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Purpose: Our goal was to improve and standardize the procedure for subretinal injection of mouse eyes. Also, we wished
to optimize conditions for electroporation of retinal pigment epithelium (RPE) cells in the mouse eye with naked plasmids.
Methods: Mouse eyes were injected subretinally with reporter plasmid DNA, nanobeads, or buffer. A blunt needle was
introduced across the cornea, through the pupil, into the vitreous, until it made contact with the neural retina. Gentle
pressure was applied to the needle, forcing it to puncture the retina and enter the subretinal space. Fluid was injected
subretinally, raising large blebs evident on the mouse fundus. Subretinal injection surgery and outcomes were monitored
and evaluated by video recording. VidisicR aided in fundus examination of the blebs. Pores in RPE cells, across which
the plasmid in the fluid could diffuse, were created by several short electrical bursts. Expression of the delivered gene,
tdTomato, in the plasmid was examined under fluorescence microscopy to identify targeted cells. Electroporation
conditions were varied from 0 to 200 V, 5 to 10 pulses, 0.1 ms to 100 ms duration of each pulse, and a space of 1.5 to 2
mm between electrodes on the cornea and sclera.
Results: A critical sign of surgical success was the appearance and persistence of three large blebs in the mouse eye. This
was illustrated by video recordings from two different systems. Application of VidisicR to the cornea made immediate
examination of the fundus possible at the end of the surgery. An 80% success rate was readily achieved by following this
method. Once a successful subretinal injection technique was established, electroporation conditions were evaluated.
Parameters of 50 V, 1 ms pulse duration, 5–10 pulses, 1 s apart and electrodes spaced 1.5–2 mm apart with the anode
placed on the sclera in the vicinity of the blebs produced a tight pattern of RPE transfection at approximately 30%
efficiency.
Conclusions: A standardized surgical method and a fast distinct indicator of successful surgery were essential to
establishing a gene delivery system based on subsequent electroporation. With the surgery better controlled,
electroporation was adequate to transfect a substantial number of RPE cells in a defined position in the globe.

The subretinal space is an excellent target for drug
delivery [1-5] and gene therapy purposes [6-21]. This is
because subretinal delivery places injected material in contact
with the plasma membrane of the photoreceptor (PhR) and the
retinal pigment epithelium (RPE) cells, and subretinal blebs
formed in that process regress quickly. Subretinal injection
surgery is commonly used clinically and has been
demonstrated in many animal models. The small size of the
mouse eye and the relatively large size of the mouse lens make
the surgery more difficult in mice.

Timmers and coworkers [22] described a subretinal
injection approach into the eyes of rats via a transcorneal
route. Other researchers have used a transscleral, route
entering at the limbus or pars plana, crossing through the
vitreous, penetrating through the diametrically opposite retina
into the subretinal space [23]. Some routes include a
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transscleral-transchoroidal-Bruch's membrane approach
without penetrating the retina [24-26]. These routes are
effective for injecting virus, viral particles, liposomes,
plasmids, drugs, and formulations, or in collecting the
contents of the interphotoreceptor (subretinal) space.
However, the small size of the mouse eye and the comparative
toughness of the sclera increase the risk of accidentally
induced hemorrhages at the ciliary body or during penetration
of the choroid. These hemorrhages cause autofluorescence
and retinal damage, rendering further treatment or
experimentation futile.

External to the RPE cell are four barriers to the delivery
of DNA as a therapeutic agent [27,28]: matrices, dilution,
degradation, and impermeable membranes. The extracellular
matrix of the subretinal space [29] limits convection and
diffusion. Dilution reduces the yield of systemically delivered
drugs, but is ameliorated by placement of the drug
immediately adjacent to the target cell. Drugs may be
degraded or destroyed by enzymes [30]. The hydrophobic
character of the lipid bilayer prevents hydrophilic DNA from
crossing the membranes. If subretinal injections could be
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made reliable in mice, they would obviate many of these
problems by placing DNA immediately adjacent to the RPE
cell.

There are several ways to transfect DNA into target cells,
among them viral or viral-like vectors, spheroplasts or
protoplasts [31,32], liposomes [33,34], physical
(electroporation and sonication) [35-38], chemical (DNA
compaction [39], dendrimers [40], and precipitates—e.g.,
calcium phosphate) [41]. Of these, viral vectors approach
100% transduction efficiency in cultured photoreceptor cells
[17], and electroporation in the range of 80%–90%
transfection efficiency [42]. Other chemical-based agents are
highly successful but may require serum-free conditions
[43], a state that is impossible in vivo. In this article, we
focused exclusively on electroporation as a simple mechanism
to deliver DNA to the RPE cell.

Internal to the cell, various barriers prevent the transport
of DNA into the nucleus. Entry to the nucleus can only be
gained by traversing several subcellular compartments, each
with specific barriers to diffusion, movement, and
permeability. The first major barrier is the sorting mechanism
by which cells separate internalized materials into degradative
pathways in lysosomes or the proteosome. Defenses against
viral or bacterial attack [44] act as barriers to therapeutic
vectors. The nuclear membrane and nuclear pore complex
block entry of large molecules that lack nuclear localization
signals. Once in the nucleus, episomal DNA can be inactivated
[45]. Finally, the cell can undergo apoptosis as a last resort
against delivery of drugs or DNA [46]. All these barriers must
be overcome for efficient gene therapy. Electroporation
circumvents several barriers by delivering DNA directly
across the plasma membrane into the cytosol. Delivery from
the cytosol into the nucleus is diffusion limited following
naked DNA delivery by electroporation.

Chalberg and coworkers [47,48] recently demonstrated
improved transfection efficiency in chick chorioallantoic
membranes and living rabbit eyes by using shorter pulses of
higher voltages compared to previously reported
electroporation conditions. We took a similar approach. As a
second-generation gene therapy strategy, electroporation is
inexpensive, easy to replicate, harmless under proper
conditions, robust across widely different eye diseases and eye
tissues, successful [36,37,42], already in use clinically for
drug delivery [49], and rapid [50,51]. We found
electroporation to work erratically in mice, because of the
delicacy of subretinal injection. In standardizing the method
of Timmers and coworkers [22], we found it to consistently
work well, once we added an evaluation of the fundus to the
procedure.

In this article, we present videos of the surgical technique
so that others can more readily learn and repeat our approach
and that of Timmers et al. [22]. Given this more reliable
surgery, it was possible to test the efficacy of subsequent

techniques and treatments performed after the surgery. We
were able to optimize electroporation to deliver plasmids to
RPE cells. We present these conditions and show high-level
reporter gene expression from plasmids in the RPE of the
living adult mouse. The expression levels might be sufficient
for gene therapy purposes.

