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Ovarian, uterine/endometrial, and cervical cancers are major gynecologic malignancies

estimated to cause nearly 30,000 deaths in 2018 in US. Defective cell cycle regulation

is the hallmark of cancers underpinning the development and progression of the

disease. Normal cell cycle is driven by the coordinated and sequential rise and fall

of cyclin-dependent kinases (CDK) activity. The transition of cell cycle phases is

governed by the respective checkpoints that prevent the entry into the next phase

until cellular or genetic defects are repaired. Checkpoint activation is achieved by p53-

and ATM/ATR-mediated inactivation of CDKs in response to DNA damage. Therefore,

an aberrant increase in CDK activity and/or defects in checkpoint activation lead to

unrestricted cell cycle phase transition and uncontrolled proliferation that give rise to

cancers and perpetuate malignant progression. Given that CDK activity is also required

for homologous recombination (HR) repair, pharmacological inhibition of CDKs can be

exploited as a synthetic lethal approach to augment the therapeutic efficacy of PARP

inhibitors and other DNA damaging modalities for the treatment of gynecologic cancers.

Here, we overview the basic of cell cycle and discuss the mechanistic studies that

establish the intimate link between CDKs and HR repair. In addition, we present the

perspective of preclinical and clinical development in small molecule inhibitors of CDKs

and CDK-associated protein targets, as well as their potential use in combination with

hormonal therapy, PARP inhibitors, chemotherapy, and radiation to improve treatment

outcomes.

Keywords: gynecologic cancer, homologous recombination, cell cycle, cyclin-dependent kinase, ribonucleotide

reductase, cdc25 phosphatase, small molecule inhibitor

INTRODUCTION

Ovarian, uterine/endometrial, and cervical cancers are three major malignancies of reproductive
organs in women in US. It is estimated that 76,470 new cases of uterine and cervical cancers and
22,240 new cases of ovarian cancer would be diagnosed in 2018. However, ovarian cancer is the
most lethal gynecologic cancer accountable for estimated 14,070 deaths surpassing 11,350 deaths
for uterine cancer and 4,170 deaths for cervical cancer, according to Cancer Statistics (1). At the
global level, ovarian cancer contributed to 161,100 deaths in 2015 (2). Cervical cancer is mostly
caused by human papillomavirus (HPV) through sexual transmission whereas the causes of uterine
and ovarian are much perplex and await further investigation. Recent advance in targeted therapies
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and rational combination modalities have proven to deliver
improved treatment outcomes for gynecologic cancers over
traditional chemotherapy. The new therapeutic approaches
are made possible through a better understanding of
molecular/genetic basis of cancer biology and advent of
innovative technologies to target the vulnerability of cancers.
De-regulation of cell cycle is the hallmark of cancer development
and malignant progression. In this review, we will discuss
preclinical development and clinical trials of small molecule
inhibitor drugs targeting defects in cell cycle regulation and its
associated DNA repair pathways for treatment of gynecologic
cancers.

CELL CYCLE AND REGULATION-THE
BASIC

Cell cycle is a process of successive distinct events that lead to
accurate duplication of genetic materials and equal division of a
cell [for review, see (3)]. In eukaryotic cells, cell cycle comprises
four major periods defined as G1, S, G2, and M phases. The
G1 is the first growth phase of the cell cycle during which cells
undergo active synthesis of proteins and cellular components,
as well as increasing the number of organelles and the size
of cells. The S phase is the synthesis phase of the cell cycle
when DNA synthesis takes place and results in duplication of
all chromosomes. The G2 phase is the second growth phase of
the cell cycle. During this period, cells continue protein synthesis
in preparation for mitosis. The M phase is the final phase of
the cell cycle during which cell undergo cell division to separate
duplicated chromosomes and cellular components, resulting in
two identical daughter cells.

