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Animal models are useful to understand the myriad physiological effects of hypoxia. Such
models attempt to recapitulate the hypoxemia of human disease in various ways. In this
mini-review, we consider the various animal models which have been deployed to
understand the effects of chronic hypoxia on pulmonary and systemic blood pressure,
glucose and lipid metabolism, atherosclerosis, and stroke. Chronic sustained hypoxia
(CSH)—a model of chronic lung or heart diseases in which hypoxemia may be
longstanding and persistent, or of high altitude, in which effective atmospheric oxygen
concentration is low—reliably induces pulmonary hypertension in rodents, and appears to
have protective effects on glucosemetabolism. Chronic intermittent hypoxia (CIH) has long
been used as a model of obstructive sleep apnea (OSA), in which recurrent airway
occlusion results in intermittent reductions in oxyhemoglobin saturations throughout
the night. CIH was first shown to increase systemic blood pressure, but has also been
associated with other maladaptive physiological changes, including glucose dysregulation,
atherosclerosis, progression of nonalcoholic fatty liver disease, and endothelial
dysfunction. However, models of CIH have generally been implemented so as to mimic
severe human OSA, with comparatively less focus on milder hypoxic regimens. Here we
discuss CSH and CIH conceptually, the effects of these stimuli, and limitations of the
available data.
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INTRODUCTION

Animal models have been useful for demonstrating various physiological effects of hypoxia, thus
providing deeper understanding of the impact of hypoxemia in human disease. Chronic sustained
hypoxia (CSH) and chronic intermittent hypoxia (CIH) are each associated with cardiovascular and
metabolic changes, which can be adaptive or maladaptive. In this mini-review we consider the
outcomes associated with both CSH and CIH as they pertain to cardio-metabolic disease. Specifically,
we will address cardiovascular and metabolic outcomes of CSH and CIH models in animals which
aim to mimic human disease states. We will not focus on models of acute sustained or intermittent
hypoxia (lasting minutes to hours), which may have variable consequences. Moreover, in this mini-
review, we consider only CSH and CIHmodels which might resemble chronic hypoxic conditions in
humans. Intriguing reports of the effects of intermittent hypoxia on neuroplasticity with low-
frequency hypoxic episodes lasting several minutes (Gonzalez-Rothi et al., 2015; Navarrete-Opazo

Edited by:
Gregory D. Funk,

University of Alberta, Canada

Reviewed by:
Vincent Joseph,

Laval University, Canada

*Correspondence:
Omar A. Mesarwi

omesarwi@health.ucsd.edu

Specialty section:
This article was submitted to
Respiratory Physiology and

Pathophysiology,
a section of the journal
Frontiers in Physiology

Received: 10 February 2022
Accepted: 11 March 2022
Published: 31 March 2022

Citation:
Barnes LA, Mesarwi OA and
Sanchez-Azofra A (2022) The

Cardiovascular and Metabolic Effects
of Chronic Hypoxia in Animal Models:

A Mini-Review.
Front. Physiol. 13:873522.

doi: 10.3389/fphys.2022.873522

Frontiers in Physiology | www.frontiersin.org March 2022 | Volume 13 | Article 8735221

MINI REVIEW
published: 31 March 2022

doi: 10.3389/fphys.2022.873522

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.873522&domain=pdf&date_stamp=2022-03-31
https://www.frontiersin.org/articles/10.3389/fphys.2022.873522/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.873522/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.873522/full
http://creativecommons.org/licenses/by/4.0/
mailto:omesarwi@health.ucsd.edu
https://doi.org/10.3389/fphys.2022.873522
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.873522


et al., 2015) are subjects of other expert reviews (Randelman et al.,
2021). Finally, we note that our intention is to cover significant
breadth of understanding of the topic of cardio-metabolic
consequences of chronic hypoxia in animal models, sacrificing
some depth of specificmodels and outcomes.We invite the reader
to explore specific citations for important study details.