METHODS
Mouse husbandry: Mice were used according to ARVO
guidelines and as approved by the Emory Institutional Animal
Care and Use Committee. C57BL/6, 129/Sv, and Balb/C,
between 1 and 4 months old at time of surgery, were used.
Rpe65 knockout mice on a C57BL/6 background were used
in several control experiments. Mice were housed at 23 °C in
facilities managed by the Emory University Division of
Animal Resources and given standard mouse chow (Lab Diet
5001; PMI Nutrition Inc., LLC, Brentwood, MO) and water
ad libitum. They were maintained on a 12 h:12 h light-dark
cycle, with daytime lighting ranging 200–750 lm outside the
cage depending on lower, middle, or top shelf position of the
cage rack. After experimentation, mice were euthanized by
CO2 asphyxiation.
Dissecting microscope systems: Subretinal injections were
performed using one of three different dissecting microscope
systems, the first being a Seiler Askania SMC4 stereo
binocular microscope (Georgia Instruments, Inc., Roswell,
GA) with a halogen fiberoptic ring light (Fiberlite Model 180;
Dolan-Jenner, Inc., Boxborough, MA). This system did not
include a video camera. The second system was a Wild-
Heerbrugg M691 stereo binocular microscope (Leica
Microsystems, Bannockburn, IL) fitted with a Hitachi KP-
D20BU color CCD video camera (Hitachi, Tokyo, Japan) and
a Panasonic DMR-E95H DVD recorder (Panasonic
Electronic Devices, Knoxville, TN). The third system was an
Olympus SZX2-ZB16 stereo microscope (Hunt Optics;
Pittsburgh, PA), which was equipped with a ring light source
(Schott; Auburn, NY), and a Panasonic GPUS932HT HD
Video camera (Hunt Optics and Imaging) to record subretinal
injections. The camera was interfaced to an KONA LHe HD-
video capture card (AJA Video Systems, Grass Valley, CA)
installed in a Mac Pro (Apple Computer, Cupertino, CA)
running OSX Leopard 10.5.3, and the videos were edited with
Final Cut Pro (version 6; Apple Computer).
Surgical equipment and instruments: A NanoFil™ Sub-
microliter injection system with a UMP-II microsyringe pump
and Micro4 controller with a footswitch was procured from
World Precision Instruments (WPI, Sarasota, FL). A heating
pad and pump were used to maintain the mice at 37 °C during
anesthesia (T/Pump TP500; Gaymar, Orchard Park, NY).
Also obtained from WPI were beveled 34 gauge needles
(catalog number NF34BV-2) and curved forceps (catalog
number 15915). Most other incidental equipment and tools
were from Fisher Scientific (Pittsburgh, PA) or VWR (West
Chester, PA). Dr. Mann Pharma, Berlin, Germany, distributes
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VidisicR Augengel (catalog number 1–19006), a transparent
clear ocular hydro-gel, which contains high molecular weight
polyacrylic acid. It was the kind gift of Dr. Philipp Lirk,
Department of Anesthesiology and Critical Care Medicine,
Medical University Innsbruck, Austria.
Surgical technique: Sterile surgical technique was employed
for all surgeries, which were performed between 8:00 AM and
6:00 PM (one hour after lights on to one hour before lights
off). Fluid lines, surgical instruments, and needles were
sterilized by repeated rinsing with 70% ethanol and sterile
water. The 34-gauge beveled needle could be used 15 to 20
times before replacement.

Mice were anesthetized with 80 mg ketamine and 12 mg
xylazine per kilogram bodyweight (K-113; Sigma-Aldrich,
St. Louis, MO) and achieved adequate anesthesia in
approximately 5 min. Each mouse was kept on a 37 °C pad
after it was anesthetized, during and after surgery. The cornea
was topically anesthetized with one drop of proparicaine
(proparacaine hydrochloride ophthalmic solution USP, 0.5%;
National Drug Code, [NDC] 17478–263–12; Akorn Inc.,
Buffalo Grove, IL). The pupil was dilated with one drop of
tropicamide (tropicamide ophthalmic solution 1%; NDC
61314–355–01; Falcon Pharmaceuticals, Ft. Worth, TX) and
was usually fully dilated within 90 s. If necessary, another
drop of tropicamide was placed on the cornea should the pupil
not adequately dilate in that time. After dilation, it usually took
about 90 s to complete the surgery.

The mouse was positioned with its nose pointing away
from the surgeon and its left eye facing up toward the ring
light and the microscope. A drop of the carbomer eye gel
VidisicR was placed on the mouse cornea. A 22×40
microscope coverslip was grasped by hand and adjusted on
the VidisicR eye gel in such a way that the fundus, its blood
vessels, and the optic nerve head could be easily seen. This
served as a means to assess the condition of the eye before
injection and as a comparison for the postoperative condition
of the retina. The coverslip was removed before the surgery
was started.

Mice were not immobilized during the surgical
procedure. Instead, after each mouse was placed on a heating
pad, its left eye was grasped with curved forceps held in the
surgeon's left hand so that the eye was slightly proptosed from
pinching of the forceps. A 34 gauge beveled needle, held in
the surgeon’s right hand, was used as a lance to make a full-
thickness cut through the cornea near the limbus, penetrating
upward into the anterior chamber at an oblique (nearly
tangential) angle. It was found that some tissue stretching
allowed the wound to effectively reseal itself following
removal of the needles. The beveled needle was removed and
replaced with a blunt 35 gauge needle that was attached to an
injection system (WPI). The tip of the blunt needle was
advanced into the anterior chamber until it was centered on
the optical axis. With a sweeping motion, the needle tip of the

needle was moved through the pupil, around the lens, and into
the vitreous. While a rare occurrence, if the lens were nicked,
the surgery was abandoned. There was no evidence of
displacement of the lens following surgery, even though it
would seem that some of the zonules of Zinn ought to be
damaged.

The needle tip was advanced to the retina opposite to the
puncture site until it was but a few tip diameters away from
the optic nerve head. The lens magnified the view of the
needle. A gentle amount of pressure (the touch of which must
be learned by experience) was applied to penetrate the neural
retina into the subretinal space, but not so much that the tip
penetrated or damaged the RPE sheet. Blood flow into the
vitreous meant the tip pressure was too great. A bolus in the
vitreous indicated the pressure was not enough and the
injection had not filled the subretinal space. The nanojector
system was set to deliver 1000 nl at a rate of 170 nl/sec, which
allowed for acceptable filling of the subretinal space. It can
be useful for an assistant to press the injection button on the
face of the nanojector, or alternatively a foot-pedal can be used
to activate the microinjector pump. Faster or slower injection
rates have not been systematically investigated, but this rate
provided acceptable filling of the subretinal space in our
hands. The needle was left in position for another 5–10 s to
allow pressure in the injection system to equilibrate with the
eye pressure and then removed by pulling backwards at a slow
pace to allow the hole in the retina to reseal and to avoid
damaging the lens, iris, and corneal endothelium during
removal. After surgery more of the VidisicR gel was placed on
the eye, and fundus was examined for the presence of blebs.
Triple antibiotic ointment (Taro Pharmaceuticals, Inc.,
Hawthorne, NY), which contains bacitracin, neomycin
sulfate, and polymyxin B, was placed on the eye as per ARVO/
IACUC guidelines. The mouse was kept on a 37 °C heating
pad until it was awake, then it was transferred to recover in a
cage by itself for 1 to 2 h. Afterwards, it was moved to its
home cage and cage mates until analysis, usually 3 to 4 days
after treatment.
Worksheet: A record of the procedure was kept. Documented
were ear number (ear tags from WPI) of the mouse, date of
birth, sex, amount of anesthesia, bleb size (small, medium, or
large), and number of blebs. Also recorded were any
complications including hemorrhage, lens damage, corneal
clouding, or the presence of air bubbles.
Reporter gene plasmid: The base vector was the mammalian
expression vector pVAX™200-DEST (Invitrogen, Carlsbad,
CA). tdTomato cDNA was PCR amplified from pRSETB-
tdTomato with primers bearing AttB sites and incubated with
BP ClonaseII and the pVAX™200-DEST plasmid. The
resulting reporter expression plasmid, called pVAX-
tdTomato [52], contained the CMV Immediate Early
promoter driving expression of tdTomato. Located on the 3′
flanking side of the tdTomato cDNA was a bovine growth
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hormone poly(A) signal. The plasmid contained the
Kanamycin resistance gene for selection and growth. A map
of the plasmid is shown in Figure 1. This plasmid was a kind
gift from Dr. Ton N.M. Schumacher of the Department of
Immunology, The Netherlands Cancer Institute, Amsterdam,
The Netherlands. Plasmid was isolated from transformed
DH10B Escherichia coli grown overnight in Luria broth using
a Qiagen maxi-prep kit following the manufacturer's protocol.
An endotoxin-free kit was not needed for these experiments.

Sample preparation: Plasmid DNA was resuspended in
nuclease-free sterile water at 2 mg/ml. The plasmid solution
was centrifuged at 10,000x g for 5 min to sediment any
particulates from the solution that might clog the 35 gauge
needle. This was done immediately before loading the needle
and injection syringe.