The progression of cell cycle is regulated by sequential and
coordinated rise and fall of cyclin-dependent kinase (CDK)
activity (Figure 1). Regulatory cyclins bind to catalytic CDKs to
form activated complexes. During the G1 phase, cyclin D rises
in response to growth/mitogenic stimuli and forms the complex
with CDK4/6. The CDK4/6-cyclin D complex phosphorylates
retinoblastoma susceptible protein (Rb), thereby causing the
dissociation of the transcription factor E2F from Rb (4). Thus,
activated E2F commits cells to the S phase entry by mediating
the transcription of cyclins E and A, and other proteins,
including ribonucleotide reductase (RNR), thymidylate synthase,
dihydrofolate reductase, and DNA polymerases, necessary for
DNA synthesis. Cyclin E binds to CDK2 to form the CDK2-
cyclin E complex which commences the S phase progression.
To promote S phase progression, Cdc25A phosphatase activates
CDK2-cyclin E by removing inhibitory phosphates from CDK2.
Cyclin A later replaces cyclin E to form the CDK2-cyclin A
complex which is required for passage through the S phase.
During the G2 phase, CDK1 displaces CDK2 to form the CDK1-
cyclin A complex. Cdc25C is responsible for dephosphorylating
and activating CDK1-cyclin A to facilitate G2 phase progression.
During the M phase, cyclin B binds to CDK1 to form
the CDK1-cyclin B complex which promotes mitosis. The
spindle assembly checkpoint (SAC) functions to inactivate the
anaphase-promoting complex (APC/C) and prevent mitosis

from metaphase to anaphase. PLK1 and Aurora B kinases
are involved in the regulation of mitotic progression through
coordination with the SAC (5, 6).

The transition between cell cycle phases is governed by G1,
G2, and M (mitotic) phase checkpoints to prevent the entry
into the next phase until the defects are amended [for review,
see (7)]. The G1 phase checkpoint is controlled by CDK4/6-
cyclin D-mediated phosphorylation of Rb and subsequent
transcriptional activation of E2F. The activation of the G1
checkpoint occurs to prevent the transition to the S phase in
response to inadequate or inhibitory growth signals, hypoxia,
and DNA damage. Ataxia telangiectasia mutated (ATM) or ataxia
telangiectasia and Rad3 related (ATR) function as sensors for
DNA damage and phosphorylate Chk2 and Chk1, respectively.
Phosphorylated Chk1 and Chk2 in turn target phosphorylation
of Cdc25A for degradation and inactivates CDK2-cyclin E.
Therefore, the cell cycle is transiently arrested in the G1 phase. To
maintain the arrest, Chk1 and Chk2 phosphorylate and stabilize
the tumor suppressor p53 that in turn leads to transcription
of p21 (CDKN1A), a CDK2-cyclin E inhibitor, or CDKI. The
G1 checkpoint also involves several CDKIs including p16 and
p27. p16 (CDKN2A) acts to inhibit CDK4/6-cyclin D and E2F
transcriptional activity, thereby blockingG1 to S phase transition.
p27 (CDKN1B) binds to and inactivates CDK2-cyclin E or
CDK4-cyclin D, thereby halting cell cycle at the G1 phase. The
G2 phase checkpoint serves as a safeguard to prevent the entry
into M phase in response to incomplete DNA replication and
DNA damage. DNA damage results in phosphorylation and
activation of Chk1, which in turn phosphorylates and stabilizes
Wee1. Wee1 kinase causes inhibitory phosphorylation of CDK1
at its Thr14 and Tyr15, thereby inactivating CDK1-cyclin B.
Concurrently, Chk1 phosphorylates Cdc25C and inhibits its
phosphatase activity for activating CDK1-cyclin B. p53 also acts
to augment the G2 checkpoint by inducing 14-3-3 which binds to
and exports phosphorylated CDK1-cyclin B from the nucleus. As
a result, this multifaceted abrogation of CDK1-cyclin B activity
blocks mitotic entry and arrests cells at the G2 phase until
DNA damage is repaired. The M phase checkpoint prevents
segregation of duplicated chromosomes that are not properly
aligned and anchored to spindle microtubules at the metaphase
plate (8). CDK1-cyclin B phosphorylates and activates APC/C to
promote mitosis. However, improper attachment of kinetocores
to spindle microtubules activates the SAC by inhibiting the
APC/C-Cdc20 complex and thus preventing the progression
from metaphase to anaphase until chromosomes are properly
attached.

