionality using CADD24, and fitness consequence scores25.

Mutational signature analysis.  Mutational signature analysis was performed individually for each lesion 
using somatic base substitutions identified in that lesion by Mutect. The R packages SomaticSignature and 
BSgenome.Hsapiens.1000genomes.hs37d526 were used to extract the somatic mutational profiles and to provide 
the frequency for each of the 96 possible single base substitutions and their context combinations. Individual 
mutational profiles were then compared against the known signatures described by Alexandrov et al. using the 
DeconstructSigs R package to infer the contribution of known reference signatures to the individual somatic 
mutation profiles27,28.

Copy number aberration analysis.  To analyze copy number variations in our samples we used an 
in-house program that exploits deviation of B allele frequency from 50% as well as read-depth, normalized based 
on the average coverage using WES data. Copy number variation (CNV) events were defined as follows: devia-
tion from 50% in B allele frequency and a significant increase in normalized coverage was considered as a sign of 
amplification, deviation from 50% in B allele frequency, however, if was accompanied by decrease in normalized 
coverage, would be considered as deletion. If there was no change in the normalized coverage while B allele fre-
quency represents deviation from 50%, we called it a potential copy-neutral loss of heterozygosity (LOH).

Inferring clonal evolutionary trajectories within patients.  We used allele frequency values cor-
rected29 for both the tumor content and CNV events as the raw input to infer sub-clonal composition and evo-
lutionary trajectories within each patient. We corrected the original allele frequency values based on the copy 
number aberration events harboring these variations. In our correction, we use the naïve assumption that the 
copy number aberration always affects the frequency of the altered allele to the largest extent. For example, in case 
of duplication, we assume the duplication occurred on the chromosome harboring the altered allele. Thus, we 
divide the number of altered allele reads into half to correct for the duplication and calculate the allele frequency 
(Duplication: Ref ’ = Ref; Alt’ = Alt/2). In the case of deletion, we assume the deletion happens on the chromo-
some with reference allele. Thus, to correct for this, we add the number of reference allele reads to the number 
of altered allele reads and count it as the final number of reference allele read count (Deletion: Ref ’ = Ref + Alt; 
Alt’ = Alt). For a gene on chromosome X (in male patients), this is treated as a loss of heterozygosity case. In this 
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case we add the number of alternate reads to the twice number of reference reads and use it as new reference read 
counts (Gene on X in male patients: Ref ’ = Ref *2 + Alt; Alt’ = Alt). In cases of copy neutral loss of heterozy-
gosity, we add half of alternate reads to the number of reference reads and use it as the new value for reference 
read counts (Copy Neutral LOH: Ref ’ = Ref + Alt/2; Alt’ = Alt/2). We developed an in-house program to cluster 
recurrent and exclusive mutations in primary versus metastatic lesions using expectation maximization algorithm 
using EMClust30,31 library in R32 and used the resulting putative subpopulations, their relative frequencies, and 
information about therapy administered between resections to infer evolutionary trajectories between lesions. 
The funnel plots representing these proposed scenarios are drawn manually using Adobe Photoshop© (CS3 
extended version) program. The clustering plots representing subpopulations inferred from somatic mutations 
are created using ggplot233 library.

Accession codes.  Raw sequence data have been deposited in the European Genome-phenome. Archive 
(EGA), under the Accession Code EGAS00001003646.

Results
Patient samples and whole exome sequencing.  We analyzed primary CRC, matched blood, and met-
astatic tumors (where available) from 11 patients, from which, all had germline DNA from blood samples, seven 
from both primary and more than one metastatic tumors, one from only the primary tumor, one from a primary 
tumor and an anastomotic recurrence, and two from metastatic tumor pairs only. Clinical characteristics and 
patient treatment strategies are outlined in Supplementary Table 1. Targeted ultra-deep sequencing (average of 
25000×) was applied to clinically-actionable mutations for validation and measuring mutant allele frequencies. 
WES (see Methods) was applied to DNA isolated from macrodissected formalin-fixed paraffin-embedded (FFPE) 
tumor specimens and blood samples to an average coverage depth of 63X and 95X for blood and tumor samples, 
respectively.