Quantum dots with a 600 nm fluorescence emission
maximum (EviTags, E2-C11-NF2–0600; Evident
Technologies, Troy, NY) were injected as the stock
preparation. These dots have a tendency to aggregate, and the
aggregates can clog a 35 gauge needle and tubing in the
injector system.
Electroporation: Immediately following subretinal injection,
any plasmid-treated mouse eyes or control (vehicle only) eyes
were subjected to electroporation. The electroporation source
was a commercial square wave generator (BTX model
ECM830; Harvard Apparatus, Holliston, MA). Electrodes

Figure 1. A map of the expression plasmid, pVAX-tdTomato. This
expression plasmid was created [52] by inserting tdTomato cDNA
into the pVAX™200-DEST plasmid (Invitrogen). The CMV
Immediate Early promoter drives expression of tdTomato. Located
on the 3′ flanking side of the tdTomato cDNA is the bovine growth
hormone poly(A) signal. The plasmid bears the Kanamycin
resistance gene, the pUC origin of replication, and attB sites.

were made by wrapping platinum-iridium 20 gauge wire
(catalog number 50822164; Fisher) around a sharpened pencil
tip, creating a 1.5 to 2 mm loop. The loops were clipped to
small test-jumper leads (catalog number 278–001; Radio
Shack Corporation, Fort Worth, TX) and thence to the BTX
electroporator. One platinum loop was positioned directly
underneath the retina injection site on the scleral surface of
the mouse globe, and the other loop was positioned
diametrically opposite from the injection site. The electrodes
were spaced roughly 1.5 to 2 mm apart. The loop underneath
the injection site served as the positive (anodal) electrode to
drive the negatively charged plasmid DNA toward RPE cells.

Optimal conditions and minimum requirements were
investigated by varying the voltage, pulse length, number of
pulses, and number of pulse trains. An optimum was found
with 50 V, 10 pulses, 1 ms pulse duration, 1 s interval between
pulses, and one pulse train. The range of conditions tested
were: 0.1 ms to 100 ms (0.1, 0.25, 0.5, 1, 10, 25, 50, and
100 ms) for pulse length, 0 to 200 V for potential difference
(0, 5, 8, 10, 20, 25, 30, 40, 50, 70, 80, 100, 150, 200 V), 5, 10,
and 20 pulses, 0.125 and 1 s interval between pulses, and one
or two pulse trains. Typical controls included either omitting
plasmid (vehicle-only subretinal injection) or omitting
electroporation in different mice. The contralateral eye served
as the uninjected control in most mice.
Analysis of in vivo RPE transfection: A tight pattern of heavy
reporter gene expression (as evidenced by fluorescence
focused in RPE cells directly over the anode in the RPE sheet)
was considered to be an optimal result. Treated and control
eyes were harvested from 1 to 14 days after injection. Reporter
gene expression was examined by cutting frozen sections of
the globes through the center of the eye, the optic nerve head,
and the center of the cornea in a superior-inferior plane [53,
54] or by creating flatmounts of the entire eyecup [55]. The
eyes were fixed in 10% buffered formalin (10% buffered
formalin phosphate; catalog number SF100–4; Fisher
Scientific) for 30 min on ice, and then rinsed three times in
cold PBS for 5 min each.
Frozen sections: Eyes were harvested following CO2

asphyxiation of the mouse. The intact eye was fixed for 30
min in ice-cold 10% buffered formalin (Fisher Scientific),
rinsed for 5 min three times in ice-cold Dulbecco’s PBS
(dPBS; product number 14200; Invitrogen), and transferred
to 20% sucrose in dPBS. After about 15 min, the eye began
to sink, and it was dipped three times in a 1:1 mixture of 20%
sucrose:tissue freezing medium (Jung; Leica Microsystems,
order number 0201 08926, distributed by Vashaw Scientific,
Inc., Norcross, GA). The eye was oriented in a cryomold
containing 0.5 ml tissue freezing medium and frozen slowly
on a plastic canoe floating on liquid nitrogen, and stored at
−80 °C until sectioning. Samples were cut at 8 μm; every fifth
section was taken on a Leica CM1850 cryostat set to −22 °C
(Leica Microsystems). Sections of the globes were cut through
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the center of the eye, the optic nerve head, and the center of
the cornea in a superior-inferior plane [53,54,56] and
collected onto Fisher superfrost microscope slides. Slides
were stored at −80 °C until staining.
Nuclear staining: For DAPI staining of nuclei, slides were
removed from the −80 °C freezer and dried under a fan for 30
min. Slides were dipped in dPBS, and about 25 μl Vectashield
mounting medium with DAPI (catalog number H-1200;
Vector Laboratories, Inc., Burlingame, CA) were added, and
a coverslip placed on top. For Yo-Pro-1 (Invitrogen) staining
of nuclei, sections were air-dried and incubated with 4 μM
Yo-Pro-1 stain (diluted with dPBS from a stock solution of
1 mM in DMSO) for 1 h, then mounted in Vectashield Hardset
(H-1400; Vector Laboratories). Slides were then examined
under confocal microscopy.

Antibody staining of RPE65: The mouse antibody PETLET
[57] was used at a 1:500 dilution in 1% BSA and dPBS.
Sections were treated at 4 °C overnight. The primary antibody
was washed off three times in dPBS, and a rabbit anti-mouse
secondary antibody labeled with AlexaFluor-488 was applied
at a dilution of 1:2000 and incubated at room temperature for
2 h. The excess secondary antibody was rinsed off with three

changes of dPBS, and the section was mounted in Vectashield
Hardset (Vector Laboratories). Rpe65 knockout mouse eye
sections were used as negative controls with this antiserum.
Confocal microscopy: Confocal microscopy was performed
using a Nikon Ti inverted microscope equipped with a C1-
plus confocal scan head and filter-based detector and 402 nm
diode, argon gas, 561 nm diode and 638 DPSS lasers (Nikon
Instruments, Melville, NY). The software used to capture the
images was Nikon EZ-C1 Gold version 3.60. DAPI was
excited using a 402 nm laser line, and emissions were filtered
using a 450/35 and 675/50 dual bandpass filter. TdTomato
was excited using 561 nm laser line and emissions were
filtered using a 605/75 bandpass filter. AlexaFluor-488
(Invitrogen) and Yo-Pro-1 (Invitrogen) fluors were excited
using the argon gas 488 nm laser line and emissions were
filtered through a 515/30 bandpass filter.
Apoptosis detection: Cells were stained for detection and
quantification of apoptotic cells. A DeadEnd TUNEL kit
(product number G3250; Promega, Madison, WI) was used
according to the manufacturer’s instructions.
Flatmounting: The eyecup flatmount included all the cornea
and sclera, the neural retina and uveal tract, but the lens was

Figure 2. The subretinal injection technique. A: Position of the 34 gauge beveled needle is shown nearly tangential just before lancing the
cornea. B: This schematic illustrates the position of the 35 gauge blunt needle after puncturing the neural retina and partially inflating the
interphotoreceptor space (the subretinal space) to produce subretinal blebs. C: Presented is a still image from a video illustrating penetration
of the cornea. D: This panel shows the positioning of the 35 gauge blunt needle in the center of the anterior chamber. E: The 35 gauge needle
penetrates through the retina into the subretinal space. F: The 35 gauge needle is removed from the vitreous after subretinal injection of
quantum dots. A small number of quantum dots are evident in the vitreous that generate a reddish-orange color. G: Illustrated is a fundus
before subretinal injection. The retinal vessels can be readily detected in the fundus image. A ruddy red background color can be observed
before injection. H: Shown is the fundus immediately after subretinal injection. The positions of three blebs surrounding the optic nerve head
are located at clock face positions 4, 8, and 11. Each bleb appears puffy and gray in color with red vessels between the blebs. The optic nerve
head is nearly centered in the image of the fundus. The imaged mouse eyes are about 3 mm in diameter.
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removed [10,58]. A puncture was made in the cornea with a
27 gauge needle, and iridectomy scissors were used to make
four to six radial cuts, starting at the center of the cornea, and
extending toward the optic nerve. If necessary, a fresh razor
blade or disposable cryotome blade was used to extend the
initial cuts started with the iridectomy scissors. The flattened
eyecups were placed on microscope slides in 100 μl of dPBS.
This solution kept the tissue moist before and in between
staining steps. These staining solutions were pipetted on and
off with handheld pipettors, but otherwise did not differ from
staining procedures for frozen sections.

Fluorescence detection of reporter gene expression:
Detection of reporter gene expression was conducted by
fluorescence microscopy. The tdTomato reporter gene has an
excitation optimum at 395 nm and a lesser peak at about 460–
490, an emission maximum at 581 nm. Compared to other
naturally fluorescent proteins, tdTomato has reduced
photobleaching and provides excellent fluorescence [59].
Epifluorescence microscopy was used to detect this red
fluorescence. For the photomerged flat mounts, we used an
inverted microscope (Diaphot 300; Nikon Instruments) with
a triple-bandpass filter cube (DA/FI/TX-B; Semrock Inc.,
Rochester, NY) and a ProgRes CF CCD camera (Jenoptik
Laser Optik Systeme GMBH, Jena, Germany). When we
found an area of interest, we used the aforedescribed confocal
system to obtain a detailed image of the RPE cells expressing
the tdTomato.