DNA REPAIR DURING CELL CYCLE
PHASES

With the purpose of maintaining genomic stability, cell cycle
regulation is controlled by checkpoints largely in response to
DNA damage and replication stress. DNA double strand breaks
(DSBs) represent the most severe and lethal type of DNA
damage. Cells have evolved an array of sophisticate DNA damage
repair machinery that counteract the deleterious effects of DSBs
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FIGURE 1 | The roles of CDKs in the cascade of cell cycle. CDKs bind to specialized cyclins to form active complexes that drive cell cycle phase progression and

transition into next phases. Growth and mitogenic signals induce cyclin D and activate CDK4, thereby inactivating Rb and releasing E2F to instigate G1 phase

progression. Cdc25 phosphatases dephosphorylate and activate CDKs to promote S/G2/M phase progression.

occurring at various cell cycle phases in a timely and coordinated,
if not competitive, manner.

Homologous recombination (HR) and non-homologous end
joining (NHEJ) are two major pathways for the repair of DSBs
(Figure 2). HR operates strictly in S and G2 phases of the
cell cycle only when homologous sister chromatids are present,
while NHEJ which functions independently of homologous
chromosomal sequences can occur throughout the cell cycle (9).
HR is an error-free DSB repair process while NHEJ is generally
considered error-prone. NHEJ can be further divided into two
sub-pathways, canonical NHEJ (c-NHEJ) occurring in G1 phase
and alternative NHEJ (alt-NHEJ) occurring in S and G2 phases
(10). In fact, c-NHEJ is a conservative repair necessary for
physiological processes including class switch recombination and
V(D)J recombination (11, 12). Recent studies suggest that the
fallibility of collective NHEJ is mainly attributed to alt-NHEJ,
a highly error-prone and mutagenic repair that causes large
deletions and chromosomal rearrangement (13). Interestingly
alt-NHEJ shares the common characteristics with HR in the
requirement of DSB resection. With versatile nature and swift
process, c-NHEJ predominates in DSB repair to quickly and
effectively restore and maintain genomic integrity in mammalian
cells (11, 14–17). The binding of Ku factors, key components
of c-NHEJ, to DSB ends by default limits extensive resection
to prevent HR and alt-NHEJ (18, 19). Conversely extensive

resection of DSB ends prevents Ku factors from binding and
allows HR and alt-NHEJ to occur (10). Wild type p53 can
inhibit error-prone alt-NHEJ to ensure accurate re-ligation of
DSBs by c-NHEJ (20, 21). A large body of evidence indicates
that a loss of p53 function leads to increased HR activity in
cancer cells (22–29). A study of siRNA screening demonstrates
that silencing of BRCA1, BRCA2, Rad51, and HR-associated
genes selectively sensitizes p53-deficient cancer cells to cisplatin
(30) that incurs DSBs secondary to primary DNA adducts
(31–33).

THE LINK BETWEEN CELL CYCLE
CHECKPOINT AND HR REPAIR

Cell cycle checkpoints prevent cells from progressing to the
next phase until DNA damage is repaired. However, the exact
connection between checkpoint activation and DNA repair
remains elusive. Cumulative evidence indicates that CDK activity
is required for HR to mediate DSB repair during the S and
G2 phases (34–37). It seems counterintuitive since inactivation
of CDK is a critical step for checkpoint activation in response
to DNA damage. To address this controversy, Buisson et al.
has recently elucidated that initial high CDK activity serves to
promote DSB end resection, which in turn activates ATR and
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FIGURE 2 | Modes of DSB repair in cell cycle phases. DSB repair by HR and alt-NHEJ requires CtIP and MRN activity and takes place in S and G2 phases of the cell

cycle. DSB repair by c-NHEJ occurs predominately, but not exclusively, in the G1 phase. p53 functions to restrict DSB resection for HR and alt-NHEJ, while possibly

promoting accurate c-NHEJ.