Somatic mutations.  On average, we detected 116 and 156 somatic exonic mutations in primary and meta-
static lesions, respectively (excluding the hypermutated primary tumor in REACT-009-A, which harbored 1285 
somatic mutations) (Supplementary Table 1).

We investigated global mutational patterns by analyzing base-substitution profiles and mutational signatures 
in tumor samples27,34 (Supplementary Table 3). As reported recently, mutational signatures can shed light on 
mutagenic processes that affect cancer genomes. We observed that the primary tumor in patient-009 (REACT-
009-A) and metastatic samples REACT-010-B and E are enriched for signature 6 (Supplementary Fig. 2). This 
signature is characterized by Cytosine deamination in repeated sequences with NpCpG pattern, and is asso-
ciated with the inactivation of DNA mismatch repair (MMR) genes in colorectal cancer. Deficiency of MMR 
proteins results in microsatellite instability (MSI) pattern27 which is reported in a variety of cancers including 
CRC, and with prognostic and predictive implications for CRC8,34,35. Our WES results from patient-009’s primary 
tumor confirmed a hypermutated genome in this tumor, with mutations in the MMR genes MSH2 and MSH5 
(Supplementary Tables 1 and 4).

Next, we focused on non-silent somatic mutations in primary tumors, and identified 1116 such mutations 
affecting 1019 genes following manual in silico verification of mutations using Integrative Genomics Viewer 
(IGV)23 (Supplementary Table 4). Forty-five of the affected genes were recurrently mutated in at least two primary 
tumor samples (Supplementary Table 4), among which, nine genes were affected in the primary tumor of at least 3 
of the 9 patients whose primary tumors were analyzed by WES (33.3%); APC, TP53, KRAS, SYNE1, FAT4, FBN2, 
PIK3CA, UHRF1 and WDFY4. Among these 9 patients, APC and TP53 were the most frequently mutated genes 
affected by somatic mutations in 78% followed by KRAS which was mutated in 44% of primary tumors (Fig. 1), in 
line with previous studies reporting these genes as the most commonly mutated genes in CRC36,37.

All APC-mutated tumors were affected with at least one protein truncating mutation, which may lead to the 
activation of WNT pathway38. TP53 was affected in nine patients in our study, with various mutations. Activating 
mutations of KRAS codon 12 were detected in four patients, and oncogenic mutations of NRAS (G13V) and 
BRAF (V600E) were each identified in one additional tumor, contributing to a prevalence of 54.4% for activat-
ing mutations of RAS pathway. Notably, these genes were not mutated concurrently in tumors highlighting a 
mutually-exclusive pattern for RAS pathway mutations (Fig. 1 and Supplementary Table 4). Three patients were 
affected with PIK3CA mutations, two of which (E545G and Q546K) have been previously reported in CRC39. A 
third PIK3CA mutation (H665D) with uncertain clinical significance has no previous record in COSMIC data-
base, but was predicted as likely functional based on CADD and fitCons scores. Three additional tumors were 
affected with mutations in PIK3C2G, resulting in a frequency of 55.5% of primary samples affected with PI3K 
pathway mutations (Fig. 1 and Supplementary Table 4).

Among other recurrently mutated genes, SYNE1 and FAT4 have been reported with high prevalence of 
non-silent mutations in CRC patients36. Hypermethylated-SYNE1 promoter has been found in 80% of patients 
with colitis-associated CRC40 Likewise, UHRF1 has been shown to be involved in cellular proliferation and 
molecular pathogenesis of CRC in the right hemicolon41.

Chromosomal copy number alterations.  Analysis of the chromosomal copy number alterations (CNAs) 
revealed highly recurrent amplifications of 13q in 75% (6/8) of primary tumors. This was followed by gains of 11q 
and 6q in 50% (4/8) and 37.5% (3/8) of primary tumors, respectively. Moreover, we detected 63% (5/8) cases of 
LOH and one case of deletion of 17p in a primary tumor (Supplementary Table 5).