HYPOXIA AS A MODEL OF HUMAN
DISEASE

Both CSH and CIH in animal models have been used to simulate
various disease states. CSH has been applied to rodents at varying
fraction of inspired oxygen (FiO2), generally ranging from 0.10 to
0.15 (Hislop and Reid, 1976; Cowburn et al., 2017; Ioja et al., 2018;
Prieto-Lloret et al., 2021), either been normobaric or hypobaric
relative to sea level. Though resulting peripheral saturations are
not always considered, the severity of CSH is a critical variable:
For instance, CSH of FiO2 0.10 as a model of high altitude
exposure might recapitulate the effective oxygen content at an
altitude of 5800 m (Mt. Kilimanjaro), whereas an FiO2 of 0.15
might be representative of a lower altitude (2400 m, Aspen, CO).
In considering analogues of human disease, an FiO2 of 0.10 would
be expected to model only very hypoxemic diseases like cyanotic
heart disease, whereas an FiO2 of 0.15 might model chronic
obstructive pulmonary disease (COPD), or other chronic lung
diseases which are far more common.

Similarly, CIH has been applied to animal models in a variety
of ways, although most studies roughly reproduce conditions
used by Fletcher et al., who first studied CIH in rodents as a model
of OSA (Fletcher et al., 1992b). In CIH, multiple variables of
desaturation and resaturation are important to define. In
Fletcher’s experiments, rats were exposed to rapid reductions
of FiO2 from 0.21 to 0.05 over 12 s, then quickly returned to 0.21.
This process was repeated every 90 s (corresponding to an
oxyhemoglobin desaturation index [ODI] of 40 events/h), for
7 h per day, for up to 5 weeks. Each of these variables—rate of
deoxygenation, depth of deoxygenation, rate of reoxygenation,
ODI, duration of daily exposure, and overall experiment
duration—may be manipulated in different animal
experiments (Farré et al., 2018). At least one study has
demonstrated tissue-specific effects of various hypoxic profiles
of CIH in rodents (Reinke et al., 2011). Thus, there are several
considerations when designing animal experiments seeking to
elucidate the physiological effects of either CSH or CIH.

CARDIO-METABOLIC EFFECTS OF
CHRONIC SUSTAINED HYPOXIA

CSH and Pulmonary Hypertension
In humans and in animal models, acute alveolar hypoxia has been
shown to cause pulmonary vasoconstriction, leading to acute
pulmonary hypertension (PH) (Fishman, 1976; Wagenvoort,
1977; Rabinovitch et al., 1979; Perkin and Anas, 1984; Voelkel,
1986). Both hypoxic pulmonary vasoconstriction and PH may
revert after cessation of hypoxic exposure. By contrast, exposure

to CSH results in chronic PH which may be irreversible (Meyrick
and Reid, 1978; Stenmark et al., 2009). Vascular remodeling due
to CSH consists of muscularization of the small arteries of the
alveolar wall and proliferation of cells expressing α-smooth
muscle actin, followed by thickening of the precapillary
pulmonary arteries, inflammation, and fibrosis of the large
proximal pulmonary arteries (Stenmark et al., 2009). CSH
causes PH so reliably in rodents that it has been widely
adopted as a model for studying mechanisms and downstream
effects of PH. However, the response to CSH is variable between
species (Stenmark et al., 2009). Although CSH leads to PH both in
mice and rats, the degree of vascular remodeling is typically less in
mice (Hislop and Reid, 1976; Frank et al., 2008; Cahill et al.,
2012).