Chk1 to inhibit CDK and concurrently stimulate the PALB2-
mediated step in HR repair (38). CDKs phosphorylate a plethora
of protein substrates, such as CtIP and BRCA1, required for S
and G2 progression. CtIP is a nuclear protein that interacts with
Nbs1 of the MRN (Mre11-Rad50-Nbs1) complex to stimulate
the nuclease activity of Mre11 for DSB end resection (39–41).
The BRCT domain of BRCA1 binds to CtIP through CDK-
mediated phosphorylation of CtIP at Ser327 (42–44), which
has recently been shown to accelerates DSB end resection
(45) and antagonize 53BP1-mediated NHEJ (46, 47). CDK also
phosphorylates CtIP at Thr847 and activates CtIP for DSB end
resection (35). Furthermore, ATR phosphorylates CtIP at Thr859
thereby rendering the binding of CtIP to chromatin for execution
of DSB end resection (48). Extensive DSB end resection by
MRN-CtIP leads to 3′-single strand DNA (ssDNA) overhands
which are coated with RPA. The ssDNA-RPA complex recruits
and activates ATR, thereby resulting in Chk1 activation (49).
These lines of evidence suggest that CDK activity is critical for
initiation and promotion of DSB end resection for checkpoint
activation and HR repair in a temporal and coordinated
manner.

CELL CYCLE DE-REGULATION AND
GYNECOLOGIC CANCERS

Normal cells depend on an array of cell cycle machinery to
maintain timely and orderly progression of cell cycle phases.

These sophisticate regulatory mechanisms of cell cycle is primed
for action because replication errors and spontaneous DNA
damage are constant threats to the integrity and survival of
cells. By contrast, virtually most cancer cells display defects
in cell cycle regulation and DNA repair which promote
advantageous mutations, oncogenic growth, and uncontrolled
cell proliferation.

Development of ovarian cancer involves several factors
including genetics, hormones, and environment. Mutations
in the p53 gene are the most frequent genetic events that
occur in advanced ovarian cancer (50–53). More than 95%
of high-grade serous ovarian cancer harbors mutated p53
(53). p53 deficiency abolishes the G1 checkpoint and leads to
uncontrolled cell proliferation. In addition, loss of p53 function
is permissive for BRCA mutation and HR repair deficiency that
promote carcinogenesis, malignant progression, invasiveness in
advanced breast and ovarian cancers (54). Mutations of Rb
and amplification of cyclin D have also been found in ovarian
cancer (55, 56). In cervical cancer, 93% cases are caused by HPV
infection (57). The oncogenic properties of HPV are attributable
to its E6 and E7 proteins (58). E6 forms the complex with p53
and target p53 for degradation. E7 binds to Rb and causes the
release of E2F. Both viral oncogenic proteins effectively abrogate
the G1 checkpoint, thereby resulting in cell transformation and
proliferation. Genetic defects and hormonal imbalance are also
considered the primary causes of uterine/endometrial cancer.
With regard to cell cycle de-regulation, mutations in p53, loss of
p16 expression, and amplification of cyclin D are among genetic
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alterations that underlie the development and progression of
uterine/endometrial cancers (59–61).

Discovery and development of small molecular inhibitors
targeting ablation of CDK activity has long been an interest
in academic research and pharmaceutical industry. This
pharmacological approach will restrict hormone-dependent
CDK-driven phase transition and curb uncontrolled cell
proliferation in cancers. Furthermore, CDK-mediated DNA
repair process can be exploited as a synthetic lethal target to
enhance the efficacy of DNA damaging modalities including
PARP inhibition therapy. In the following topics, we will
discuss therapeutic strategies of blocking CDK activity by direct
and indirect pharmacological inhibition with three classes of
small molecule compounds (Table 1). Preclinical and clinical
development of these small molecule inhibitors mainly within the
scope of combination therapies will also be discussed.

CDK INHIBITORS

Targeted inhibition of CDKs recapitulates the effects of
checkpoint activation to counteract aberrant and unrestricted
progression of cell cycle phases in many cancers. Currently
developed and clinically-approved CDK inhibitors can be divided
into two categories based on their targets in cell cycle phases:
G1-targeted CDK4/6 inhibitors and S/G2/M-targeted CDK1/2
inhibitors. Most of these small molecule compounds are ATP-
competitive inhibitors and therefore some possess an overlapping
spectrum of activity across subtypes of CDKs. CDKs are not
directly involved in cell cycle but transcriptional regulation
including CDK7, 8, 9, 11, 12, and 13.