Amongst seven patients with both primary and metastatic tumors, 3 patients showed the same CNA in 
both primary tumor and one or more metastatic lesion(s). These include recurrent amplifications of 6q and 
13q (REACT-001 and REACT-010) as well as copy neutral loss of heterozygosity in 17p (REACT-004 and 
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REACT-010) (Supplementary Table 5). Patient REACT-011 shows a very similar CNA pattern between its two 
metastases (AMP at 3p, 5p, 6p, 6q, 11q, 12q, 13q, 19p and 21q.) This CNA similarity pattern between metastases 
was less pronounced in other patients. This patient also had similarity in non-silent somatic mutation patterns 
between the metastatic samples. There was a short time interval (6-months) between metastatic lesions for patient 
REACT-011 during which no treatment was administered. Our results show that patients who had received an 
interval treatment seem to show a greater decrease in the total number of complete arm aberrations, that is loss 
or gain of a complete chromosome arm, between their samples (REACT-007, REACT-008 and REACT-014) 
compared to patients who did not receive any treatment (REACT-011 and REACT-015) (Supplementary Table 5). 
Effects of therapy on the abundance of CNVs in post-treatment liver metastases have previously been reported42.

Analysis of the clonal patterns.  We investigated the clonality of tumor samples and inferred evolutionary 
trajectories of metastatic tumors in patients with paired primary and metastatic lesions using allele frequency of 
somatic mutations (see Methods). Our analysis confirmed sub-clonal composition of both primary and meta-
static tumors across all samples. Overall, whereas private mutations (i.e., mutations exclusive to primary or met-
astatic lesion) constituted a large proportion of somatic mutations in each specimen, mutations in known driver 
genes were consistently present in both primary and metastatic lesions, with few exceptions discussed below.

Patients who received no interval treatment.  Analysis of primary tumor and metastases in patients 
who had received no interval therapy revealed consistency for presence and relative frequency of identified driver 
mutations. For example, in patient REACT-001, where no interval chemotherapy was administered, the relative 
frequency of main driver mutations (APC E1288*, TP53 L125LH, and KRAS G12A) did not change between 
the primary and metastatic tumors, suggesting that the cluster of cells disseminated from the primary tumor to 
form the metastatic tumor harbored the entire set of main driver mutations (i.e. the dissemination happens after 
the occurrence of all above mentioned alterations) (Fig. 2A). In both primary and metastatic tumor samples, 
some sub-clonal (passenger) mutations29 emerged secondary to the main driver mutations. Similar evolutionary 
trajectories are presented in Supplementary Fig. 3 for patient REACT-004 who had not received interval ther-
apy. The lack of multi-region sequencing in each of these samples leaves sampling bias as a potential alternative 
explanation.

Figure 1.  Mutational status of genes involved in CRC pathways across samples studied. Patient IDs are shown 
on top and individual samples procured from each patient are depicted beneath the corresponding patient 
ID. The type of sample (primary or metastasis), affected organ and information about the application of 
chemotherapy prior to the sampling are provided in colored legends.
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Patients who received interval treatment.  A different pattern is evident following the analysis of cases 
where interval systemic treatment has been administered. Patient REACT-008 was diagnosed with a primary 
tumor in the rectum, and had treatment with adjuvant folinic acid, fluorouracil, and oxaliplatin (FOLFOX) 
between resection of the primary and a lung metastasis. In this case, the primary tumor had been completely 
resected with no residual disease detected at the time of chemotherapy administration. TP53 (R114H) and APC 
(E1379*) mutations exist in a sub-clone present in relatively high frequency in both primary and metastasis. 
However, relative abundance of a fraction of cells harboring PIK3CA (H665D) and mTOR (V1795M) mutations, 
which are predicted as likely functional mutations, declined substantially in the lung metastasis compared to 
the primary tumor (Fig. 3). This could be due to either cytotoxicity on the metastatic tumor or the absence of 
these mutations in the cluster of cells that disseminated from the primary tumor to form the lung metastasis. 
Interestingly, the most frequent cell population shows a relatively stable frequency in the metastatic lesion, which 
may be explained by the presence of the TP53 mutation, possibly conferring resistance to chemotherapy in these 
cells. The possible elimination of the sub-clone harboring mutations in mTOR, PIK3CA and a FAT4 due to adju-
vant chemotherapy could have happened either in the primary tumor or in the metastasis. Given the chronology 

