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Abstract

Various factors including diet, age, geography, culture and socio-economic status have a

role in determining the composition of the human gut microbiota. The human gut microbial

composition is known to be altered in disease conditions. Considering the important role of

the gut microbiome in maintaining homeostasis and overall health, it is important to under-

stand the microbial diversity and the functional metagenome of the healthy gut. Here, we

characterized the microbiota of 31 fecal samples from healthy individuals of Indian ethnic

tribes from Ladakh, Jaisalmer and Khargone by shotgun metagenomic sequencing.

Sequence analysis revealed that Bifidobacterium and Prevotella were the key microbes

contributing to the differences among Jaisalmer, Khargone and Ladakh samples at the

genus level. Our correlation network study identified carbohydrate-active enzymes and car-

bohydrate binding proteins that are associated with specific genera in the different Indian

geographical regions studied. Network analysis of carbohydrate-active enzymes and genus

abundance revealed that the presence of different carbohydrate-active enzymes is driven

by differential abundance of genera. The correlation networks were different in the different

geographical regions, and these interactions suggest the role of less abundant genera in

shaping the gut environment. We compared our data with samples from different countries

and found significant differences in taxonomic composition and abundance of carbohydrate-

active enzymes in the gut microbiota as compared to the other countries.

Introduction

The human gastrointestinal tract harbors an extremely large microbial community including

archaea, bacteria, viruses and eukaryotes. These communities are very complex and dynamic

in humans, varying with age [1], diet [2], genetics [3,4], geography, disease [5–8], infection

and other factors [9]. Around 1013–1014 bacteria inhabit the human body and most of them

reside in the colon [10]. Microbes are initially acquired from the mother and the immediate

environment during birth [11,12] and they further co-evolve within the human host as per sev-

eral factors as stated above. The gut microbiota are thought to play an important role in
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immunomodulation [13], defense against pathogens [14], nutrient and energy harvest, and

metabolism [15–18]. Considering the important role of the gut microbiome in maintaining

homeostasis, it is important to understand the microbial diversity and the functional metagen-

ome of the healthy gut.

Despite the fact that significant intra- and inter-individual variations exist in the taxonomic

composition of microbial communities in the human distal gut, there are several initiatives

aiming to find common patterns among two or more different groups of interest. Identifying

the differences and similarities among the healthy gut microbiota between two geographies

has been important to understand the impact of the environment and diet. With this aim, sev-

eral metagenomics initiatives have been taken in several regions across the world such as

China [7,18], Russia [19], Europe [20,21], USA [22], Venezuela [1], Africa [23], Ireland [2],

Italy [24], Japan [25] and Korea [26].

Several studies have previously been performed on Indian subjects, too, with their wide

focus on healthy and malnourished children [27,28], lean, obese and surgically treated obese

individuals of Indian origin [29], Mongoloid and Proto-Australoid tribal populations from

North-East India and South India [30], healthy individuals from urban and rural areas of

Delhi and Pune [31], healthy individuals from high altitude and low altitude regions [32],

healthy individuals from Western India [33], Bhopal and Kerala [34] and tuberculosis patients

from Delhi [35]. Albeit some of these reported studies of the Indian gut microbiota are meta-

genomics studies [27,28,34,35], most of them are taxonomic profiling studies performed using

16S rRNA gene sequencing. These studies indicate the presence of the phyla, Firmicutes, Bac-

teroidetes, Actinobacteria, Proteobacteria, Spirochetes, Verrucomicrobia and Fusobacteria,

and the genera, Prevotella,Megasphaera, Faecalibacterium, Eubacterium, Clostridium, Blautia,

Collinsella, Ruminococcus, Roseburia, Bifidobacterium, Gordonibacter, Slackia, Bacteroides,
Odoribacter, Parabacteroides, Clostridium, Enterobacter, Escherichia, Vibrio, Pseudomonas,
Klebsiella and Pantoea in the gut microbiome of Indian subjects [30–32,34]. They further sug-

gest that distinct taxonomic profiles might be present in subjects from different geographic

regions and dietary habits. For instance, Prevotella was found to be the dominant genus in

North-Central India (where subjects mostly consumed a plant-based diet), whereas Bacter-
oides, Ruminococcus and Faecalibacterium were prominent in the gut microbiome of the

cohort from Southern India (with a more omnivorous diet) [34]. Thus, existing studies of

Indian subjects provide taxonomic profiles of the gut microbiota, i.e., information of the pres-

ence or absence of various microbial taxa in the individual samples, and hint at the potential

diversity of gut microbiota composition in different regions of India. However, a survey of the

literature in this field also indicates a lack of metagenomic sequence data that can facilitate

analysis of functional profiles of the microbiota in Indian subjects.

The gut is a carbohydrate-rich niche containing diverse carbohydrates that include plant

polysaccharides such as xylan and starch (from dietary plant products), animal tissue polysac-

charides such as chondroitin sulphate (from dietary meat), milk oligosaccharides, mucus gly-

cans, and microbial saccharides such as levan and dextran [36]. The human gut microbial

metagenome contains tens of thousands of genes encoding carbohydrate-active enzymes

(CAZymes) involved in the metabolism of various carbohydrates as compared to just eight

host enzymes known to digest carbohydrate nutrients in the gut [37]. Microbial CAZymes and

carbohydrate-binding proteins play a critical role in the successful colonization of the gut

(withstanding peristalsis and rapid rate of turnover of host epithelial cells) by enabling the

retention of microbes within the gut via adhesion to host glycans [38–41], and by facilitating

utilization of the diverse carbohydrates present in the gut milieu. Thus, diets varying in their

carbohydrate component are expected to be utilized by different sets of microbial CAZymes

and thus select for different resident microbes.
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We thus framed our study with the following considerations–one, the important role of the

gut microbes for homeostasis and health, two, reported differences among the healthy gut

microbiota in subjects from different geographies and diet, and three, the importance of

microbial CAZymes and carbohydrate-binding proteins in determining colonization and utili-

zation of dietary carbohydrates. Our aim was therefore to study the taxonomic composition

and diversity of CAZymes in healthy subjects and identify the key microbes that contribute to

varying taxonomic composition and CAZyme diversity among healthy subjects from different

geographies and diets, both within and without India.

Considering the dearth of publicly available metagenomic sequence data for Indian sub-

jects, we initiated our study with deep metagenomic sequencing of the distal gut microbiota of

healthy subjects. Taking into account the prevalence of diverse ethnicities, environmental con-

ditions, cuisines and cultures in India, we selected for this study healthy adult subjects from

three different rural geographical locations (in the Central, Northern and Western regions of

India), selected for their distinct geographic and climatic conditions as well as ethnic origins

and dietary habits of the resident subjects. In addition to analyzing the gut metagenomes of

these three geographic regions of India, we performed comparative analysis of the Indian gut

metagenomes with gut metagenomes of subjects from other countries viz. Germany, USA,

Denmark, France and China in order to reveal differences in taxonomic composition and

diversity of carbohydrate active enzymes (CAZymes) in these subjects of different nationali-

ties. This study thus reveals biologically relevant differences in the taxonomic structure and

carbohydrate-active enzyme diversity of human gut microbiota across different geographies.