Figure 3. Subretinal injection by transcorneal route. This video was
created on a Wild-Heerbrugg dissecting microscope equipped with
a ring light and a standard definition CCD video camera. Double-
click on the image to play the video. Note that the slide bar at the
bottom of the quicktime movie can be used to manually control the
flow of the movie. A representative frame from the movie is included.
This image illustrates the transcorneal puncture.

RESULTS
Basic subretinal injection procedure and videos: Figure 2
provides static images of the subretinal injection technique.
Two videos of the surgical procedure are illustrated in Figure
3 and Figure 4. These videos were made with two separate
dissecting microscopes and two different video cameras that
allow a comparison of contrast, illumination, and depth of
field. These videos and images (Figure 2, Figure 3, and Figure
4) illustrate the successful surgery and injection procedure,
highlighting the correct techniques.
Potential pitfalls: The costs (in time, effort, and mental
energy) associated with optimizing this procedure can be
significant. Table 1 presents some of the problems we

Figure 4. Subretinal injection by transcorneal route. This video was
created on an Olympus dissecting microscope equipped with a ring
light and an HD video camera. Double-click on the image to play the
video. Note that the slide bar at the bottom of the quicktime movie
can be used to manually control the flow of the movie. A
representative frame from the movie is included. This image
illustrates the transcorneal lance.

TABLE 1. TROUBLESHOOTING GUIDE FOR SUBRETINAL INJECTION.

Problem Probable cause Solutions
Lens cloudy Lens capsule nicked during

surgery
Avoid the lens.

No blebs Not penetrating the retina Press a little harder.
No blebs Torn retina or retina hole;

fluid leaks out quickly into
vitreous

Penetrate retina in a single
motion.

No blebs or a poorly inflated
bleb

Fluid leaks out quickly into
vitreous

Pause for 5–10 s before
removing the blunt needle
from the subretinal bleb. This
allows pressure equilibration.

Blood Penetrating into the choroid Press gently.
Blood Nicking the ciliary body Sweep closer to lens.
Cloudy cornea Eye was not kept moist

before surgery
Apply lubricating eye drops
between proparicaine and
tropicamide application.

Air bubbles Air lines or solutions not
degassed

Degas solutions. Flush the
lines and prime them with
water before filling with
delivery solution.

This table summarizes a few of the common problems that
have been encountered while attempting subretinal injection
of the adult mouse eye.
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encountered with the injection technique and solutions we
found.
Signs of a successful procedure: Careful examination of the
adult mouse fundus, after surgery, was an easy way to evaluate
the success or failure of the injection. In most cases, the fundus
could be observed directly through the dissecting microscope
after removal of the injection needle, but on occasion a little
more VidisicR needed to be applied to the injected eye, or a
coverslip had to be placed in contact with the gel.

Three blebs underlying the neural retina was a sign of
proper inflation of the subretinal space in the adult mouse eye.
These blebs were clearly visible, and they demonstrated that
the injected material was well confined within the subretinal
space. We did not observe any cases of more than three blebs
being formed. Eyes with only one or two blebs were usually
accompanied by evidence of a torn or damaged retina, as seen
on funduscopic examination. Mice without three blebs were
excluded from experimental test groups, and the injection was
considered unsuccessful. There are several causes of incorrect
inflation of the subretinal space: 1) material was injected into
the vitreous; 2) fluid rapidly leaked out of the subretinal space
into the vitreous through a retina hole; 3) retina was hopelessly
torn; 4) material was injected elsewhere; 5) pump did not
operate correctly; 6) needle was clogged; or 7) material was
injected suprachoroidally or subchoroidally. Evidence of
blood in the vitreous or aqueous, or nicking of the lens were
other indicators of problems, and mice with these were
rejected as well. All signs could be readily observed during
fundus examination.
Quantum dots: The boundaries of the injection site were
mapped with nondegradable nanoparticles that were injected
into the subretinal space. The blebs raised by injection
regressed within 24 h, and the eyes harvested. Frozen sections
were taken to examine whether the quantum dots were
confined to the subretinal space (Figure 5). A great amount of
red fluorescence was present in the subretinal space. Only
small numbers of quantum dots were seen in locations other
than the subretinal space, suggesting little leakage from the
site of injection. These included small numbers in the optic
nerve and a few dots near the initial puncture in the cornea. A
small number of dots were found in the vitreous. In the
location of the resorbed bleb, the outer nuclear layer, inner
nuclear layer, and ganglion cell layer all exhibited
qualitatively normal thicknesses. Figure 5D shows a close-up
of the retina, subretinal space, and the RPE. The quantum dots
(red fluorescence) seen in this image were apparently
internalized (perhaps by phagocytosis and endocytosis) into
the RPE cells. The nuclei had been stained with Yo-Pro-1,
which stains nuclei green (Figure 5D). These experiments
with quantum dots established the boundaries of the subretinal
injection site, a comparative absence of leakage out of the
bleb, and provided a long-term marker of the deposition site.
Optimized expression of tdTomato: Once standardized
conditions for the subretinal injection were established, it was

possible to systematically examine the efficacy of gene
delivery by electroporation into the RPE cells in the adult
mouse eye. In Figure 6, we illustrate the technique and optimal
electroporation conditions. Figure 6C shows a tightly focused
cluster of RPE cells that express tdTomato. Close-ups (Figure
6D) of this tight patch revealed about 30% of the cells were
red. The polygonal pattern of RPE cells was observed in both
transfected and nontransfected cells, and there was no
characteristic bias in the transfection of cells of lesser or
greater polygonality. Figure 6E,F show the red fluorescence
illuminating polygonal or cobblestone-like cell borders,
characteristic of RPE cells. Cross-sections (Figure 7) revealed
the red cells to be in the RPE cell layer and to be the size of
RPE cells, subtending about 50 nuclei in the outer nuclear
layer.

Tissue death under these optimized conditions was
examined (Figure 8). A limited number of apoptotic cells were
detected as reflected by punctate green fluorescence in the
outer nuclear layer in cross-sections. No green nuclei were
detected in the RPE cell layer.

Several parameters of electroporation were varied to
deliver pVAX-tdTomato and to measure its expression level
(Figure 9 and Figure 10). Conditions resembling those
previously used in other electroporation studies for other
species, and for other ages of mice, were employed (Figure
9). All these conditions revealed expression of tdTomato in
the RPE with some expression in the cornea, ciliary body, and
iris. In some cases, the expression was widely distributed
across the flatmount.

Figure 10 shows the optimization and minimum
requirements of voltage for fixed numbers of pulses and a
uniform pulse duration. Up to 25 V was not sufficient to
generate any tdTomato expression. A range of 40 to 70 V was
sufficient. At 100 V some tissue damage occurred and
expression extended into the cornea, ciliary body, and iris.
Pulses of 1 ms produced a tightly confined area immediately
overlying the bleb and the anode (Figure 10). There seemed
to be a higher density of RPE cells that were transfected within
this confined area, suggesting that shorter duration pulses
helped to create a high level of transfection and lower cell
death close to the anode. A third variable was the number of
pulses, either 5 or 10. There was little difference between the
two at longer pulse durations. It appeared that 10 pulses
marked a trend toward more transfected cells under the 1 ms,
50 V condition (Figure 10). More work is needed to discern
whether the number of pulses can be further optimized, and
as a note of caution, each brand of electroporator may have its
own optimal conditions.