Figure 2.  (A) Proposed scenario for the evolution and clonality within the primary and metastatic lesions in 
patient REACT-001. B and C represent the clustering of somatic mutations in these two tumor samples, and 
the changes in allele frequency of the centers of these clusters. The center of a cluster inferred from somatic 
mutation allele frequencies corresponds to the average cellular proportion of the subpopulation characterized 
by mutations in that cluster. The allele frequency values were inferred from WES data, and corrected for CNA 
events and for tumor content, which was estimated from the histological examinations. (B) Clustering of the 
mutations in primary versus metastatic lesion into groups which characterize clonal subpopulations in the 
lesions. (C) Changes in the population proportion in different clusters. The yellow cluster maintains a ~ 40% 
cell population proportion while the red cluster of mutations is lost in the metastatic lesion and the new cluster 
(sub-clone) of mutations has arisen in the metastatic lesion (blue). Red subpopulation (exclusive to the primary 
tumor), harbor mutations accumulated in a subpopulation different from which the dissemination of metastatic 
cells happens or potentially emerged after the dissemination. The blue cluster (exclusive to the metastatic 
lesion), however, represent cells with new mutations emerging following dissemination from the primary 
tumor.
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of systemic therapy in this case, the latter scenario seems more likely than the former. This scenario is represented 
in the funnel plot (Fig. 3).

Patient REACT-010 is interesting due to the number of metastatic samples and the timing of systemic therapy 
administered. This patient has a primary tumor in the rectum, and two pairs of metastasis, one pair in the liver 
(21-months apart) and one pair in the lungs (left and right; one-month apart) (Fig. 4). The patient received folinic 
acid, fluorouracil, and irinotecan (FOLFIRI)/bevacizumab treatment between the primary and the first metastasis 
(liver REACT-010-B), and between the first and second metastasis (left lung REACT-010-C). These two metasta-
ses were present at the time of resection of the primary tumor. Following treatment with FOLFIRI/bevacizumab 
the liver metastasis reduced, but the lung lesion remained stable. This patient was also treated with FOLFIRI/
bevacizumab between the third (lung REACT-010-D) and fourth (liver REACT-010-E) metastases, but received 
no interval treatment between resection of the lung lesions (i.e. REACT-010-C and D).

Metastases in the liver share the same mutational profile for the driver mutations along with some private 
mutations in each (Fig. 4 and Supplementary Fig. 4). This suggests the possibility of dissemination of the founding 
clusters from the same region of the primary tumor sharing their ancestral sub-clonal structure. In contrast, for 
two lung metastatic tumors, which are only one-month apart, each harbor an exclusive driver mutation which is 
absent in the other. These are APC Q1349* (depicted by orange color in Fig. 4), which is present only in REACT-
010-C, and a start loss mutation in TP53 (depicted by dark blue in Fig. 4), which is present only in REACT-010-D. 
The most plausible scenario here is that the two metastases have originated from two clusters of cells dissemi-
nating from different regions of the primary tumor with different sub-clonal structures. The clinical course may 
explain why the same APC mutation is present in the liver resected samples and first lung lesion (REACT-010-C).

The similar profiles of driver mutations in the liver lesions (B and E) suggest that although these metastases 
manifested at different times, their founding cell-clusters disseminated around the same time. This pattern can be 
explained by dormancy of the disseminated cells that formed the second liver metastasis, or simply by differential 
growth rates of seeded cells, which formed the metastases. Our targeted deep-sequencing results confirm the 
reconstructed clonal structure (Supplementary Fig. 4). Figure 4 represents the possible scenario for the evolu-
tionary trajectories within primary and metastatic lesions for patient REACT-010. The clustering schemes within 
these samples are represented in Supplementary Fig. 4.

The clustering and changes in the sub-clone population proportions for all the other patients with primary 
tumor are represented in Supplementary Fig. 3.