Material and methods

Ethics approval and consent

This study was approved and conducted in accordance with guidelines laid by Council of Sci-

entific and Industrial Research (CSIR)- Institute of Microbial Technology Institutional Ethics

Committee (Human) (Project number 11 IEC/1/9-2014) and Council of Scientific and Indus-

trial Research (CSIR)- Institute of Microbial Technology Institutional Biosafety Committee

(Project number IBSC/2012-2/21). Written informed consent was obtained to release the

information obtained as a result of the subject’s participation and to publish the study while

keeping the identity confidential.

Sample collection

Subjects included for the study were self-reported healthy individuals with local dietary intake.

The exclusion criteria were antibiotic intake in the six months prior to sample collection, and

major surgeries of the gastrointestinal tract. Fecal samples were collected from thirty-one

healthy subjects, in the age group of 18–58 years, from different regions of India viz. Ladakh

(34.425960˚N 76.824421˚E), Khargone (22.226704˚ N, 75.863329˚ E), and Jaisalmer

(26.36539˚ N, 70.42584˚ E). Samples from Ladakh, Jaisalmer, and Khargone were collected on

27 October 2013, 9 November 2014, and 25–26 November 2014, respectively. Subjects partici-

pating in the study were instructed to hand over fecal samples in a sterile container within 30

minutes of defecation. In Jaisalmer and Khargone, fecal samples were stored on dry ice soon

after collection from the subjects and transported on dry ice to our laboratory in CSIR-IM-

TECH, Chandigarh. In Ladakh, fecal samples were collected on ice packs and transported to a

-80˚C freezer in Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh (in ~4

hours). From there, the samples were transported on dry ice to our laboratory in CSIR-IM-

TECH. Upon reaching our laboratory, samples were stored in a -80˚C freezer until DNA
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extraction. The metadata of the nine subjects from Ladakh, 12 subjects from Khargone, and 10

subjects from Jaisalmer are provided in S1 Table.

Whole genomic DNA isolation

Metagenomic DNA was isolated from the fecal samples using ZR Fecal DNA MiniPrep™. Up

to 150 mg of each frozen fecal sample was scraped off with the help of a sterilized spatula (to

avoid freeze thaw and microbial contamination) and transferred into a tube provided with the

kit. After addition of lysis buffer, samples were homogenized by FastPrep 120 at speed 6 m/s

for 40 seconds followed by cooling on ice for 1 minute, thrice. The rest of the protocol was per-

formed as per the instructions in the user manual. This kit does not contain any RNAse step,

so the nucleic acids isolated by the ZR kit were treated with 10 μl of RNAse (10 mg/ml stock)

for 30 minutes at 37˚C to remove any contaminating RNA. Following this, the sample was sub-

jected to phenol/Sevag extraction and the nucleic acids recovered from the aqueous phase by

ethanol precipitation and suspended in TE. DNA quality was checked by visual examination

of the DNA upon gel electrophoresis on 1% agarose and DNA quantitation was performed

using NanoDrop 1000 spectrophotometer.

Metagenome sequencing

Genome sequencing of all the samples was performed on the Illumina HiSeq-2500 platform.

Jaisalmer samples and Khargone samples were sequenced at 2�150 bp reads using Illumina

HiSeq-2500 sequencing technology at Genome Quebec Centre (GQC), McGill University,

Montreal, Canada. Ladakh samples were sequenced at 2�151 bp reads using Illumina HiSeq-

2500 sequencing technology at Macrogen, Korea. Library preparation for all samples was car-

ried out according to the Nextera XT sample preparation protocol (Illumina, Inc., San Diego,

CA).

Preprocessing of reads

The shotgun data obtained for all the samples were assessed for their quality using FASTQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Identified ‘Nextera transposases’

and ‘Illumina universal’ adaptor sequences were removed using the ‘Trim Sequences’ module

of CLC genomics workbench (www.clcbio.com). Further, the reads obtained were filtered for

the presence of human contamination using DeconSeq [42] at 90% coverage and 95% identity.

Low-quality reads below Phred Score 20 and length less than 50 bases were filtered out using

NGS QC Toolkit [43].

Taxonomic profiling of reads

High quality reads obtained after the preprocessing of the reads were analyzed for microbial

composition using MetaPhlAn2 [44] and OneCodex [45]. MetaPhlAn relies on unique clade-

specific marker genes identified from 3,000 reference genomes whereas One Codex identifies

microbial sequences using a "k-mer based" taxonomic classification algorithm, using a refer-

ence database that includes approximately 40,000 bacterial, viral, fungal, and protozoan

genomes. We applied two different strategies to visualize the differences in the analysis meth-

ods of taxonomic profiling. MetaPhlan yields the organismal relative abundance whereas One-

Codex yields absolute abundance of the reads classified. To compare the methods, the

classified reads of each taxon from OneCodex were normalized to the total classified reads at

that taxonomic level of the sample. To assess if the reads depict the overall diversity of the taxo-

nomically classified taxa, a rarefaction curve was drawn using MEGAN [46,47]. This curve is a
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plot of the number of taxa assigned (as per MEGAN algorithm) as a function of the number of

reads for each sample. It represents the richness of metagenomic datasets and also tells if

sequencing depth is enough to capture all the diversity. Shanon Index [48] was calculated to

obtain the diversity profiles of the samples.

Assembly and annotation

High-quality reads, obtained after pre-processing, were subjected to de novo assembly using

IDBA-UD [49] (an iterative De Bruijn Graph De Novo Assembler) at iterated value of K from

20 to 120 to get final longer confidently assembled contigs. The contigs longer than 500 bp

were retained and subjected to MetaGeneMark [50] for gene prediction. The genes� 100 bp

were retained for all the samples and the corresponding protein sequences were retrieved. A

non-redundant gene set for each sample was constructed with CD-HIT [51] at 95% sequence

identity and 90% alignment coverage for the shorter sequence.

Abundance and diversity of CAZymes in the gut metagenomes

The detection of the CAZymes in the assembled and annotated protein sequences from each

metagenome sample was performed using HMM database for automated carbohydrate-

active enzyme annotation (dbCAN) [52] latest version: 6.0 released on 09/13/2017. HMMscan

was run against the dbCAN database and the alignment results were parsed through the

HMMscan-parser.sh, provided by dbCAN, and the best-hit alignment was retained.

HMMScan profiles for CAZyme families belonging to the classes of Glycosyl hydrolases (GH),

Polysaccharide lyases (PL), Glycosyltransferases (GT) and Carbohydrate Esterases (CE), Car-

bohydrate Binding Modules (CBM) and other auxiliary enzymes (AA) were used to profile the

CAZymes.