Figure 11 shows the expression of tdTomato (red) and the
localization of Rpe65 protein (green) within RPE cells of
wild-type mice. Rpe65 and tdTomato both localized to the
RPE cell. Rpe65 protein and tdTomato accumulated in
slightly different positions within the RPE cell, with the
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Figure 5. Quantum dots in the whole eye after subretinal injection. The mouse was sacrificed 24 h after injection of the quantum dots. This
length of time allowed the three blebs to resorb and the neural retina to return to contact with the RPE sheet. Cryosections were collected and
counterstained with DAPI (to stain all nuclei blue). A: Shown is a composite of numerous images originally collected with a 20X objective.
Images were fused in Photoshop with the Photomerge tool (Adobe Systems Inc., San Jose, CA). The cornea was lanced at clock face position
11, and a small number of quantum dots can be seen in the corneal stroma at the wound site. The retina was punctured between clock face
positions 4 and 5. The bright yellow represents intense fluorescence of highly concentrated quantum dots located in the subretinal space. There
is a continuous gradient of color from bright yellow to purple, indicating successively less fluorescence of the quantum dots in proportion to
their concentration. The quantum dots were confined specifically to the subretinal bleb. The scale bar represents 500 μm. B: A few dots were
found in the optic nerve head and interstitial spaces in the optic nerve, as indicated by the red and purple colors. C: A distinctive gradient of
color from bright yellow to purple is illustrated from right to left within the confines of the subretinal space. The comparative absence of any
color other than blue-stained nuclei in the section suggests that there was no break in the RPE sheet or tear in the neural retina during subretinal
injection. D: Close-up reveals quantum dots phagocytosed within the RPE cells. Quantum dots (red) were detected at the level of the RPE
cells, and the dots surround the Yo-Pro-1 stained nuclei (green) of the RPE cells. This location indicated that the quantum dots were internalized
into the RPE cells. The scale bar represents 50 μm.
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Rpe65 protein in the more apical half of the cell, and the
tdTomato protein found in the more basal and perinuclear
regions.

DISCUSSION
Improvements to subretinal injection: This technical brief
considers some of the difficulties associated with the
combination of subretinal injection and electroporation of a
naked plasmid. The great variability in outcomes of the
subretinal injection in the mouse eye accounted for most of
the overall experimental variability in delivery of genes to the
PhR and RPE cells when subretinal injection was followed by

electroporation. Here we standardized our injection technique
and demonstrated our current surgical technique in video
form, so that the reader can duplicate and possibly improve
upon our present technique. This technique was successful in
our hands about 80% of the time, but it still required a
significant amount of time to learn. Depending on the amount
of practice and prior surgical skills, we found it took 50–100
surgeries to become proficient in the injection of the adult
mouse eye. This is in contrast to other researchers’
descriptions of the relative ease [22] and our experience in the
subretinal injection of neonatal rat pups, which we found

Figure 6. Expression of a reporter gene in RPE cells; subretinal injection and electroporation under optimized conditions. Red fluorescence
of tdTomato expression was observed following subretinal injection and electroporation under optimized conditions; individual RPE cells
were resolved. The cells include neighbors with and without tdTomato fluorescence (red). About 30% of the cells in electroporated area were
positive for tdTomato gene expression. This field represents the RPE cells located directly over the anode. TdTomato-expressing cells exhibited
polygonal shapes characteristic of normal RPE cells. The electroporation conditions employed were 50 V, 2 mm gap between electrodes, 1
ms pulse duration, and 10 pulses at 1 s intervals. A: In this schematic of the eye, the bleb is in green and the positive electrode in red. The
black electrode represents the negative electrode. B: Presented is a wholemount of the eye after bleb formation but without voltage applied
to the electrodes. The edges of the flatmounts are outlined in white and form a floret shape. The center of the floret corresponds to the retina
while the outer half of the “petals” correspond to the cornea. C: Shown is a wholemount of the eye following subretinal injection and
electroporation under the optimized condition. A focused patch of red fluorescent cells is evident near the center of the floret. Each dot
represents a separate RPE cell. This region of the retina corresponds to the bleb and the location of the anode. D: High magnification of the
fluorescent region shows about 30% of the RPE cells manifesting tdTomato fluorescence. E: Close-up of a cluster of tdTomato fluorescence
in cells reveals a cobblestone or polygonal shape. F: Shown is a close-up of a single binucleate RPE cell. In B and C, images are about 9 mm
across. The scale bar in D represents 50 μ. The scale bars in E and F represent 25 μm.
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quick and easy to learn. In addition, we found that the
microscope itself was not a major variable in the ability to
conduct the subretinal injection or observe the fundus. Three
microscopes of widely different cost and quality were all used
successfully, provided that there was adequate working
distance from the mouse to the objective of the microscope.

We found the outcome of the surgery could be rapidly
determined postoperatively by examining the adult mouse
fundus. The subretinal injection raised blebs, indicating that
the retina was elevated from the RPE sheet, and the persistence
of these blebs demonstrated the retinal hole had sealed. No
bleb meant that the surgery had failed, and the mouse should
not be used for further experimentation. We expected only one
large bleb, because that is what has traditionally been

observed in subretinal injections of neonatal rat pups.
However, we found the best outcomes were when there were
three blebs, and when the perimeters of these blebs, as viewed
by fundoscopy, were demarcated by major blood vessels.
Rarely did we observe a single large bleb or two blebs. It is
possible that the mouse retina is attached or anchored to the
underlying RPE at spots or streaks due to penetrating blood
vessels or nerves, and these anchor points may cause multiple
blebs instead of one huge one. The blood vessels may be
tougher under tension than the more balloon-like, pliant, and
weaker neural retina, which can distort its shape more and
stretch to inflate the subretinal space between the major
arcades of the blood vessels. Several blebs can then be raised,
each between the boundaries established by the presence of

Figure 7. Electroporation of the mouse eye viewed in cross section. A, B, and C: Demonstrated are the results of representative experiments
with optimized electroporation conditions after the subretinal injection of pVAX-tdTomato [52]. The cross-sections were cut with a cryostat
and nuclei stained with DAPI. A, B, and C all illustrate specific expression of tdTomato in the RPE cell layer. The red RPE cells each appear
to subtend a region of about 50 nuclei in the outer nuclear layer, consistent with the known relationship of each RPE cell supporting numerous
PhR cells. The scale bar represents 50 μm.

Figure 8. Expression and death assessment in the retina following subretinal injection and electroporation of pVAX-tdTomato. A: Cross-
sections of the retina were cut with a cryostat. Red fluorescence was detected in a single cell found in the RPE layer. This image is the red
channel from a confocal image. B: TUNEL staining (green channel) was done in the same section. This panel shows three TUNEL-positive
nuclei in a field of roughly 400 nuclei in the PhR cell layer in the image. C: A and B were merged and show the DAPI channel (blue) of the
same section. The scale bar represents 50 μm.
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Figure 9. Subretinal injection followed by electroporation, and analysis of flatmounts. Four different electroporation programs were employed
to compare qualitatively their efficacy. These conditions resembled the voltage, pulse duration, and train of four different published techniques
to electroporate the retina and RPE sheet in other species and at differing stages of development. A: The conditions were 30 V, 8 pulses, 50
ms duration per pulse, and an interval of 0.1 s between pulses [61]. B: The conditions were 38 V, 5 pulses, 50 ms duration, and 1 s between
pulses [62]. C: The conditions were 50 V, 5 pulses, 50 ms pulse duration, and 0.95 s between pulses [63]. D: The conditions included two
voltage steps per cycle. The first voltage was 150 V for 0.25 ms and then 5 V for 5 ms. This combination of voltages was applied 5 times
[47]. In all four images, cells were transfected and expressed tdTomato in the flatmount. In most cases, tdTomato accumulated in cells of the
cornea, ciliary body, and to a somewhat lesser extent in the RPE. In A, B, and C, there is evidence of red fluorescence in the corneal endothelium.
Some of the expression was off center from the position of the anode. In one case there was some evidence of burn damage. The scale bar
represents 1 mm.
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two stronger blood vessels. It should be noted that bleb
formation is also used as a sign for successful subretinal
injection in human patients [6,7,9,14].

The use of VidisicR helped in the rapid evaluation of the
fundus. It provided enough optical shape that the fundus was
readily apparent. Also, this obviated the need to compress or
distort the shape of the cornea with a coverslip, which would
put pressure on the delicate subretinal blebs. Eliminating the
need for a coverslip increased the percentage of successful
surgeries. Methylcellulose was used occasionally, and it is a
realistic alternative; however, the VidisicR seemed to sag less
and spread less.