Figure 3.  (A) Proposed scenario for the evolution and clonality within the primary and metastatic lesion in 
patient REACT-008. (B) Clustering of the mutations in primary versus metastatic lesions. (C) Changes in the 
population proportion in different clusters.
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Patients with no primary tumor available for analysis.  Patient REACT-011 had two metastatic tum-
ors in lung (4-months apart), with no available tissue from the primary tumor. Treatment with chemoradiation 
(5FU) + adjuvant FOLFOX was administered before development and resection of the first metastasis, however, 
no treatment was administered between metastases. Mutations in driver genes (nonsense mutations in both APC 
and TP53) are consistently present in both lesions. The tumors did not have mutations in any RAS pathway gene, 
but they share a missense mutation in the epigenetic modifier gene KMT2C, which shows high allele frequency 
in both lesions. Presence of the truncating TP53 mutation may explain chemotherapy resistance. The shift in the 
allele frequencies of all the mutations towards higher values in the lung metastasis REACT-011-C suggests that 
relatively higher allele frequency of the main driver mutations in this tumor could be due to differences in tumor 
content between the two metastatic samples (40% vs 60%) (Supplementary Fig. 5A–C).

Discussion
Our study is the first that applies a combination of whole-exome and ultra-deep targeted sequencing to the pri-
mary colorectal cancers as well as matched series of multiple metastatic lesions from individual patients. While 
our findings support previous studies highlighting the persistence of known clinically-relevant mutations between 
primary and metastatic CRC lesions10,11, we showed that, when present in the primary tumor, clinically-relevant 
KRAS and NRAS mutations are transmitted to the metastatic lesions of different organs and likely represent ubiq-
uitous driver mutations43. Systemic therapies may apply selective pressure to the clonal composition of tumors, 
thereby contributing to resistance based upon changes in genomic aberrations. In EGFR-mutated non-small cell 
lung cancer (NSCLC), biopsies upon disease progression following targeted treatment have shown emergence of 
resistant clones in over 50% of cases, and altered histological subtype in 14%44. Treatment with temozolomide 
may influence the genomic tumor profile in patients with recurrent glioma, facilitating evolution to high-grade 
disease45. In CRC, analysis of cell lines and biopsy tissue from patients with tumors previously wild-type for 
KRAS mutations has shown that cetuximab treatment results in the emergence of KRAS-mutated sub-clones, as 
detected by analyzing circulating tumor DNA (ctDNA)11. However, our results did not reveal such emergence 
of RAS mutations in metastatic lesions, possibly due to small sample size. In NSCLC, higher EGFR-mutation 
allele frequency has been shown to correlate with response to EGFR-tyrosine kinase inhibitors46,47. In the event 
of development of appropriate targeted therapies for KRAS-mutated CRC, our results may have similar rele-
vance. Notably, however, in the lung metastasis of patient REACT-008 we observed that cells affected by mTOR 
or PIK3CA mutations were eliminated following chemotherapy. Likewise, our mutational signature analysis indi-
cated that interval chemotherapy can alter exonic mutational profiles of metastatic CRC tumors by promoting the 
enrichment or depletion of certain mutational signatures. These findings extend our knowledge about the effect 
of systemic therapy on the genomic architecture of metastatic tumors, beyond the status of KRAS and NRAS 
mutations, with potential translational implications. Furthermore, we also investigated mutational profiles of pri-
mary and an anastomotic recurrence tumor from a patient (patient 009) in our study. Interestingly, these tumors 
exhibited different mutational landscapes as WES revealed a hypermutated genome only in the primary and not 
in the recurrent tumor. Given that anastomotic recurrences are rare events as compared to metastasis in colorec-
tal cancer patients, we found one recent study that compared mutations between primary CRC and anastomotic 

Figure 4.  Proposed evolution and clonality and changes in the mutation signature within primary tumor and 
four metastatic lesions in patient REACT-010.
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recurrences. By examining mutations of candidate genes, it has been suggested that anastomotic recurrences are 
clonally related to primary tumors48. However, this study included only microsatellite stable tumors, whereas 
tumor 9A in our study is a hypermutated tumor with mutations in MSH2 and MSH5 genes, suggesting that this 
tumor is affected by microsatellite instability. Further investigation may be required to understand the evolution 
of anastomotic recurrences where microsatellite stability differs.