Extensive parameter exploration was done to ensure that the maximum number of homo-

logs of CAZymes is detected in hitherto uncharacterized gut microbiota and yet stringency is

maintained to avoid false positives (E-value < 1e -05 and query coverage> = 70%)

Each HMM hit was tagged to particular CAZyme family (GH1, GH2 etc.) and the number

of hits belonging to each CAZyme family for each metagenome was collated and this was sub-

sequently represented as a matrix, termed as the ’abundance profile’. The abundance profile

for each metagenome was subsequently normalized by the total number of genes. This was

done to even out the heterogeneity arising for differential metagenomic sampling for individ-

ual dataset. To the ’diversity’ of a metagenomic sample, the total number of CAZyme families

to which a hit was tagged in a metagenome was calculated. However, if the number of hits

belonging to one particular family was less than 0.01% of the total number of hits, that family

was not considered while calculating ’diversity’. To identify the differences between different

geographies the abundance profiles were transformed to Z-score. Z-score is a standardized

score and is calculated as ((‘score’-‘mean score’) / ‘standard deviation of score’). To identify

the variability between families, the Welch t-test was performed. Kruskal-Wallis test was used

for the multiple-group testing. The abundance with Bonferroni corrected P value (<0.05) were

considered to be important for the specific geography.

Correlation of CAZymes and abundant genus

The correlation of the significant CAZymes identified with P value <0.05 in the different

regions of India with the genus abundance was identified using the Pearson Correlation. The

positively correlated (>0.85 correlation) CAZymes and genera were obtained and the co-

occurrence was visualized in Gephi [53]. The correlations within CAZymes or genera were not

visualized and only correlations between CAZYmes and genera were presented.
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Comparison of Indian samples with other countries shotgun data

The shotgun data (only those using Illumina 2000/2500/Genome Analyzer II/IIx) publicly

available for healthy human gut microbiota samples from several other countries was retrieved.

It comprises samples from the United States, Denmark, France, China and Germany. These

samples were selected randomly and the raw reads were processed in a similar way as we did

for Indian samples to remove the methodological bias. After assembling the reads for other

countries, the samples with very few reads assembled (<50%) were removed from the

CAZyme analysis. This was done to remove the samples which can skew the analysis.

Statistical analysis

Multinom{nnet} R package was used to perform Analysis of variance (ANOVA) to find any

differences at significant P values for multiple-group comparisons. The two group compari-

sons were performed using Welch t-test and Bonferroni corrected P values are indicated for

each comparison. Shannon diversity is calculated using vegdist{vegan} function in R-statistical

tool. Partial Least Squares discriminant analysis (PLSDA) was used for the unsupervised clus-

tering of the samples. Heatmaps were generated based on the dissimilarity matrix of the Shan-

non diversity, which indicates that higher score will indicate lower similarity and vice-versa.

Results

Subject selection

We used 31 fecal samples of healthy adult subjects from three geographical locations in India

for studying the gut microbial community structure (Fig 1). The sampling sites were relatively

less populated settlements of ethnic Indians in three rural areas–Scur Buchan village in

Ladakh, Jammu and Kashmir (34.425960˚N 76.824421˚E), Pipliya Buzurg village in Khargone

district, Madhya Pradesh (22.226704˚ N, 75.863329˚ E), and Khuri village in Jaisalmer district,

Rajasthan (26.36539˚ N, 70.42584˚ E), respectively. The geographic and climatic conditions of

these three sampling sites are distinct, as are the ethnic origins and dietary habits of the sub-

jects from these sites (Table 1).

We included 9 subjects (7 male, 2 female) aged 39.44 ± 3.56 (mean ± SEM) with a body

mass index (BMI) of 23.98 ± 0.97 (mean ± SEM) from Ladakh, 12 subjects (all male) aged

Fig 1. Sampling sites of this study. a) Photographs showing the sampling site, and typical food consumed (gurgur cha—tea with yak butter and salt, and tsampa—

roasted barley flour) in Scur Buchan village in Ladakh, Jammu and Kashmir (34.425960˚N 76.824421˚E). b) Photograph showing the sampling site in Khuri village in

Jaisalmer district, Rajasthan (26.36539˚ N, 70.42584˚ E). c) Photograph showing the sampling site in Pipliya Buzurg village in Khargone district, Madhya Pradesh

(22.226704˚ N, 75.863329˚ E).

https://doi.org/10.1371/journal.pone.0231197.g001
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30.08 ± 2.00 (mean ± SEM) with a BMI of 22.63 ± 0.97 from Khargone, and 10 subjects (8

male, 2 female) aged 32.9 ± 4.49 years (mean ± SEM) with a BMI of 20.73 ± 0.83 (mean ±
SEM) from Jaisalmer. On the whole, the average age of all the subjects was 33.71 ± 2.00

(mean ± SEM) and the average BMI was 22.41 ± 0.57 (mean ± SEM). The basic metadata of all

the samples is provided in S1 Table. Eleven of twelve Khargone subjects, nine of ten Jaisalmer

subjects and all nine Ladakh subjects consumed dairy products (S1 Table). Khargone subjects

included three vegetarian, one ovo-vegetarian, and eight non-vegetarians with occasional

poultry/red meat/fish in the diet (S1 Table). Jaisalmer subjects comprised four vegetarian and

six non-vegetarians with occasional red meat/poultry in the diet (S1 Table). Ladakh subjects

included two ovo-vegetarian and seven non-vegetarians with occasional poultry/red meat/fish

in the diet (S1 Table). The detailed diet information for each participant is mentioned in S2

Table. None of the subjects reported antibiotic use in the last six months.

We isolated metagenomic DNA from the fecal samples and subjected the metagenomic

DNA to shot gun sequencing on the Illumina platform. We obtained 8.59 ± 0.38

(mean ± SEM) Gbp data per sample. Following the steps of filtering to remove adapter

sequences and human contamination, and quality trimming of the reads, 89.88 ± 0.41% data

(i.e., 7.73 ± 0.35 Gbp) remained (S3 Table). The GC content was 47.59 ± 0.35% (S3 Table).

OneCodex and MetaPhlAn based comparative taxonomic characterization

of the gut microbiota in Indian subjects

The taxonomic structure of the microbiota in the cohorts from Ladakh, Khargone and Jaisal-

mer using OneCodex reveal that less than half of the reads could be mapped at different taxo-

nomic levels (phylum level: 45.27% ± 1.82; family level: 42.94% ± 1.77; genus level: 41.83% ±
1.56, Mean % ± SEM) (S3 Table). Lower read mapping (~55%) at the phylum level indicates

that many gut bacterial species are yet to be characterized. However, by plotting a rarefaction

curve, we found that the depth of reads sequenced is sufficient to enrich for all presently

known genera (S1 Fig). We obtained similar genus abundance profiles with OneCodex [45]

and MetaPhlan as verified by PLSDA and visualized by heat maps (S2 Fig). Box plots of family

and genus abundances also indicate similar profiles (S3 Fig).

We identified a total of 61 phyla, 93 classes, 232 orders, 530 families, and 2052 genera of

microorganisms by One Codex, and a total of 9 phyla, 16 classes, 21 orders, 44 families, and 88

genera of microorganisms by MetaPhlAn in the Indian subjects. The major phyla present in

the Indian subjects, together constituting more than 90% of microbiota in all the samples are

Table 1. Sampling sites of this study.