Sustained Hypoxia and Systemic Blood
Pressure
While CSH causes PH in rodent models, the effect of CSH on
systemic blood pressure is less clear. Acute ascent to high altitude,
an inherently hypoxic environment, can reversibly increase
systemic blood pressure (Bender et al., 1988; Wolfel et al.,
1991, Wolfel et al., 1994). Epidemiological studies have shown
that humans living at high altitude have lower systemic blood
pressure than those living at sea level (Rotta, 1947; Ruiz and
Peñaloza, 1977), highlighting the difference between acute
exposure and those acclimatized to such an environment. In
rodents exposed to normobaric or hypobaric CSH, results have
been mixed. Vilar et al. demonstrated a reduction in blood
pressure in spontaneously hypertensive rats after exposure to
normobaric CSH (FiO2 of 0.10 for 8 weeks) (Vilar et al., 2008),
induction of pro-angiogenic pathways; and they showed that
neutralizing antibodies targeting vascular endothelial growth
factor-A (VEGF-A) both abrogated the effects of hypoxia on
angiogenesis, and increased blood pressure. Other studies also
showed that CSH decreased systemic blood pressure in young
spontaneously hypertensive rats (Henley and Tucker, 1987), and
that hypoxia mitigated blood pressure elevation in the renal
hypertensive rat (Fregly, 1963, Fregly, 1970). However, one
study demonstrated that CSH (FiO2 of 0.10) did change blood
pressure in male rats at durations of anywhere from 1 to 30 days,
despite an increase in carotid body catecholaminergic signaling
(Hui et al., 2003). Our group has also not observed changes in
systemic blood pressure in young mice exposed to 40 days of CSH
of similar severity (Zhen et al., 2021). Vaziri et al. demonstrated
increased blood pressure in rats exposed to hypobaric CSH
(effective FiO2 of 0.10–0.11) that persisted even after the
restoration of normoxia (Vaziri and Wang, 1996). Thus, the
effects of CSH on systemic blood pressure are complex, and
perhaps dependent on the specific conditions and animals.

Effects of CSH on Atherosclerosis and
Stroke
Atherosclerosis is the major underlying etiology of cardiovascular
disease, which is the leading cause of death worldwide (Mendis
et al., 2011). Evidence for the contribution of hypoxia to the
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progression of atherosclerosis is largely circumstantial. Hypoxia
inducible factor-1α (HIF-1α), a subunit of HIF-1, the major
regulator of the cellular response to hypoxia, is normally
quickly hydroxylated and degraded in normoxia. In hypoxia,
however, HIF-1α is stabilized and can dimerize with HIF-1β,
allowing binding to hypoxia responsive elements in the promoter
regions of target genes of interest (Iyer et al., 1998). HIF-1α is
stabilized in macrophages and smooth muscle cells near the
necrotic core of atherosclerotic vascular lesions in humans and
in animal models (Sluimer et al., 2008; Lim et al., 2013; Ferns and
Heikal, 2017), and HIF-1 has been implicated in atherosclerosis
progression (Kasivisvanathan et al., 2011). Moreover, hyperbaric
oxygen (FiO2 1.0, 2.4–2.5 atm) improves atherosclerosis in both
rabbits and mice (Kudchodkar et al., 2000, Kudchodkar et al.,
2007, Kudchodkar et al., 2008). It is therefore conceivable that
hypoxia could contribute to the development of atherosclerosis,
but to our knowledge, CSH has never been shown to directly
impact atherosclerosis in animal models.

Atherosclerosis, among other factors, may lead to acute
ischemic stroke, which causes over 130,000 deaths in the
United States yearly. Patients with pre-existing
atherosclerotic lesions who then become hypoxemic (e.g.,
respiratory failure in the ICU setting) may develop sufficient
brain ischemia to manifest as a stroke. However, recent data
suggest that acute hypoxic exposure in animal models of
ischemic stroke may be protective. Mice with stroke induced
by middle cerebral artery occlusion and then exposed to variably
severe hypoxia (FiO2 of 0.07–0.12) for two to 8 weeks (Zhang
et al., 2020) showed improved collateral blood flow in a “dose-
dependent” manner, with more severe and longer duration of
hypoxia generating more robust collateral circulation. These
effects were durable even after cessation of hypoxia. These data
suggest that while some effects of CSH may be maladaptive,
some might be beneficial, and that adaptive responses to
hypoxia may present in unique ways.