Small molecule inhibitors of CDK4/6 have been demonstrated
clinically effective in combination with hormonal/endocrine
therapy against several types of cancers, especially breast
cancer. Several oncogenic signaling pathways including steroid
hormones, PI3K-AKT, JAK-STATs, and MAPKs are known to
promote cell proliferation by inducing cyclin D1 and promoting
CDK4/6 activity (62, 63). Given that the majority of breast
cancer is initially positive for steroid hormone receptors (64),
blockade of CDK4/6 activity by small molecule inhibitors
represents a rational strategies and has proven efficacious in
the treatment of breast cancer. For this reason, currently three
orally active CDK4/6 inhibitors have been approved by FDA
based on promising results from well-conducted clinical trials.
Clinical studies of breast cancer leading to FDA approval
demonstrated that CDK4/6 inhibitors in combination with
endocrine therapy exhibited superior activity compared with
endocrine therapy alone. Ribociclib (LEE011) is a selective
CDK4/6 inhibitor approved for use in combination with the
aromatase inhibitor letrozole to treat hormone receptor-positive
advanced or metastatic breast cancer (65). Palbociclib (PD-
0332991) is a selective CDK4/6 inhibitor approved for use
in combination with letrozole to treat hormone receptor-
positive advanced breast cancer as initial endocrine therapy
(66). Palbociclib gained additional FDA approval for use in
combination with the estrogen receptor degrader fulvestrant to
treat hormone receptor-positive advanced or metastatic breast

cancer in patients with disease progression after endocrine
therapy (67). Abemaciclib (LY2835219) is a selective CDK4/6
inhibitor approved for use in combination with fulvestrant to
treat hormone receptor-positive advanced or metastatic breast
cancer in patients with disease progression following endocrine
therapy (68). In addition to combination therapy, abemaciclib
was approved by FDA as monotherapy for hormone receptor-
positive advanced or metastatic breast cancer in patients with
disease progression after endocrine therapy (69). These CDK4/6
inhibitors are generally well tolerated in both combination and
monotherapy. The most common side effect of these inhibitors
is neutropenia. Other hematological and GI side effects include
anemia, nausea, diarrhea, anorexia, and fatigue. Thus, it is
recommended that ribociclib and palbociclib should be used
once daily in a 3-week on and 1-week off schedule, whereas
abemaciclib can be used twice daily in a continuous manner (70).

The success of these FDA-approved CDK4/6 inhibitors for
hormone receptor-positive breast cancer can serve as a paradigm
for ongoing clinical development of therapy for gynecologic
cancers because of some shared characteristics especially in
hormonal dependency. Clinical studies in hormonal therapy
for high and low-grade ovarian cancer have shown favorable
response in patients (71, 72), suggesting prospective clinical trials
using the combination therapy with CDK4/6 inhibitors in these
patient populations. Ribociclib is currently under Phase II trial
(NCT03008408) for use in combination with letrozole and the
mTOR inhibitor temsirolimus in patients with advanced and
recurrent endometrial cancer (73). Ribociclib is also under Phase
II trial (NCT02657928) for use in combination with letrozole to
treat patients with estrogen receptor-positive ovarian fallopian
tube, primary peritoneal, or endometrial cancer. Furthermore,
ribociclib in combination with platinum-based chemotherapy is
currently under Phase I trial for patients with recurrent platinum-
sensitive ovarian cancer (NCT03056833).