Following subretinal injection quantum dots, there was
an absence of fluorescence in the vitreous and intense
fluorescence in the subretinal space (Figure 5). After 24 h, the
quantum dots were detected at the level of the RPE cells, and
the dots surrounded the nuclei of the RPE cells. This location
indicated that the quantum dots were internalized into the RPE
cells, and likely routes of internalization include phagocytosis
and endocytosis. These two routes cannot yet be
distinguished; other routes are possible. The route seems
unlikely to be pinocytosis as the nanoparticles are likely too
large to follow that route. No quantum dots were detected in
cells or interstitial spaces in the choroid or sclera, suggesting
that there was no interruption to the integrity of the RPE sheet.
It is worth noting that to keep the quantum dots dispersed,
1 mg/ml BSA [60] can be added to the suspension, and this

prevents clogging of the needle and tubing (a problem that we
noted).

After electroporation, tdTomato fluorescence was found
in a tight patch of RPE cells nearest to the positive electrode
(Figure 6 through Figure 10). No fluorescence was detected
at the negative electrode. The positive electrode positioned
under the bleb and highly concentrated plasmid are necessary
to achieve delivery of the plasmid into RPE cells and
expression of tdTomato. Under suboptimal conditions,
tdTomato fluorescence was detected in the cornea, ciliary
body, and iris. This result occurred with much longer pulse
durations (25 to 50 ms).

We found that the tdTomato expression was in polygonal
cells characteristic of RPE cells (Figure 6). While there was a
variety of patterns of red fluorescence within each cell (with
distinctive patterns of speckles, dots, and granularity, some
perinuclear and others not) all the cells had a polygonal shape.
In addition, we observed that RPE cells coexpress Rpe65
protein and tdTomato in the same cell (Figure 11), though in
slightly different locations within the RPE cell. This clearly
demonstrated the tdTomato expression to be within RPE cells,
which were the cells that we sought to target. The Rpe65
protein accumulated more on the apical top half of the RPE
cell, while the tdTomato accumulated more basally and more
in the perinuclear region. These patterns may suggest that
Rpe65 partitions to the smooth endoplasmic reticulum, which
is abundant on the apical side of the RPE cell, while tdTomato
may partition to the cytosol. It is not clear why tdTomato

Figure 10. Subretinal injection followed by electroporation at different voltages. In all panels 1 μl 2 mg/ml pVAX-tdTomato in water were
injected and three blebs were raised. Five different voltage settings (0, 25, 40, 70, and 100 V) were used. Electroporation followed with a
constant 1 ms pulse, 1 s interval, and 5 pulses on panels A, C, E, G, and I, and 10 pulses with panels B, D, F, H, and J. In A and B the samples
received 0 V, in C and D, 25 V, in E and F, 40 V, in G and H, 70 V, and in I and J, 100 V. Each panel represents a flatmount of the eye
excluding the lens. The tips of the florets correspond to the center of the cornea, and the central area from the midpoint or greatest bulge of
each petal inwards corresponds to the RPE sheet. The red fluorescence is punctate; each dot corresponds to a single RPE cell. When no voltage
was applied, there was no evidence of tdTomato expression (red). When 25 V was applied, there was no expression of tdTomato; however,
when 40 to 100 V were applied, there was an accumulation of tdTomato fluorescence. The scale bar represents 1 mm.
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expression would be perinuclear. If this protein were to be
overexpressed, it might be prone to binding to cytoskeletal
elements, or it may become a target of degradative pathways
that might compartmentalize it into an aggresome, which has
a perinuclear location.

Once most of the experimental variability due to the
surgical step was reduced, it was possible to focus more
attention on the variability due to changes in electroporation
conditions. Our findings, similar to results from Chalberg and
coworkers [47,48] in rabbit eyes, suggest that shorter pulses
with higher voltages were more efficacious in adult mouse eye
than previous findings in vivo and in vitro in different species,
tissues, and systems. Our results (Figure 6, Figure 7, and
Figure 8) suggest an optimum near 50 V, 5 to 10 1 ms pulses,
and about a 1.5 to 2 mm gap between electrodes placed on the
surface of the sclera and cornea.

In other preliminary experiments (data not shown), we
varied the voltage from 0 to 200 V. A minimum of about 40
V was required before a substantial number of transfected

RPE cells were observed. Voltages from 40 up to 80 V
demonstrated approximately equal numbers of transfected
expressing cells. Voltages beyond about 100 V resulted in
immediate evidence of burn damage and were not tested
further with pulse lengths at 1 ms or greater. Pulse lengths
were varied from 1 ms to 50 ms at different voltages. At 10 ms
or longer, the area of the flatmount that showed evidence of
transfection extended beyond the immediate location of the
electrodes as far as the cornea.

Under less than optimal conditions, in some cases there
was less fluorescence in the area over the anode (Figure 9 and
Figure 10). This suggested that there may have been tissue
damage in the area near the anode, killing transfected cells
before they accumulated much tdTomato signal. The
tdTomato signal in distant areas such as the cornea might
suggest bulk movement of the injected fluid due to rupture of
the subretinal blebs, uneven heating, or convection of fluid
within the eye that could transport the plasmid to ectopic sites
such as the cornea. After such movement, the plasmid could

Figure 11. TdTomato expression and RPE65 antibody staining in cryosections. The images show coexpression of endogenous Rpe65 protein
(green) and tdTomato (red) in RPE cells following subretinal injection and electroporation of the pVAX-tdTomato plasmid. A: Shown is the
red channel. B: Illustrated is the green channel. C: Shown is a composite of the green red and blue (DAPI stained nuclei) channels. D: The
red and green colocalized in the RPE cell layer (yellow) but not completely. E: There were some areas where the green of the Rpe65 protein
was observed more apically in the RPE cells and the red of the tdTomato protein was more basolateral and perinuclear. A white arrow drawn
across the panel represents an in silico section through which the red and green channels were quantified. F: Shown are the relative intensities
of red (tdTomato), green (Rpe65), and blue (DAPI) fluorescence in a plot. The intensities follow the white arrow drawn through several RPE
cells to scale below the image in E. This confocal image was obtained from a mouse eye harvested four days after injection. The RPE cells
have survived treatment and coexpress Rpe65 protein and tdTomato in the same cell, though in slightly different locations within the cell. The
Rpe65 protein accumulated more on the apical top half of the cell, while the tdTomato accumulated more basally and more in the perinuclear
region. The scale bar represents 50 μm.
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be delivered to these tissues by electroporation. An alternate
explanation is that some plasmid is always deposited in these
non-target sites and that long (>1 ms) pulses allow
electroporation to occur further from the RPE target site.

Further experimentation with even shorter pulses and
potentially higher voltages may yield better optimization.
However, these standardized experimental conditions are
adequate for testing other variables such as the utility of DNA
sequences in the plasmid, and other additives that might
improve transfection or maintain the stable expression of the
transfected gene.

ACKNOWLEDGMENTS
This work was supported by the National Eye Institute
(R01EY016470, R01EY014026, P30EY006360,
R24EY017045, T32EY007092), an unrestricted grant to the
Department of Ophthalmology at Emory University from
Research to Prevent Blindness, Inc., the Foundation Fighting
Blindness, Fight for Sight, and the Intramural Research
Program of the National Eye Institute. We thank Dr. Ton N.M.
Schumacher of the Department of Immunology, The
Netherlands Cancer Institute, Amsterdam, The Netherlands,
for the kind gift of the pVAX-tdTomato plasmid used in these
studies.

REFERENCES
1. Yasukawa T, Ogura Y, Sakurai E, Tabata Y, Kimura H.

