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Whole-Genome Sequences and Annotation of the
Opportunistic Pathogen Candida albicans Strain SC5314

Grown under Two Different Environmental Conditions
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ABSTRACT The genetic variability of the opportunistic pathogen Candida albicans
is an important adaptive mechanism. Here, we present the whole-genome sequences of
the C. albicans SC5314 strain under two different growth conditions, providing useful in-
formation for comparative genomic studies and further intraspecific analysis.

he fungus Candida albicans is ubiquitously found in the human body and success-

fully colonizes diverse niches, such as skin and urogenital and gastrointestinal
tracts, including internal organs, after tissue invasion and bloodstream dissemination
(reviewed in references 1, 2, and 3). Although part of the human microbiota, C. albicans
causes severe mucosal and bloodstream opportunistic infections in immunosup-
pressed hosts, with nearly 400,000 nosocomial cases worldwide with 46 to 75%
mortality rates (4).

We used the C. albicans strain SC5314, kindly provided to our laboratory by A.
Mitchell in the mid-1990s. This strain is considered a reference strain and was isolated
in 1984 from a candidemia patient (5). Since then, samples of this strain have been
distributed to many laboratories and used in studies worldwide. The genome of one of
these samples was previously sequenced by Muzzey and collaborators (6) using next-
generation sequencing technologies.

Our SC5314 (named SC5314-P0) yeast cells were grown on yeast extract-peptone-
dextrose (YPD) plates (1% wt/vol yeast extract; 2% wt/vol peptone, 2% wt/vol dextrose,
and 2% wt/vol agar), and a single colony was used for overnight growth on YPD broth
at 28°C and 150 rpm. Total yeast DNA was extracted from samples as described
previously (7), and the complete sequencing of mitochondrial and nuclear genomes
was carried out by using the Illumina MiSeq 2 X 300-bp method in paired-end mode.
The libraries were prepared with a TruSeq DNA v2 lIllumina kit according to the
manufacturer’s technical specifications. FastQC v.0.11.4 software (8) was used to eval-
uate sequencing quality. Trimming was performed with the CLC Genomics Workbench
v.7.5.1 (Qiagen) software with a quality score limit of 0.005 and removal of 45 bp and
20 bp from the 5’ and 3’ ends, respectively, and reads smaller than 25 bp were
discarded. Once the quality filters were approved, reads were mapped to the assem-
bly 22 of the reference strain SC5314 (A22-s07-m01-r18) (available at http://www
.candidagenome.org/download/sequence/C_albicans_SC5314/Assembly22/archive/). Du-
plicated reads were removed after mapping and local realignment were carried out
with the Guided Realignment tool (with “force realignment to guidance variants”
selected) implemented in CLC Genomics Workbench v.7.5.1 (Qiagen). Genome anno-
tation was performed with Annotate with the GFF file tool available on the same
software using the corresponding GFF file (version A22-5S05-M04-r02_features_with_
chromosome_sequences.gff). The fraction of the SC5314 genome sequenced was 0.99
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to 1, with an average coverage ranging from 20.85X to 40X, depending on the yeast
nuclear chromosome, while the mitochondrial DNA (mtDNA) was sequenced with an

average coverage of 11,236 X.

We also sequenced the whole genome of the strain SC5314 after 12 weeks of
continuous growth under an oxygen level of 5 to 15% (hypoxia), yeast extract-peptone-
glycerol (YPG) broth (1% wt/vol yeast extract; 2% wt/vol peptone, 2% wt/vol glycerol)
at 37°C, named SC5314-GTH12 (for glycerol, thirty-seven °C, hypoxia, 12 weeks). The
consensus sequence of the SC5314 strain was extracted and used as a reference for the
mapping of sample SC5314-GTH12. Mapping of paired-end reads, after removal of
duplicated reads and local realignment, resulted in an average coverage of 15.9X to
26.8X for the yeast nuclear chromosomes and 1,920X for its mitochondrial genome.
Satisfactory fractions of chromosome sequences were obtained, ranging from 0.98 to

1.00.

Accession number(s). C. albicans sequences obtained in this study have been
deposited in GenBank (https://www.ncbi.nlm.nih.gov/nucleotide/). Accession numbers
are designated separately for both copies of the C. albicans diploid genomes se-
quenced (A and B). The GenBank accession numbers for the sample of strain SC5314-P0
are CP025150 (chromosome 1A), CP025151 (chromosome 2A), CP025152 (chromosome
3A), CP025153 (chromosome 4A), CP025154 (chromosome 5A), CP025155 (chromo-
some 6A), CP025156 (chromosome 7A), CP025157 (chromosome RA), CP025158 (chro-
mosome 1B), CP025159 (chromosome 2B), CP025160 (chromosome 3B), CP025161
(chromosome 4B), CP025162 (chromosome 5B), CP025163 (chromosome 6B), CP025164
(chromosome 7B), CP025165 (chromosome RB), and CP025166 (mitochondrial DNA).
The sample SC5314-GTH12 accession numbers are CP025167 (chromosome 1A),
CP025168 (chromosome 2A), CP025169 (chromosome 3A), CP025170 (chromosome
4A), CP025171 (chromosome 5A), CP025172 (chromosome 6A), CP025173 (chromo-
some 7A), CP025174 (chromosome RA), CP025175 (chromosome 1B), CP025176 (chro-
mosome 2B), CP025177 (chromosome 3B), CP025178 (chromosome 4B), CP025179
(chromosome 5B), CP025180 (chromosome 6B), CP025181 (chromosome 7B), CP025182

(chromosome RB), and CP025183 (mitochondrial DNA).
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