Site Geography Climate Predominant

race

Major cuisine

Ladakh Extends from the Himalayas in the South to the

Kunlun range in the North. Includes the upper

Indus River valley Elevation:>3,000 m

Cold desert Mongoloid Momos, thukpa and thenthuk (noodle

soups), khambir (whole wheat bread),

gurgur cha (tea with yak butter and salt),

tsampa (roasted barley flour) and chhang
(an alcoholic beverage)

Jaisalmer Located in the Thar desert Elevation: 225 m approx. Hot arid and semi-arid Caucasoid Roti (whole wheat bread), spicy curries, dal
(lentil soup) and chhaach (butter milk)

Khargone Situated in the middle of the Narmada River valley;

Vindhyachal mountain range is situated in the

north and Satpura range in the south Elevation: 258

m approx.

Transitional between

humid subtropical climate and

tropical wet and dry climate

Australoid Dal (lentil soup), chawal (boiled rice), roti
(whole wheat bread), sabzi (vegetables in
curry or fried), tea, and milk

Geographical features, climatic conditions, racial features, and major cuisines of the three regions of India selected for this study.

https://doi.org/10.1371/journal.pone.0231197.t001
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tabulated (Table 2, S4 Table). The most abundant families and genera identified in the Indian

subjects by One Codex and MetaPhlAn analysis were almost similar (Table 2, S3 Fig and S4

Table).

Total gene abundance at the phyla, family and genus level in Indian subjects as identified by

OneCodex and MetaPhlAn. The data is supported by Supplementary information in S4 Table,

S2 Fig and S3 Fig.

Existing variations in the gut microbiota of Indian subjects

The MetaPhlAn based taxonomic characterization was used further to identify the existing

variations in Indian subjects from different geographic locations. Partial Least Squares dis-

criminant analysis (PLSDA) of the genera abundant in Indian samples (Fig 2A) revealed that

the structure of the intestinal microbiota in Khargone, Jaisalmer and Ladakh are different

from each other. We calculated the Shannon index of bacterial alpha diversity [48] for Jaisal-

mer and Khargone gut microbiota to be greater than that for Ladakh gut microbiota (Fig 2B).

We observed that the Jaisalmer and Khargone samples were interspersed amongst each other

and contained similar genera with significant abundance (Fig 2C). In contrast, the Ladakh

samples mostly clustered separately (Fig 2C).

Prevotella, the most abundant genus among all Indian subjects (S3 and S4 Figs and S4

Table), was significantly more abundant in Ladakh samples (~63%; ~58%) than in Jaisalmer

(~42%; ~30%) and Khargone samples (~41%; ~32%) by One Codex and MetaPhlAn analysis

(S3 and S4 Figs and S4 Table). In contrast, Bifidobacterium, the second most abundant genus

among all Indian subjects (S3 Fig), was present at greater abundance in Jaisalmer (~13%;

~21%) and Khargone (~13%; ~17%) as compared to Ladakh (~4%; ~6%) (S4 Fig). We could

also observe differences in the less abundant genera between the samples from these different

geographic regions of India (S5.1 Table).

Table 2. Taxonomic profiling of gut microbiota in Indian subjects by OneCodex and MetaPhlAn.

Total Gene Abundance

OneCodex (%) MetaPhlAn (%)

Phyla Bacteroidetes 53 41

Firmicutes 31 38

Actinobacteria 12 17

Protobacteria 3 2

Family Prevotellaceae 47 39

Bifidobacteriaceae 10 15

Ruminococcaceae 8 9

Lachnospiraceae 7 6

Bacteroidaceae 6 1

Eubacteriaceae 4 7

Lactobacillaceae 3 6

Veillonellaceae 4 6

Genus Prevotella 47 39

Bifidobacterium 11 15

Faecalibacterium 6 6

Bacteroides 6 1

Lactobacillus 3 6

Eubacterium 4 7

Ruminococcus 2 3

https://doi.org/10.1371/journal.pone.0231197.t002
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At the phylum level, we observed that subjects from Ladakh had a much higher proportion

of microbes belonging to phylum Bacteroidetes (~70%; ~62%) as compared to Khargone

(~46%; ~35%) and Jaisalmer (~47%; ~31%) by One Codex and MetaPhlAn analysis (S3 and S4

Fig 2. Indian gut taxonomic structure. a) Differences in the microbial relative abundance at the genus level of human gut in Indian regions. b) Shannon diversity

indices of genus abundance in different regions of India. The multiple-group comparison is made using Kruskal-Wallis test and the P value for the testing is mentioned

in the top-left of the plot. Welch t-test Bonferroni corrected P values for pairwise comparisons are also shown in the plot. Values indicated in red are significant. c)

Dissimilarity matrix visualized in form of heat map generated by distance between genus abundance structure between different regions of India. Clustering of the

different samples is based on the distance matrix calculated using Bray-curtis method implemented in vegdist{vegan} function in R. The lower the expression value

(indicated in key) the higher the similarity.

https://doi.org/10.1371/journal.pone.0231197.g002
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Figs). In contrast, Jaisalmer and Khargone subjects had a higher proportion of Actinobacteria

(Jaisalmer: ~15%; ~23%, Khargone: ~14%; ~19% and Ladakh: ~6%; ~7%) and Firmicutes (Jai-

salmer: ~36%; ~43%, Khargone: ~35%; ~42% and Ladakh: ~21%; ~28%) (percent values by

One Codex and MetaPhlAn analysis) (S3 and S4 Figs).

Comparing the microbial community structure of Indian gut with other

countries

We compared the microbiota composition of the Indian subjects in this study with existing

metagenomic shotgun sequencing data sets from healthy adult subjects of US (n = 16, 10 male

and 6 female), Denmark (n = 18, 9 male and 9 female), France (n = 17, 9 male and 8 female),

China (n = 18, 10 male and 8 female), and Germany (n = 5, all male) (S5.2, S6 and S7 Tables).

The community structure of Indian gut was distinct from the other countries as represented in

the heat map (S5 Fig). Unsupervised clustering of all the samples shows clear separation of

Indian samples from those of other countries (Fig 3A). Clustering of Indian samples was

observed regardless of whether samples from Jaisalmer, Khargone and Ladakh were pooled

together or not (Fig 3A and 3B). To find the clear patterns of community diversity at genus

level we looked into Shannon diversity of all the countries. The subjects from Ladakh and USA

had very low diversity at the genus level (with one particular community most abundant) as

compared to other countries (Fig 3C). Subjects from France, Denmark, and Germany dis-

played higher diversity than Khargone and Jaisalmer samples (Fig 3C).

Microbial species belonging to the well represented genera, Lactobacillus, Prevotella (in

Ladakh subjects), and Bifidobacterium (in Khargone and Jaisalmer subjects) were found be

more abundant in Indian subjects than in subjects from other countries (S5 Fig); whereas Bac-
teroides was more abundant in other countries as compared to the Indian subjects (S5 Fig).