Intraocular sustained drug delivery using implantable
polymeric devices. Adv Drug Deliv Rev 2005; 57:2033-46.
[PMID: 16263193]

2. Schorderet DF, Manzi V, Canola K, Bonny C, Arsenijevic Y,
Munier FL. Maurer FD-TAT transporter as an ocular peptide
delivery system. Clin Experiment Ophthalmol 2005;
33:628-35. [PMID: 16402957]

3. Maia M, Kellner L, de Juan E Jr, Smith R, Farah ME, Margalit
E, Lakhanpal RR, Grebe L, Au Eong KG, Humayun MS.
Effects of indocyanine green injection on the retinal surface
and into the subretinal space in rabbits. Retina 2004;
24:80-91. [PMID: 15076948]

4. Shen WY, Rakoczy PE. Uptake dynamics and retinal tolerance
of phosphorothioate oligonucleotide and its direct delivery
into the site of choroidal neovascularization through
subretinal administration in the rat. Antisense Nucleic Acid
Drug Dev 2001; 11:257-64. [PMID: 11572602]

5. Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata
Y, Ikada Y, Ryan SJ. Cellular response in subretinal
neovascularization induced by bFGF-impregnated
microspheres. Invest Ophthalmol Vis Sci 1999; 40:524-8.
[PMID: 9950614]

6. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F,
Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi
S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs
J, Dell'Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck
B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe
NJ, McDonnell JW, Auricchio A, High KA, Bennett J. Safety
and efficacy of gene transfer for Leber's congenital amaurosis.
N Engl J Med 2008; 358:2240-8. [PMID: 18441370]

7. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R,
Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler
N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke
FW, Carter BJ, Rubin GS, Moore AT, Ali RR. Effect of gene
therapy on visual function in Leber's congenital amaurosis. N
Engl J Med 2008; 358:2231-9. [PMID: 18441371]

8. Hauswirth WW. The consortium project to treat RPE65
deficiency in humans. Retina 2005; 25:S60. [PMID:
16374340]

9. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S,
Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM,
Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ,
Jacobson SG, Hauswirth WW. Human gene therapy for
RPE65 isomerase deficiency activates the retinoid cycle of
vision but with slow rod kinetics. Proc Natl Acad Sci USA
2008; 105:15112-7. [PMID: 18809924]

10. Berglin LC, Schmack I, Holley G, Nie X, Yang H, Grossniklaus
HE, Edelhauser HF. Human RPE ex vivo 'Flatmount
Technique' for Comparative Morphometric and Tissue
Culture Survival Analysis (Mouse) Using Alizarin Red
Staining, Live/Dead Cell Analysis and Epifluorescent
Microscopy. ARVO Annual Meeting; 2005 May 1–5; Fort
Lauderdale (FL).

11. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S,
Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM,
Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ,
Jacobson SG, Hauswirth WW. Gene therapy restores vision
in a canine model of childhood blindness. Nat Genet 2001;
28:92-5. [PMID: 11326284]

12. Lai CM, Yu MJ, Brankov M, Barnett NL, Zhou X, Redmond
TM, Narfstrom K, Rakoczy PE. Recombinant adeno-
associated virus type 2-mediated gene delivery into the
Rpe65−/− knockout mouse eye results in limited rescue.
Genet Vaccines Ther 2004; 2:3. [PMID: 15109394]

13. Pang JJ, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J,
Noorwez SM, Malhotra R, McDowell JH, Kaushal S,
Hauswirth WW, Nusinowitz S, Thompson DA, Heckenlively
JR. Retinal degeneration 12 (rd12): a new, spontaneously
arising mouse model for human Leber congenital amaurosis
(LCA). Mol Vis 2005; 11:152-62. [PMID: 15765048]

14. Nusinowitz S, Ridder WH 3rd, Pang JJ, Chang B, Noorwez SM,
Kaushal S, Hauswirth WW, Heckenlively JR. Cortical visual
function in the rd12 mouse model of Leber Congenital
Amarousis (LCA) after gene replacement therapy to restore
retinal function. Vision Res 2006; 46:3926-34. [PMID:
16814838]

15. Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L, Pang J,
Glushakova L, Moise AR, Baehr W, Van Gelder RN,
Hauswirth WW, Rieke F, Palczewski K. Pharmacological and
rAAV gene therapy rescue of visual functions in a blind
mouse model of Leber congenital amaurosis. PLoS Med
2005; 2:e333. [PMID: 16250670]

16. Bainbridge JW, Mistry A, Schlichtenbrede FC, Smith A,
Broderick C, De Alwis M, Georgiadis A, Taylor PM, Squires
M, Sethi C, Charteris D, Thrasher AJ, Sargan D, Ali RR.
Stable rAAV-mediated transduction of rod and cone
photoreceptors in the canine retina. Gene Ther 2003;
10:1336-44. [PMID: 12883530]

Molecular Vision 2008; 14:2211-2226 <http://www.molvis.org/molvis/v14/a259> © 2008 Molecular Vision

2224

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16263193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16263193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16402957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15076948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11572602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9950614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9950614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18441370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18441371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16374340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16374340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18809924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11326284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15109394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15765048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16814838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16814838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16250670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12883530
http://www.molvis.org/molvis/v14/a259


17. Dinculescu A, Glushakova L, Min SH, Hauswirth WW. Adeno-
associated virus-vectored gene therapy for retinal disease.
Hum Gene Ther 2005; 16:649-63. [PMID: 15960597]

18. Balaggan KS, Binley K, Esapa M, MacLaren RE, Iqball S,
Duran Y, Pearson RA, Kan O, Barker SE, Smith AJ,
Bainbridge JW, Naylor S, Ali RR. EIAV vector-mediated
delivery of endostatin or angiostatin inhibits angiogenesis and
vascular hyperpermeability in experimental CNV. Gene Ther
2006; 13:1153-65. [PMID: 16572190]

19. Bemelmans AP, Bonnel S, Houhou L, Dufour N, Nandrot E,
Helmlinger D, Sarkis C, Abitbol M, Mallet J. Retinal cell type
expression specificity of HIV-1-derived gene transfer vectors
upon subretinal injection in the adult rat: influence of
pseudotyping and promoter. J Gene Med 2005; 7:1367-74.
[PMID: 15966018]

20. Doi K, Hargitai J, Kong J, Tsang SH, Wheatley M, Chang S,
Goff S, Gouras P. Lentiviral transduction of green fluorescent
protein in retinal epithelium: evidence of rejection. Vision
Res 2002; 42:551-8. [PMID: 11853772]

21. Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D,
Behar-Cohen F. Non-viral ocular gene therapy: potential
ocular therapeutic avenues. Adv Drug Deliv Rev 2006;
58:1224-42. [PMID: 17095114]

22. Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C.
Subretinal injections in rodent eyes: effects on
electrophysiology and histology of rat retina. Mol Vis 2001;
7:131-7. [PMID: 11435999]

23. Price J, Turner D, Cepko C. Lineage analysis in the vertebrate
nervous system by retrovirus-mediated gene transfer. Proc
Natl Acad Sci USA 1987; 84:156-60. [PMID: 3099292]

24. Gekeler F, Kobuch K, Schwahn HN, Stett A, Shinoda K,
Zrenner E. Subretinal electrical stimulation of the rabbit retina
with acutely implanted electrode arrays. Graefes Arch Clin
Exp Ophthalmol 2004; 242:587-96. [PMID: 15197555]

25. Pfeffer B, Wiggert B, Lee L, Zonnenberg B, Newsome D,
Chader G. The presence of a soluble interphotoreceptor
retinol-binding protein (IRBP) in the retinal
interphotoreceptor space. J Cell Physiol 1983; 117:333-41.
[PMID: 6686234]

26. Gerding H. A new approach towards a minimal invasive retina
implant. J Neural Eng 2007; 4:S30-7. [PMID: 17325414]

27. Urtti A. Challenges and obstacles of ocular pharmacokinetics
and drug delivery. Adv Drug Deliv Rev 2006; 58:1131-5.
[PMID: 17097758]

28. Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers
in transscleral drug delivery for retinal diseases. Ophthalmic
Res 2007; 39:244-54. [PMID: 17851264]

29. Grüter O, Kostic C, Crippa SV, Perez MT, Zografos L,
Schorderet DF, Munier FL, Arsenijevic Y. Lentiviral vector-
mediated gene transfer in adult mouse photoreceptors is
impaired by the presence of a physical barrier. Gene Ther
2005; 12:942-7. [PMID: 15772686]

30. Tamkovich SN, Cherepanova AV, Kolesnikova EV, Rykova
EY, Pyshnyi DV, Vlassov VV, Laktionov PP. Circulating
DNA and DNase activity in human blood. Ann N Y Acad Sci
2006; 1075:191-6. [PMID: 17108211]

31. Pachnis V, Pevny L, Rothstein R, Costantini F. Transfer of a
yeast artificial chromosome carrying human DNA from
Saccharomyces cerevisiae into mammalian cells. Proc Natl
Acad Sci USA 1990; 87:5109-13. [PMID: 2195548]

32. Reeves RH, Cabin DE, Lamb B. Introduction of large insert
DNA into mammalian cells and embryos. Current protocols
in human genetics / editorial board, Jonathan L Haines
Jonathan L. Haines, Bruce R. Korf, Cynthia C. Morton,
Christine E. Seidman, J.G. Seidman, Douglas R. Smith. 2001;
Chapter 5:Unit 5.12.

33. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz
M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a
highly efficient, lipid-mediated DNA-transfection procedure.
Proc Natl Acad Sci USA 1987; 84:7413-7. [PMID: 2823261]

34. Langer R. New methods of drug delivery. Science 1990;
249:1527-33. [PMID: 2218494]

35. Tsong TY. Electroporation of cell membranes. Biophys J 1991;
60:297-306. [PMID: 1912274]

36. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH.
Gene transfer into mouse lyoma cells by electroporation in
high electric fields. EMBO J 1982; 1:841-5. [PMID:
6329708]

37. Wong TK, Neumann E. Electric field mediated gene transfer.
Biochem Biophys Res Commun 1982; 107:584-7. [PMID:
7126230]

38. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K,
Hashiya N, Aoki M, Ogihara T, Yasufumi K, Morishita R.
Local delivery of plasmid DNA into rat carotid artery using
ultrasound. Circulation 2002; 105:1233-9. [PMID:
11889019]

39. Boussif O. Lezoualc'h F, Zanta MA, Mergny MD, Scherman D,
Demeneix B, Behr JP. A versatile vector for gene and
oligonucleotide transfer into cells in culture and in vivo:
polyethylenimine. Proc Natl Acad Sci USA 1995;
92:7297-301. [PMID: 7638184]

40. Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat
Biotechnol 2000; 18:33-7. [PMID: 10625387]

41. Gorman CM, Moffat LF, Howard BH. Recombinant genomes
which express chloramphenicol acetyltransferase in
mammalian cells. Mol Cell Biol 1982; 2:1044-51. [PMID:
6960240]

42. Zheng QA, Chang DC. High-efficiency gene transfection by in
situ electroporation of cultured cells. Biochim Biophys Acta
1991; 1088:104-10. [PMID: 1989690]

43. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L.
Dynamic changes in the characteristics of cationic lipidic
vectors after exposure to mouse serum: implications for
intravenous lipofection. Gene Ther 1999; 6:585-94. [PMID:
10476218]

44. Loo YM, Gale M. Viral regulation and evasion of the host
response. Curr Top Microbiol Immunol 2007; 316:295-313.
[PMID: 17969453]

45. Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD,
Scheule RK, Cheng SH. CpG-depleted plasmid DNA vectors
with enhanced safety and long-term gene expression in vivo.
Mol Ther 2002; 5:731-8. [PMID: 12027557]

46. Lockshin RA, Zakeri Z. Cell death in health and disease. J Cell
Mol Med 2007; 11:1214-24. [PMID: 18031301]

47. Chalberg TW, Vankov A, Molnar FE, Butterwick AF, Huie P,
Calos MP, Palanker DV. Gene transfer to rabbit retina with
electron avalanche transfection. Invest Ophthalmol Vis Sci
2006; 47:4083-90. [PMID: 16936128]

48. Palanker D, Chalberg T, Vankov A, Huie P, Molnar F,
Butterwick A, Calos M, Marmor M, Blumenkranz M. Plasma-

Molecular Vision 2008; 14:2211-2226 <http://www.molvis.org/molvis/v14/a259> © 2008 Molecular Vision

2225

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15960597
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16572190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15966018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15966018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11853772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17095114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11435999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=3099292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15197555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6686234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6686234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17325414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17097758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17097758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17851264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15772686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17108211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=2195548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=2823261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=2218494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1912274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6329708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6329708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=7126230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=7126230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11889019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11889019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=7638184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10625387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6960240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6960240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1989690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10476218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10476218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17969453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17969453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12027557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18031301
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16936128
http://www.molvis.org/molvis/v14/a259


mediated transfection of RPE. Proc SPIE Ophthalmic
Technol 2006; 6138:1–9.

49. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj
M. Electrochemotherapy in treatment of tumours. Eur J Surg
Oncol 2008; 34:232-40. [PMID: 17614247]

50. Bier M, Hammer SM, Canaday DJ, Lee RC. Kinetics of sealing
for transient electropores in isolated mammalian skeletal
muscle cells. Bioelectromagnetics 1999; 20:194-201. [PMID:
10194562]

51. Koronkiewicz S, Kalinowski S, Bryl K. Programmable
chronopotentiometry as a tool for the study of electroporation
and resealing of pores in bilayer lipid membranes. Biochim
Biophys Acta 2002; 1561:222-9. [PMID: 11997122]

52. Bins AD, van Rheenen J, Jalink K, Halstead JR, Divecha N,
Spencer DM, Haanen JB, Schumacher TN. Intravital imaging
of fluorescent markers and FRET probes by DNA tattooing.
BMC Biotechnol 2007; 7:2. [PMID: 17201912]

53. Tanito M, Kaidzu S, Ohira A, Anderson RE. Topography of
retinal damage in light-exposed albino rats. Exp Eye Res
2008.

54. Rapp LM, Smith SC. Morphologic comparisons between
rhodopsin-mediated and short-wavelength classes of retinal
light damage. Invest Ophthalmol Vis Sci 1992; 33:3367-77.
[PMID: 1428709]

55. Bodenstein L, Sidman RL. Growth and development of the
mouse retinal pigment epithelium. I. Cell and tissue
morphometrics and topography of mitotic activity. Dev Biol
1987; 121:192-204. [PMID: 3569658]

56. LaVail MM, Gorrin GM, Repaci MA, Yasumura D. Light-
induced retinal degeneration in albino mice and rats: strain
and species differences. Prog Clin Biol Res 1987;
247:439-54. [PMID: 3685038]

57. Redmond TM, Hamel CP. Genetic analysis of RPE65: from
human disease to mouse model. Methods Enzymol 2000;
316:705-24. [PMID: 10800710]

58. Berglin L, Mandell K, Schmack I, Holley G, Grossniklaus H,
Parkos C, Edelhauser H. Reduction of Retinal Pigment
Epithelium (RPE) Background Autofluorescence with Sudan
Black Enhances Visualization of Fluorescently-Labeled
Proteins in ex vivo RPE Flatmounts. ARVO Annual Meeting;
2006 April 30-May 4; Fort Lauderdale (FL).

59. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN,
Palmer AE, Tsien RY. Improved monomeric red, orange and
yellow fluorescent proteins derived from Discosoma sp. red
fluorescent protein. Nat Biotechnol 2004; 22:1567-72.
[PMID: 15558047]

60. Hanaki K, Momo A, Oku T, Komoto A, Maenosono S,
Yamaguchi Y, Yamamoto K. Semiconductor quantum dot/
albumin complex is a long-life and highly photostable
endosome marker. Biochem Biophys Res Commun 2003;
302:496-501. [PMID: 12615061]

61. Kachi S, Oshima Y, Esumi N, Kachi M, Rogers B, Zack DJ,
Campochiaro PA. Nonviral ocular gene transfer. Gene Ther
2005; 12:843-51. [PMID: 15789063]

62. Garcia-Frigola C, Carreres MI, Vegar C, Herrera E. Gene
delivery into mouse retinal ganglion cells by in utero
electroporation. BMC Dev Biol 2007; 7:103. [PMID:
17875204]

63. Matsuda T, Cepko CL. Electroporation and RNA interference
in the rodent retina in vivo and in vitro. Proc Natl Acad Sci
USA 2004; 101:16-22. [PMID: 14603031]

Molecular Vision 2008; 14:2211-2226 <http://www.molvis.org/molvis/v14/a259> © 2008 Molecular Vision

The print version of this article was created on 29 November 2008. This reflects all typographical corrections and errata to the
article through that date. Details of any changes may be found in the online version of the article.

2226

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17614247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10194562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10194562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11997122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17201912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1428709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=1428709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=3569658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=3685038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10800710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15558047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15558047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12615061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15789063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17875204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17875204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=14603031
http://www.molvis.org/molvis/v14/a259