Metabolic Effects of CSH
Despite our ability to implement CSH as a stimulus with relative
ease in animal studies, the metabolic effects of CSH are less well
explored than the cardiovascular effects. Gamboa et al. were the
first to recognize the potentially beneficial effects of CSH on
glucose metabolism (Gamboa et al., 2011), finding that CSH with
an FiO2 of 0.10 reduced plasma fasting glucose and insulin,
increased insulin sensitivity, and improved insulin-dependent
glucose uptake by skeletal muscle. Since that time, similar
findings have been replicated by us (Zhen et al., 2021) and
others (Lee et al., 2013; Ioja et al., 2018), with additional data
demonstrating hypoxia-dependent effects on the liver
transcriptome (Zhen et al., 2021) and changes in liver and
skeletal muscle mitochondrial function (Ioja et al., 2018). Lipid
metabolism also appears to be altered in CSH, with elevated
serum triglyceride and low-density lipoprotein levels resulting
from CSH with an FiO2 of 0.10 (Zhen et al., 2021). We and others
have noted that CSH causes weight loss in rodents. In our studies,
however, we found a complex interaction between hypoxia and
weight, and that beneficial metabolic effects of CSH cannot solely
be explained by weight reduction (Zhen et al., 2021).

CARDIO-METABOLIC EFFECTS OF
CHRONIC INTERMITTENT HYPOXIA

CIH has been used to model OSA, the most common respiratory
disease in the world (Benjafield et al., 2019). Epidemiologic
associations have been made between OSA and a wide variety
of adverse health outcomes, including cardiovascular disease,
diabetes, cognitive and mood disorders, and others. However,
OSA has several significant manifestations aside from
intermittent hypoxemia, including hypercapnia, intrathoracic
pressure swings, and fragmented sleep. CIH models attempt to
understand the mechanisms by which the hypoxemia of OSA
may uniquely contribute to these outcomes of interest.

CIH and Pulmonary Hypertension
OSA in humans is associated with PH, although the effect is
typically mild (Sajkov and McEvoy, 2009) and the impact of OSA
on PH independent of other comorbidities has been debated
(Chaouat et al., 1996; Sajkov et al., 1999). In OSA, the duration of
hypoxemia resulting from respiratory events (apneas or
hypopneas), rather than the frequency of respiratory events as
gauged by the apnea-hypopnea index per se, is linked with more
severe pulmonary hypertension (Samhouri et al., 2020). In early
animal models involving dogs, repetitive airway occlusion was
induced by tracheal obstruction of variable duration. These
studies showed that pulmonary arterial (PA) pressure
increased as a function of the severity of desaturation (Iwase
et al., 1992). Further, the authors showed that airway occlusion in
animals allowed to breathe 100% oxygen (which prevented
significant desaturations), did not increase PA pressure.
Likewise, when another set of dogs were allowed to breathe
hypoxic gas without airway occlusion, PA pressures increased.
These observations suggested that hypoxemia is likely the most
critical of the several physiological manifestations of OSA to
cause PH. There are several studies examining the impact of CIH
on pulmonary hypertension in rodent models (Fagan, 2001;
McGuire and Bradford, 2001; Campen et al., 2005; Nisbet
et al., 2009; Nara et al., 2015; Snow et al., 2020; Zhen et al.,
2021). Some of these studies appear to show increases in right
ventricular systolic pressure, right ventricular mass, and/or
pulmonary vascular remodeling in response to CIH, although
we did not observe these effects in young C57BL/6J mice (Zhen
et al., 2021). CIH also does not increase right ventricular
pressures to the same degree as CSH (Fagan, 2001; Zhen et al.,
2021). Any putative effect of CIH to worsen pulmonary
hypertension may be due to changes in nitric oxide
bioavailability (Nisbet et al., 2009) and/or increases in
endothelin-1 expression and endothelial damage (Wang et al.,
2013), leading to pulmonary vasoconstriction.