Similar variations were observed in other genera of lower abundance as well, which could

clearly separate the Indian gut from the gut belonging to other countries in terms of microbial

composition (S5.2 Table).

CAZyme profile in the Indian gut

A PLSDA plot of CAZyme abundance (CAZyme abundance here is relative to total bacterial

genes) in the gut microbiota of subjects from different regions of India revealed differences in

CAZyme abundances (Fig 4A and S8 Table). A boxplot representing the CAZyme abundance

also reveals significant differences in CAZyme abundance between subjects of Khargone and

Jaisalmer (Fig 4B). Jaisalmer samples have 10 significantly different CAZymes (p>0.05) in

comparison to other Indian regions (S9.1 Table). The significantly different CAZymes in the

Jaisalmer samples were mostly found to be carbohydrate binding modules (CBMs); there were

no glycoside hydrolases (GHs) and carbohydrate esterases (CEs) (S9.1 Table). The highest

number of significantly different CAZymes (30 CAZymes) was observed in Ladakh samples

(as compared to 25 in Khargone and 10 in Jaisalmer) (S9.1 Table). The significantly different

CAZymes in Khargone and Ladakh samples have representation from all the classes of

CAZymes (glycosyltransferases (GTs), polysaccharide lyases (PLs), CBMs, GHs and CEs)

(S9.1 Table).

We investigated the relation, if any, between the significantly different CAZymes obtained

and genus identified for each Indian region separately (Fig 4C, 4D and 4E). The question we

wanted to address was whether any significantly different CAZyme is correlated directly to a

differentially abundant genus in that particular Indian region. In Jaisalmer samples, we found

CBM2 (p = 0.028) to be positively correlated with several genera (Fig 4C). Of these genera,

Bacteroides and Odoribacter are significantly different in abundance as compared to all other
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samples in this study (S5.2 Table). Similarly, in Khargone samples, CBM5 (p = 0.036) and

CBM69 (p = 0.039) are positively correlated with many genera (Fig 4D), of which, Bacteroides
and Escherichia are abundant. Shigella, Lautropia, and Eggerthella are differentially abundant

in Khargone samples as compared to Ladakh and Jaisalmer. Brevundimonas, Actinobacillus,
Bacteroides, and Escherichia, are significantly different in Khargone samples as compared to all

other samples in this study including those from other countries. CBM5, CBM69 and GT46

correlated genera are not abundantly represented. These genera are albeit not abundant, sig-

nificantly differentially abundant in Khargone samples as compared to Ladakh and Jaisalmer,

Fig 3. World gut taxonomic structure in comparison to Indian gut. a) Differences in microbial relative abundance at the genus level of human gut in

different countries. All Indian samples were pooled together for this analysis. b) Differences in microbial relative abundance at the genus level of human gut

in different countries. Samples from Jaisalmer, Khargone and Ladakh were used separately for this analysis. c) Shannon diversity indices of the genus

abundance in different countries. ‘India’ refers to all samples from Jaisalmer, Khargone and Ladakh pooled together. The multiple-group comparison is

made using Kruskal-Wallis test and the P value for the testing is mentioned in the top-left of the plot. d) Welch t-test Bonferroni corrected P values for

pairwise comparisons are also shown. The values indicated in red are significant. This data is supported by supplementary information in S4, S5 and S7

Tables.

https://doi.org/10.1371/journal.pone.0231197.g003

Fig 4. Indian gut CAZyme profile. a) The differences in the relative abundance of CAZymes in human gut in Indian regions. b) Shannon diversity indices of the

CAZyme abundance in different regions of India. The multiple-group comparison is made using Kruskal-Wallis test and the P value for the testing is mentioned in the

top-left of the plot. Welch t-test Bonferroni corrected P values for pairwise comparisons. The values indicated in red are significant. c,d,e) The positive correlation of

CAZymes with abundant genera in different regions of India (c: Jaisalmer, d: Khargone, e: Ladakh).

https://doi.org/10.1371/journal.pone.0231197.g004
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as well as to all other countries included in this analysis. In Ladakh samples, there are several

CAZymes correlated with different genera (Fig 4E). Relatively abundant genera, Streptococcus
andHaemophilus are connected to CBM48 (p = 0.0025) and GH13 (p = 0.024). Butyrivibrio is

positively correlated with CE12, GH57, GH97, CBM4, CE7 and CE6. These different highly

correlated networks involving a few common genera demonstrate the key differences between

the subjects from Ladakh, Khargone and Jaisalmer. Importantly, these interactions involve sev-

eral less abundant genera that are differentially abundant among these regions rather than

major enterotype genera.

Comparing the CAZyme profile of Indian gut with other countries

CAZyme profiles were retrieved from the shotgun sequencing data of other countries (S8

Table) and the differential abundance of CAZymes between subjects from India and other

countries was studied. PLSDA plots were constructed; they clearly demonstrated the demarca-

tion of Indian subjects from those of other countries in terms of CAZyme abundance (Fig 5A

and 5B). The Indian regions were considered pooled together as well as separately for this

analysis in order to identify the differential abundance of CAZymes in the different Indian

regions as compared to the other countries (Fig 5A and 5B). A boxplot for CAZyme abun-

dance was plotted and ANOVA performed to identify the level of significance as compared to

all other countries (Fig 5C). The CAZyme abundance in Khargone and Ladakh regions (but

not in Jaisalmer) was significantly different as compared to all other countries (Fig 5C). With

further analysis we found that Jaisalmer subjects had significant differences in the abundance

of various CAZymes as compared to all the countries except Germany. The number of signifi-

cantly (p<0.05) differentially abundant CAZymes was ~170 for Jaisalmer and Khargone sub-

jects and ~120 for Ladakh subjects. Indian samples were found to have only 2–3 uniquely

differentially abundant CAZymes if compared with all the countries. However, when com-

pared with France, Germany and Denmark, 100–120 uniquely differentially abundant

CAZymes were found. This suggested that the CAZyme profiles in Indian subjects have a simi-

lar profile as that of China and USA. Among the subjects of the other countries, we found 172

significant differentially abundant CAZymes at significant P values in China samples and 8

CAZymes were unique to samples from China (S9.2 Table). Interestingly, there were no CE

specific classes unique to Denmark and USA samples and no GT specific CAZymes that were

unique to Germany samples. The differentially abundant CAZymes in other countries had

overlapping profiles among them or with Indian countries. For example, GH109, GT2,

CBM67, PL12, dockerin and PL11 are present in both France and USA. This suggests why

there were no clear demarcations in the PLSDA plot as there are more shared CAZymes

between different countries. These results imply that no unique CAZymes are present in the

human gut of different countries but that their abundance is significantly different among dif-

ferent countries.