Development of malignancy through clonal expansion may occur due to somatic mutations in key genes, for 
example in KRAS and NRAS in CRC, leading to dysregulation of the normal homeostatic mechanisms. Mutations 
conferring growth advantage are drivers of the carcinogenic and metastatic process and provide clinically-relevant 
targets for treatment49. Across tumor sites, genomes of disseminated cancer cells may have similarities at onset 
of metastatic disease. However, substantial changes in the genetic composition occur spatially and over time. It is 
therefore plausible that the expansion of aggressive driver clone(s), and emergence of relevant sub-clones, corre-
late with development of incurable disease and potential therapeutic resistance50–53. We were able to study these 
patterns in the mutational profile of patient REACT-10 for whom in addition to the primary tumor, four distinct 
metastatic specimens were available for mutational analysis. Our analysis revealed a similar mutational signature 
profile for the two liver metastases that was different from those observed in lung metastases. Furthermore, driver 
gene mutations were constantly present with high frequency in both liver lesions, a pattern which was not the 
same in lung metastatic tumors. Given that the liver metastases are at the two ends of the disease course in this 
patient, our results suggest that while two liver metastases were most likely originated from a common cell cluster 
in the primary tumor, the disseminated cells that formed the second liver metastasis experienced a dormant phase 
or a much slower growth rate before manifesting. The original seeding clusters may have resided in the same 
region within the primary tumor or may originate from different regions. The latter can be explained by ‘early cell 
mixing’ phenomenon, which has recently been shown for CRC54. These findings highlight the complex nature 
of evolution of metastatic colorectal cancers, and the importance of dormancy in this context. The mechanisms 
that underlie tumor dormancy and reactivation in metastatic CRC are not well known; however, a recent study 
suggests that non-genetic factors including chemotherapy play key roles here55.

Although presence of KRAS mutations using standardized clinical techniques may predict for resistance 
to anti-EGFR therapy, responses in KRAS wild-type tumors are not universal (single-agent response rates of 
10–41%)2,56,57. Reasons for this are incompletely understood. Use of alternative technologies may detect low-level, 
or less frequent, KRAS mutations of uncertain clinical significance, undetectable by standard direct-sequencing 
and may also detect regional intratumor heterogeneity possibly directing treatment resistance58–60. Use of 
ultra-deep sequencing in our patient cohort ensured high sensitivity for KRAS and additional driver mutation 
analysis and permitted accurate quantification of mutant alleles in each specimen, necessary to study dynamics 
of mutational patterns throughout disease course. However, sampling was limited to a single region within each 
tumor specimen, precluding the evaluation of geographic heterogeneity within each lesion.

Data from our patient cohort highlights tumors lacking known clinically-relevant KRAS mutations with a 
complex, heterogeneous mutational landscape characterized by the presence of non-RAS mutations, as well as 
other KRAS mutations of uncertain clinical significance. We observed in tumors of three out of seven patients 
wild-type for KRAS codon 12 and 13, that APC was affected by protein-truncating mutations, an early event in 
CRC tumorigenesis61. Additional research including larger number of samples is warranted to investigate the 
mutational landscape of tumors that lack KRAS codon 12 and 13 mutations.

Sub-classification of CRC has been challenging and, despite the identification of a number of prognostic sub-
groups62,63, understanding of key driver mutations remains critical for optimal treatment of metastatic CRC. 
As there is greater understanding of the molecular landscape of CRC and as non-invasive methods of molecu-
lar testing become more frequently ultilised64,65 targeted ultra-deep sequencing of driver mutations provides a 
powerful tool to monitor tumor behavior in clinic, and to identify recurrent lesions, molecularly distinct from 
primary tumors. This technique demonstrates high sensitivity for mutation detection and its use in this study 
has confirmed the persistence of clinically-relevant mutations between primary tumor and metastatic lesions. 
Additionally, this work has highlighted the impact of latency and systemic treatment pressure effects in the evolu-
tion of metastatic CRC lesions, resulting in modulation of mutation frequency for driver mutations. By enhancing 
our knowledge about the behavior of driver mutations, these findings may have translational value for future 
clinical management of patients.
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