Abrogation of CDK1/2 activity by small molecule inhibitors
mainly leads to impediment of S and G2/M phase progression.
Several small molecule inhibitors of CDK1/2 have been evaluated
in early and late stages of clinical trials. None of these inhibitors
have been approved by FDA thus far. CDK1/2 activity is required
for DSB end resection and HR repair (34–37). Given the
importance of HR repair in ovarian cancer and, to a lesser extent,
other gynecologic cancers, drug combination strategies to exploit
CDK1/2 deserve further investigation. Cumulative preclinical
data have demonstrated that CDK inhibition augments the
anticancer efficacy of DNA damaging modalities through
impairment of HR repair. It has been shown that depletion
of CDK1 or pharmacological inhibition of CDK1 sensitizes
BRCA-proficient breast cancer to a PARP inhibitor (74, 75).
Roscovitine (Seliciclib) is one of the first CDK1/2 inhibitors
identified (76) and widely demonstrated to sensitize various
cancers to DNA damaging agents and radiation (77, 78). The
chemo- and radio-sensitizing effects of roscovitine are consistent
with its ability to block DSB end resection and impair HR
repair (35, 37, 79). Roscovitine is currently under Phase I clinical
trial in combination with the nucleoside analog sapacitabine
in patients with advanced solid tumors including pancreatic,
breast, and ovarian cancers (NCT00999401) (80). The side effects
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TABLE 1 | Examples of preclinical and ongoing clinical development of small molecule Inhibitors that target CDKs, Cdc25, and RNR.

Inhibitors Target Phase of development Drug in combination Disease/cancer cell type References/ClinicalTrials.gov

Identifier

Ribociclib CDK4/6 FDA-approved Letrozole Breast cancer (65)

Phase II Letrozole and temsirolimus Endometrial cancer NCT03008408

Phase II Letrozole Ovarian and endometrial cancers NCT02657928

Phase I Carboplatin and paclitaxel Ovarian cancer NCT03056833

Palbociclib CDK4/6 FDA-approved Letrozole Breast cancer (66)

Abemaciclib CDK4/6 FDA-approved Fulvestrant Breast cancer (68)

Roscovitine CDK1/2 Phase I Sapacitabine Pancreatic, breast, ovarian cancers NCT00999401

Dinaciclib CDK1/2 Phase I Veliparib Breast cancer NCT01434316

Ro-3306 CDK1/2 Preclinical Olaparib Breast cancer (75)

Preclinical Rucaparib Non-small cell lung cancers (74)

BMS-387032 CDK1/2 Preclinical Cytarabine Acute myeloid leukemia (87)

PHA-793887 CDK1/2 Preclinical Radiation Cervical cancer (38, 88)

AZD5438 CDK1/2 Preclinical Radiation Non-small cell lung cancer (89, 90)

LGH00031 Cdc25 Preclinical – Various cancers (96)

BN82002 Cdc25 Preclinical – Various cancers (97)

LB100 Cdc25 Preclinical Radiation, daunorubicin, cisplatin Ovarian and various cancers (98–102)

Hydroxyurea RNR FDA-approved Radiation Head and neck cancers (109)

Triapine RNR Phase II Cisplatin and radiation Cervical and vaginal cancers NCT02466971

Preclinical Platinum, doxorubicin Ovarian Cancer (28, 108)

Preclinical Olaparib, etoposide Ovarian Cancer (107)

of roscovitine have been reported to be neutropenia, elevated
transaminase and bilirubin, hyperglycemia, and abdominal pain.

Currently available small molecule inhibitors of CDK1/2
exhibit specificity toward CDK1, CDK2, or both, and, to
relatively minor extent, other CDKs. Thus far, most CDK1/2-
specific inhibitors are still under preclinical investigation or
at early stages of clinical trials. Dinaciclib (SCH727965) is a
dual CDK1 and CDK2 inhibitor and has been demonstrated
to inhibit HR repair and sensitize multiple myeloma cells
to the PARP inhibitor veliparib (81, 82). Clinical studies of
dinaciclib as monotherapy revealed adverse events including
hypotension, diarrhea, nausea, vomiting, and fatigue (83, 84).
Ro-3306 is CDK1-specific inhibitor that arrests cell cycle at
the G2 to M transition and induces apoptosis in cancer cells
with prolonged exposure (85). It has been shown to impair
HR repair and sensitize BRCA-proficient breast cancer to PARP
inhibitors (74, 75). BMS-387032 (SNS-032), a CDK2-specific
inhibitor, has been identified by high-throughput screening and
demonstrated to have broad spectrum anti-proliferative activity
against a panel of cancer cell lines (86). It has also been
shown to synergize with cytarabine (ara-C), a DNA damaging
antimetabolite drug, to treat AML cells (87). PHA-793887 is a
CDK2-specific inhibitor that exhibits favorable efficacy against
cancer xenografts and disrupts DSB end resection after radiation
(38, 88). AZD5438, a dual CDK1 and CDK2 inhibitor, enhances
radiosensitivity of non-small cell lung cancer by impairing
HR repair of DSBs (89, 90). CDK12, a member of CDK
subfamilies involved in transcriptional regulation but not cell
cycle progression (91), has been implicated in contribution to
HR repair gene expression and PARP inhibition resistance in