Discussion

India comprises about one-sixth of the world’s population with vast geographical, linguistic,

socio-cultural and ethnic diversity. Indian population is genetically heterogeneous [54] with

Australoid, Caucasoid, Mongoloid and Negrito ancestries [55]. Despite genetic admixtures

between diverse lineages, there is a high level of genetic differentiation amongst contemporary

ethnic groups present in different regions of India [54]. The regions included in this study

include Mongoloid (Ladakh), Caucasoid (Jaisalmer) and Australoid (Khargone) populations

[56]. There are also vast climatic and socio-cultural differences among these places.
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Using two different tools, MetaPhlan and OneCodex to analyze the taxonomic composition

from the shotgun sequencing data, we found that ~55% of the sequence reads could not be

mapped even at the phylum level. Analysis of the mapped reads indicated the phyla, Bacteroi-

detes, Firmicutes, Actinobacteria and Proteobacteria, and the genera, Prevotella, Bifidobacter-
ium, Bacteroides, Eubacterium and Faecalibacterium to be abundant in Indian subjects. The

dominant phylum was Bacteroidetes and the dominant genus Prevotella in all the Indian sub-

jects in the study. We found significant differences in the gut microbiota composition of the

subjects from Ladakh, Khargone and Jaisalmer regions. At the phylum level, Ladakh had a

higher proportion of Bacteroidetes, and Jaisalmer and Khargone subjects had higher propor-

tions of Actinobacteria and Firmicutes. At the genus level, Prevotella was more abundant in

Ladakh subjects than in Jaisalmer and Khargone subjects, and Bifidobacterium was more

abundant in Jaisalmer and Khargone subjects than in Ladakh subjects. However, we did not

find any correlation of genus with diet, location or age between these regions by UniFrac anal-

ysis, perhaps due to the low sample number.

A limitation of our study was the under-representation of female subjects and the some-

what high variance in the age of the subjects in our study in all the three regions sampled.

However, the variation in gut microbiome between populations, as a result of differences in

geography, life style, diet, age, genetics and possible other factors has been reported to be more

extensive than the variation between males and females [57]. Published literature regarding

the effect of age on the gut microbiota indicates that whereas the gut microbiome is very

dynamic with increasing microbial diversity in the early years of life, the gut microbiota in

healthy adults is relatively stable [58] albeit recent studies do indicate that the gut microbiota

can serve as a chronological marker [59,60].

All samples of our study were sequenced using Illumina HiSeq-2500 platform, albeit at two

different sequencing centers. To our knowledge, there is no batch effect reported due to

sequencing being done with the same sequencing technology at different sequencing facilities.

However, we would also like to extend a cautionary note about the potential for confounding

by batch effect in our analysis with our sequenced samples and more so, with sequenced sam-

ples of subjects from other countries.

Upon comparison of the gut microbiota of the Indian subjects with other countries, we

found that the genera, Lactobacillus, Prevotella and Bifidobacterium were significantly more

abundant in Indian subjects and Bacteroides was more abundant in subjects from other coun-

tries. Unsupervised clustering by PLSDA indicated clear separation of Indian subjects from

subjects of other countries. We would like to note here that the previous metataxonomic pro-

filing study by Bhute et al indicated Prevotella, Lactobacillus, Lachnospira and Roseburia to be

overrepresented in urban and rural Indian subjects from Delhi and Pune as compared to

American subjects [31].

Western microbiomes have been considered to generally have decreased alpha diversity

with 15–30% fewer species than non-Western microbiomes [61,62]. In fact, the trend of

decreasing microbial diversity is observed during human evolution as observed from the

“clock-like divergence of microbiomes among African apes” by Moeller et al [63]. Similar loss

of microbial diversity has also been observed in non-human primates upon captivity, coincid-

ing with loss of dietary fiber [64], and “diet-induced extinctions in the gut microbiota” have

Fig 5. World gut CAZyme profile in comparison to Indian gut. a) Difference in the CAZyme abundance of human gut in different countries. All

Indian samples were pooled together for this analysis. b) Difference in the CAZyme abundance of human gut in different countries including

different Indian regions. c) Significance of CAZyme abundance as represented by Shannon diversity index in different countries. The multiple-

group comparison is made using Kruskal-Wallis test and the P value for the testing is mentioned in the top-left of the plot. d) Welch t-test

Bonferroni corrected P values for pairwise comparisons are mentioned in a tabular format. The values indicated in red are significant.

https://doi.org/10.1371/journal.pone.0231197.g005
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been demonstrated to be amplified over generations [65]. Among various human populations,

US subjects have been shown to have the least microbial diversity [1,63].

Considering the traditional and rural agrarian nature of the subjects in this study, it was

surprising that the alpha diversity calculated for the microbiota of Jaisalmer, Khargone and

Ladakh subjects were not very high. Indeed, the alpha diversity of the Ladakh subjects was as

low as that of the US subjects included in the study. However, considering the fact that only

~45% of the sequence reads in our study could even be mapped, we anticipate that the actual

alpha diversity is much higher than the values currently calculated.

The microbiota of Western individuals also typically have a greater amount of Bacteroi-

detes, and lower amounts of Firmicutes and Proteobacteria than healthy indigenous tribes and

rural populations from developing countries [61,62]. A study of the gut microbiota of healthy

adult and children subjects from rural African Malawi, rural South American Venezuela and

urban US indicated reduced alpha diversity in the US subjects as compared to the Malawi and

Venezuela subjects, and similar microbial communities in the Malawi and Venezuela subjects

[1]. The gut microbiota of healthy Chilean subjects were shown to display slightly higher abun-

dance of Firmicutes (~43%) than Bacteroidetes (42%) and an unusually high abundance of the

phylum Verrrucomicrobia (~8.5%) [66]. A study of the gut microbiota of the Hadza hunter

gatherers in Tanzania (whose diet mainly comprises fibrous tubers and meat) in comparison

with healthy Italian subjects indicated high alpha diversity, abundance of Firmicutes, absence

of Actinobacteria, particularly Bifidobacterium, and the enrichment of Prevotella and unclassi-

fied Bacteroidetes and Clostridiales taxa that likely help harness energy from the fibrous plant

tubers in the diet of the Hadza hunter gatherers [67].

Considering these reports, our finding of Bacteroidetes dominance in the Indian subjects

seems atypical but can be rationalized considering the abundance of Prevotella, a genus of Bac-

teroidetes, involved in carbohydrate metabolism. The subjects in this study consumed a diet

rich in plant-based products and dairy. Khargone subjects consumed a diet rich in wheat, rice,

lentils, vegetables, dairy products (cow or buffalo), with some subjects consuming meat or fish,

occasionally. Jaisalmer subjects consumed a diet rich in wheat, pearl millet, lentils, vegetables,

fermented milk products and milk (from camel or cow), and occasional meat (S2 Table).

Ladakh subjects consumed a diet rich in wheat, rice, barley, lentils, plenty of vegetables, milk

mainly from yak, and occasional meat (S2 Table). Ladakhi people also drink chhang (made by

fermention of barley), and green and butter tea (S2 Table).