high grade serous ovarian cancer (92). In addition to its ability
to inhibit CDK1 and CDK2, dinaciclib abrogates CDK12 activity
and suppresses the expression of BRCA1, BRCA2, and Rad5,
thereby sensitizing BRCA-wild type triple negative breast cancer
to PARP inhibition (93). Since the majority of CDK1/2 inhibitors
equally target CDK1 and CDK2 as well as other CDKs, emphasis
should be made on the development and comparative testing
of CDK1-specific or CDK2-specific inhibitors, which would
potentially minimize toxicity associated with cell cycle arrest
and transcriptional suppression in normal cells. In addition,
optimizing the dosing schedule in patients to mitigate side effects
would facilitate the clinical development of CDK1/2 inhibitors
moving forward.

CDC25 INHIBITORS

The activity of Cdc25 phosphatases is essential to remove the
inhibitory phosphorylation of CDK1/2 and thus promote S and
G2 phase progression (Figure 1). Therefore, targeted ablation of
Cdc25s has been reportedly effective against a variety of cancer
types, including ovarian and endometrial cancers (94). Thus, it is
of great interest to develop small molecule inhibitors of Cdc25s
for cancer therapies. Many quinonoid-based Cdc25 inhibitors
have been identified and demonstrated to inhibit proliferation of
cancer cells in a manner similar to CDK1/2 inhibitors. However,
clinical development of quinonoid-based Cdc25 inhibitors has
encountered major hurdles because the mechanism of action
involves ROS generation and covalent modification of Cdc25s
(95). LGH00031 is an irreversible quinonoid Cdc25 inhibitor
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that inhibits proliferation and causes G2 arrest of several cancer
cell lines by increasing phosphorylation of CDK1 at Tyr15 (96).
BN82002 is a non-quinonoid inhibitor of Cdc25 phosphatases
that causes accumulation of inhibitory phosphorylation of CDK1,
impediment of cell cycle progression, and inhibition of tumor
growth in vitro and in vivo (97). LB100, a non-quinonoid
cdc25 inhibitor, has been demonstrated to impair HR repair
and sensitize ovarian and other cancer cells to radiation,
daunorubicin, and cisplatin (98–102). Clinical side effects have
yet been studied for this class of inhibitors. The prospect of
this class of small molecule compounds lies in the successful
development of non-covalent and bioavailable Cdc25 inhibitors.
Cdc25s are known to overexpress at a high rate in many cancers
including breast, ovarian, and endometrial cancers (103). A
recent study has revealed that Cdc25 inhibitors effectively target
the triple negative breast cancer refractory to CDK4/6 and CDK2
inhibition (104). Given the importance of Cdc25s in cell cycle
progression and oncogenic properties, preclinical and clinical
development of Cdc25 inhibitors promises invigorating advances
in future gynecologic cancer therapy.

RNR INHIBITORS

Triapine (3-aminopyridine-2-carboxaldehyde thiosemicar-
bazone) is a potent small molecule inhibitor of ribonucleotide
reductase (RNR) (105, 106). Our laboratory has identified
that triapine indirectly causes CDK inhibition which leads to
impairment of HR repair (28, 107). Triapine is 1,000 times
more potent than hydroxyurea (105, 108). Hydroxyurea is a
FDA-approved RNR inhibitor for use in combination with
radiation to treat patients with locally advanced head and neck
cancers (109). RNR is a heteromeric enzyme consisting of R2 and
R1 subunits during the S phase of the cell cycle, and of p53R2
and R1 subunits upon DNA damage (110, 111). Enzymatically
active catalyzes the rate-limiting step in the conversion of
ribonucleoside diphosphates (NDPs) into corresponding
deoxyribonucleoside diphosphates (dNDPs), the immediate
precursors of deoxyribonucleoside triphosphates (dNTPs)
essential for replication and repair (112). Triapine quenches the
tyrosyl radical in the R2/p53R2 subunit of RNR, thereby leading
to enzymatic inactivation (113–115). Therefore, treatment
of cells with triapine promptly causes depletion of purine
nucleotides/dNTPs and stalls replicative synthesis (32, 116).
Prolonged exposure to triapine causes cumulative collapsed
replication forks and DSBs that lead to activation of apoptotic
pathways (117).

Triapine is known to hinder S phase progression and interfere
with DNA repair processes primarily due to depletion of dNTPs
for DNA synthesis. We have previously demonstrated that
triapine impairs HR repair of DSBs and sensitizes BRCA-wild
type epithelial ovarian cancer (EOC) to PARP inhibitor, platinum
drugs, and topoisomerase II inhibitors (28, 107). Ourmechanistic
studies elucidate that triapine causes activation of Chk1 which
in turn blocks CDK-mediated phosphorylation of CtIP. Because
phosphorylated CtIP is required to stimulate the endonuclease
activity of the MRN complex, DSB end resection is abrogated,
leading to impairment of HR. siRNA-mediated silencing of R2
subunit of RNR in EOC cells corroborates the inhibitory effects of

triapine on HR (28, 107). Furthermore, research from Ramsden’s
group independently reports that stimulation of RNR activity
promotes HR and suppression of RNR activity by hydroxyurea
inhibits HR (118). Nevertheless, our findings provide potential
explanations for preclinical and clinical observations that triapine
effectively sensitizes cancer cells to radiation and DNA damaging
modalities (28, 107, 108, 119, 120).

In clinical trials triapine exhibits only moderate anticancer
activity as a single agent. With more than 90% clinical
response rates in phase I/II studies (119, 121, 122), triapine
in combination with cisplatin and radiation therapy is
currently under multi-center, randomized phase II clinical
trials for treatment of advanced cervical and vaginal cancers
(NCT02466971). Clinically, triapine is very tolerable to
patients. Due to its strong iron-chelation property, triapine
causes notable side effect of methemoglobinemia and dyspnea
(123). Other adverse events include nausea, diarrhea, anemia,
leukopenia, and thrombocytopenia (124). However, these side
effects are generally manageable as the plasma half-life of
triapine is short (125) and the methemoglobinemia antidote,
methylene blue, is available (123). Nevertheless, abrogation
of RNR activity by triapine mirrors inhibition of CDKs
and impairment of HR repair. The rationale has immense
potential to devise pragmatic combination strategies with
other DNA damaging modalities, such as PARP inhibitors,
to improve the patient outcomes of gynecologic cancer
therapy.

CONCLUDING REMARKS

Defects in cell cycle regulation represent the vulnerability of
cancers which offers an excellent opportunity for therapeutic
intervention. The successful implementation of combined
CDK4/6 inhibitors and hormonal/endocrine therapy in clinical
practice for breast cancer lays the groundwork for other CDK and
CDK-associated inhibitors currently under development. Like
the lessons learned from conventional chemotherapy, targeting
inhibition of CDK with small molecule inhibitors alone often
falls short of the promise. Besides a better understanding of
hormone-mediated cell cycle progression, advent of molecular
insights into the connection between CDK activity and DNA
repair provides additional rationale for designs of combination
therapies for cancers. Gynecologic cancers, especially ovarian
cancer, exhibit hypersensitivity to DNA damaging modalities
including platinum drugs and PARP inhibitors when the HR
repair capacity is compromised (126). Given that cancers rely
on active CDK to perpetuate cell proliferation at all costs,
abrogation of CDK-driven HR repair create synthetic lethality
to evoke apoptosis and allow effective elimination of cancers
with DNA damaging agents. However, implementation of
such small molecule inhibitors of CDKs is just in the dawn
of targeted therapy for gynecologic cancers. In conclusion,
continuing efforts to discover CDK or CDK-associated inhibitors
and their synthetic lethal combinations with novel DNA
damaging modalities, such as PARP inhibitors, will provide
tremendous advance in therapeutic approaches and hold promise
in successful treatment of gynecologic cancers.
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