Similar exceptions of Bacteroidetes dominance are also known in literature [62]. A compar-

ative study in children from Italy (with a typical Western diet rich in animal protein, fat, sugar

and starch) and Burkina Faso in rural Africa (with a predominantly vegetarian diet rich in

plant starch and fiber from millet, sorghum, legumes and vegetables, and low in fat and animal

protein with occasional chicken and termites) indicated the dominance of Bacteroidetes and

depletion of Firmicutes, abundance of Prevotella and Xylanibacter, and underrepresentation of

Enterobacteriaceae (Shigella and Escherichia) in Burkina Faso children as compared to Italian

children [23]. Also, a study of the gut microbiota of low altitude resident Matses hunter gather-

ers (whose diet mostly comprises gathered tubers, plantains and fish) and high altitude resi-

dent rural agrarian healthy Tunapuco subjects (whose diet mostly comprises local agricultural

produce, particularly stem and root tubers, and small animals such as guinea pig, pork and

lamb) in Peru in comparison with healthy urban Norman Americans indicated higher alpha

diversity in Matses and Tunapuco subjects than in Norman subjects [68]. This study however

also indicated the dominance of Bacteroidetes in the rural high altitude Tunapuco subjects

and dominance of Firmicutes in the hunter-gatherer Matses and the urban Norman subjects

[68]. A study of the gut microbiota of coexisting hunter gatherer BaAka Pygmies and agrarian

Bantu tribes from Central Africa with traditional subsistence patterns indicated similar
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amounts of Bacteroidetes and Firmicutes in the BaAka but higher abundance of Firmicutes in

the Bantu [69]. Both Baaka and Bantu had significant amounts of Cyanobacteria, Spirochaeta-

ceae and Actinobacteria, and displayed a gradient of decreasing alpha diversity and decreasing

Prevotella, and Clostridiaceae when compared with US Americans [69].

Traditional rural/tribal communities from geographically distant areas—Hadza, Burkina

Faso, Malawians, South Africans and Venezuelan Amerindians—have also been reported to

bear significant amounts of Treponema [67–69]. We found Treponema in only a few Indian

subjects. Treponema was previously found in high abundance in some Indian tribes [30].

Despite the huge variations in ethnicities and geography among the subjects of the three

regions, Ladakh, Khargone and Jaisalmer, Prevotella was the most abundant genus in all the

three regions. This suggests the prevalence of enterotype 2 of the three enterotypes described

by Arumugam et al. [70]. Prevotella was also reported to be the most abundant genus in the

gut metagenomes of the Tibetan [71], Malawian, Amerindian [1], and West African popula-

tions [23].

A recent study by Dhakan et al [34] used multi-omics approaches to study samples from

subjects of North-Central (Madhya Pradesh) and South (Kerala) India. Their study also indi-

cated Prevotella as the dominant genus in North-Central India (where subjects mostly con-

sumed a plant-based diet), whereas Bacteroides, Ruminococcus and Faecalibacterium were

prominent in the gut microbiome of the cohort from Southern India (with a more omnivorous

diet). Another recent study by Tandon et al [33] indicated the dominance of Prevotella in an

urban cohort from Western India, too.

Bhute et al showed the presence of Firmicutes as the major phylum in Indian subjects;

other major phyla included Bacteroidetes, Proteobacteria and Actinobacteria [31]. Their study

also indicated that Prevotella andMegasphaera were dominant genera [31]. Dehingia et al

reported the presence of Firmicutes, Bacteoidetes and Actinobacteria as the major phyla across

Manipur, Telangana, Assam and Sikkim regions of India, with the Manipur tribes having sig-

nificantly more Bacteroidetes than Firmicutes and the Sikkim tribes having more Actinobac-

teria in comparison to the other tribes [30]. Their study also indicated that while Prevotella
genus accounted for ~40% of the gut bacteria, other core gut bacteria present in all the four

studied geographic regions include Faecalibacterium, Eubacterium, Clostridium, Blautia, Col-
linsella, Ruminococcus and Roseburia, and varying genera include Bifidobacterium, Gordoni-
bacter, Slackia, Bacteroides, Odoribacter, Parabacteroides, Clostridium, Enterobacter,
Escherichia, Klebsiella and Pantoea [30]. Some of these genera have also been found to be sig-

nificantly varying across geographies in our study.

However, interestingly, another recent study comparing the microbiota of healthy Indian

subjects from a high altitude rural site (in Leh, Ladakh) versus low altitude rural and urban

sites (in Ballabhgarh, Haryana) indicated that although Prevotella was dominant in Ladakh

subjects, Proteobacteria members like Vibrio and Pseudomonas were highly represented in Bal-

labhgarh subjects [32]. Also, in contrast to our study, where Ladakh (~70%), Khargone

(~46%), and Jaisalmer (~47%) subjects were dominated by phylum Bacteroidetes (and fol-

lowed by Firmicutes, Actinobacteria and Proteobacteria), Das et al. found that Firmicutes

(62%) was the most highly represented phylum in both Ladakh and Ballabhgarh subjects fol-

lowed by Bacteroidetes (24%), Actinobacteria (5.2%), Proteobacteria, Spirochetes, Verrucomi-

crobia and Fusobacteria [32]. The apparently contradictory results of the Ladakh gut

microbiota in these studies could be due to different experimental design; gut microbial com-

position was studied by Das et al [32] using 16S rRNA taxonomic profiling (and hence might

have PCR-introduced bias) whereas we used OneCodex and MetaPhlan analysis of shotgun

sequence data. Furthermore, as we have already noted above, ~55% of the sequence reads in

our study could not be mapped even at the phylum level, thus indicating a huge proportion of
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“dark microbes” that are yet to be identified. We anticipate that a clearer picture will be

obtained in the future with the whole genome sequencing and annotation of more microbes,

especially “the unculturables”, in the publically available database.

The dominant presence of Prevotella in the gut microbiome has been linked in many stud-

ies with a diet rich in plant fibre and low in animal proteins [72–75], and similarly, Bacteroides
has been demonstrated to be abundant in subjects with animal protein-rich diets

[23,24,67,76,77]. However, a recent study showed that different sub-genus oligotypes of Prevo-
tella and Bacteroides are associated with plant-based and meat-based diets [23]. Das et al found

that the Prevotella in the Indian samples mapped mainly to the animal-based diet-associated

oligotypes [32]. However, >90% of the Prevotella in the Indian samples were unique and

could not be fully mapped to the known plant- and animal-based diet-associated oligotypes

[32]. In light of these studies, it would be an oversimplification to link our finding of greater

Prevotella abundance in the Indian subjects in our study (as compared to subjects from other

countries) with a more plant-rich diet or to link the greater abundance of Prevotella in Ladakh

subjects as compared to Jaisalmer and Khargone with the former’s relatively higher consump-

tion of animal protein and lower consumption of plant fiber.

Bifidobacterium was the second most abundant genus among all Indian subjects. Bifidobac-
terium abundance has previously been associated with consumption of dairy products in lac-

tase non-persisters individuals in Western populations [78] and has been found to be

completely absent in the traditional Hadza hunter-gatherers. It is likely that the high represen-

tation of Bifidobacterium in the Indian subjects is due to regular dairy consumption coupled

with lactase non-persister status. In this regard, it is also interesting that we have found Lacto-
bacillus, which also utilizes lactose as a major nutrient, to be significantly over-represented in

Indian subjects as compared to subjects from other countries. Bifidobacterium and Lactobacil-
lus abundance have also previously been shown to be high in the Indian Sikkim tribes whose

diet is rich in diary and fermented foods [30].

Dietary intake shapes the gut community structure; hence, it is useful to pinpoint dietary

changes that might be adopted to manipulate the gut microbial composition and thus alter the

health status of a subject [4,74,79–82]. Indeed, a recent study revealed that genetic ancestry is

not significantly associated with microbiome composition; on the contrary, healthy individuals

with distinct ancestral origins who share a relatively common environment tend to have simi-

lar gut microbiota [83]. Identifying associations between a particular food in the diet and a

particular genus is however not trivial, due to the complex and inter-dependent nature of the

gut microbiome. The gut microbial communities derive their nutrition from carbohydrates

[84] that come from host as well as dietary glycans [36,85]. The capacity of the gut flora to

degrade carbohydrates is immense [86] and identifying accurate CAZyme information is

therefore important. CAZymes were found to be almost similarly abundant in subjects from

different geographical regions. This might be due to the stringent methodology we used to

identify the true CAZymes in all the populations. Several differentially abundant CAZymes

were identified that include carbohydrate esterases in subjects from Denmark and USA, and

glycosyltransferases in subjects from Germany. A significant overlap was observed in between

subjects from France and USA, suggesting that the sampled subjects might have shared a simi-

lar diet and lifestyle.

Although the CAZyme profile seems to be quite similar among the Indian regions studied,

some differentially abundant CAZymes were present. For instance, a few CBMs were found to

be differentially abundant in Jaisalmer subjects. Our correlation network study identified

CAZymes/CBMS that are associated with specific genera in the different Indian geographical

regions studied. The correlation networks are different in the different geographical regions,

and interestingly, these interactions involve genera that are differentially abundant among
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regions but not necessarily very abundant. This suggests the role of less abundant genera in

shaping the gut environment.

Conclusions

In summary, our characterization of the fecal microbiota of healthy adult subjects of Indian

ethnic tribes from Ladakh, Jaisalmer and Khargone presents a suite of unique features that sug-

gest specific adaptation to a foraging lifestyle, with key genera Prevotella and Bifidobacterium
contributing to the different taxonomic composition in these regions. The taxonomic compo-

sition of the fecal microbiota from Indian subjects is distinct as compared to subjects from

other countries, with genera Lactobacillus, Prevotella, and Bifidobacterium, being more abun-

dant, and Bacteroides being less abundant in Indian subjects and with variations in other gen-

era of lower abundance. Even if there are taxonomic similarities between human populations,

at finer scales their microbial communities may exhibit metabolic differences to suit dissimilar

environmental constraints. The redundancy in CAZymes found in human gut indicates that

activity, rather than composition, is conserved. Albeit, no unique CAZymes are present in the

gut microbiota of subjects of different countries, their abundance is significantly different

among different countries. The correlation networks of CAZymes and genus abundance in

our study identified several CAZymes and carbohydrate-binding proteins that are associated

with specific genera among the samples from Ladakh, Jaisalmer and Khargone. Further, the

study of interactions of diet and CAZymes with taxonomy proved the supporting role of less

abundant genera in shaping the activity in the human gut environment.

Supporting information

S1 Fig. Rarefaction curves representing microbial genera richness for samples sequenced

in the study. X-axis represents the number of reads sampled from leaves and Y-axis represents

the number of leaves (genera) in taxonomy. Each line represents one sample.

(TIF)

S2 Fig. Heat maps showing relative abundance of microbial genera in the Indian regions.

a) Heat map showing the relative abundance of the microbial genera >1% in at least one of the

subjects from three Indian regions, obtained through One Codex. b) Heat map showing the

relative abundance of the microbial genera >1% in at least one of the subjects from three

Indian regions, obtained through MetaPhlAn. The ends of the color key represent the 5 and 95

quantile values. The values below 5 quantiles are dark red and values over 95 quantiles are

dark blue.

(EPS)

S3 Fig. Box plots representing differences in microbial taxa in the Indian regions. a)

Box plot showing the relative abundance of microbial families with abundance greater than

1% in at least one sample in the subjects from Khargone, Jaisalmer, and Ladakh as obtained by

Metaphlan (Green) and OneCodex (Blue) analysis. b) Box plot showing the relative abundance

of the microbial genera with abundance greater than 1% in at least one sample in the subjects

from Khargone, Jaisalmer, and Ladakh as obtained by Metaphlan (Green) and OneCodex

(Blue) analysis.

(EPS)

S4 Fig. Boxplots representing the differences in genus and phylum abundances by MetaPh-

lAn and OneCodex analysis in the Indian regions. a) Prevotella b) Bifidobacterium c) Bacter-

oidetes d) Actinobacteria e) Firmicutes. The multiple-group comparison is made using

Kruskal-Wallis test and the P value for the testing is mentioned in the top of each plot. Welch t
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-test Bonferroni corrected P values are mentioned for pairwise comparisons. The values indi-

cated in red are significant.

(EPS)

S5 Fig. Abundance of microbial genera in subjects from different countries. a) Heat map

showing the relative abundance of the microbial genera >1% in at least one of the subjects

from different countries, obtained through MetaPhlAn. Box plot showing differences in b)

Bacteroides c) Prevotella d) Lactobacillus e) Bifidobacterium abundance in different countries.

The multiple-group comparison is made using Kruskal-Wallis test and the P value for the test-

ing is mentioned in the top-left of each plot. Welch t -test Bonferroni corrected P values for

pairwise comparisons are mentioned in a tabular format. The values indicated in red are sig-

nificant.
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S1 Table. Metadata information of Indian samples.

(XLSX)

S2 Table. Detailed dietary information. The detailed dietary data for each participant is

recorded as mentioned by the subjects.

(XLSX)

S3 Table. Sample information for Indian subjects in this study. Information of samples,

sequencing reads, preprocessing or reads, assembly, annotation and taxonomically assigned

reads.

(XLSX)

S4 Table. Taxonomic profiling. Genera, families and phyla identified in Indian samples by

MetaPhlan and OneCodex analysis.

(XLSX)

S5 Table. Genus abundance. Genus abundance significantly different within Indian regions

and in between different countries.

(XLSX)

S6 Table. Sample information for subjects from other countries. List of sample identifiers

selected from the other country’s shotgun data.

(XLSX)

S7 Table. Taxonomic profiling of samples from different countries. Genera, families and

phyla identified in samples of different countries by MetaPhlan analysis.

(XLSX)

S8 Table. CAZyme profiling. CAZymes identified in samples of Indian regions and different

countries.

(XLSX)

S9 Table. CAZyme abundance. CAZyme abundance significantly different within Indian

regions and in between different countries.

(XLSX)
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