CIH and Systemic Blood Pressure
As mentioned above, the first demonstrated physiological effects
of CIH were to increase systemic blood pressure in rats (Fletcher
et al., 1992b). Since that time, this finding has been demonstrated
by others (Fletcher, 2001; Prabhakar and Kumar, 2010). The
major mechanism by which CIH is thought to induce
hypertension is by activation of the sympathetic nervous
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system. Fletcher et al. showed that surgical denervation of
peripheral chemoreceptors in the carotid body prevented CIH-
induced elevations in arterial blood pressure in rats (Fletcher
et al., 1992a). CIH also impairs endothelium-dependent
vasodilation of skeletal muscle resistance arteries (Tahawi
et al., 2001; Phillips et al., 2004) and causes vascular
remodeling (Fletcher et al., 1992b). CIH increases the
responsiveness of the carotid body to hypoxia, causing
upregulation of pro-inflammatory cytokines, and activation of
the sympathetic nervous system (Lesske et al., 1997; Braga et al.,
2006; Dick et al., 2007; Lam et al., 2012, Lam et al., 2014; Zoccal
et al., 2019). HIF-1 has also been implicated in the development of
hypertension in animal models, via downstream effects on
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (Yuan et al., 2011; Schulz et al., 2014; Semenza and
Prabhakar, 2015). The CIH-mediated increase in blood pressure
persists even after cessation of CIH, and CIH may increase blood
pressure in male rats in as little as 2 days of exposure (Hinojosa-
Laborde and Mifflin, 2005). Our group has noted that there may
be acclimatization to CIH causing normalization of blood
pressure over prolonged periods (4–5 weeks) (Zhen et al.,
2021), but more work is needed to define this effect further.

Effects of CIH on Atherosclerosis and
Stroke
While exposing wild-type mice to CIH may induce vascular
inflammation and remodeling (Gileles-Hillel et al., 2014), it
does not appear to result in overt atherosclerosis (Savransky
et al., 2007b; Drager et al., 2013), even after prolonged exposure
(e.g., 20 weeks) (Song et al., 2012). However, atherosclerosis is
observed in wild-type mice fed a high cholesterol diet in
conjunction with exposure to CIH (Savransky et al., 2007b).
Additionally, in studies using ApoE-deficient mice, which are
more susceptible to atherogenesis, CIH exposure induces
atherosclerosis (Jun et al., 2010; Arnaud et al., 2011; Fang
et al., 2012; Gautier-Veyret et al., 2013). The major
mechanism for the development of atherosclerosis in CIH
appears to be the excess expression of pro-inflammatory
pathways. Nuclear factor kappa B (NF-κB) is important for
the development of atherosclerosis in rodents exposed to CIH
(Fang et al., 2012; Song et al., 2018), and HIF-1 also may play a
role in the development of CIH-induced atherosclerosis (Drager
et al., 2013; Zhou et al., 2014).

Compared to the outcomes mentioned above, few animal
studies have examined the relationship between CIH and
stroke, even though human epidemiological studies have
strongly linked OSA to stroke risk (Dyken et al., 1996; Yaggi
et al., 2005; Das and Khan, 2012). CIH increases the brain’s
susceptibility to hypoxia by altering cerebral blood flow (Phillips
et al., 2004; Capone et al., 2012). Mechanisms for this include
increased endotheliln-1 and increased oxidative stress via
NADPH oxidase (Capone et al., 2012). Canzani et al.
demonstrated that intermittent airway obstruction increased
reperfusion injury in a mouse model of ischemia-reperfusion
injury (Cananzi et al., 2020). Another intriguing study showed
that CIH with a nadir FiO2 of 0.10 may be neuroprotective,

whereas a nadir FiO2 of 0.06 may exacerbate neurological damage
(Jackman et al., 2014), suggesting that the specific model of CIH,
mimicking a specific severity of OSA, is fundamentally important.

Metabolic Effects of CIH
CIH also reliably impacts glucose and lipid metabolism. CIH
induces insulin resistance and glucose intolerance in obese mice,
whether due to diet or genetic modification (leptin-deficient Ob−/
Ob− mice) (Polotsky et al., 2003; Drager et al., 2011). We and
others have noted similar effects of CIH in lean mice (Iiyori et al.,
2007; Zhen et al., 2021). Although some groups have noted either
sex-specific effects of CIH on glucose metabolism (Marcouiller
et al., 2021), or improvement in glucose tolerance with CIH
(Polotsky et al., 2003; Carreras et al., 2012; Thomas et al., 2017),
this is usually accompanied by an increase in whole-body insulin
resistance, suggesting the complexity of the response to CIH on
glycemia, which may at best be mixed, and in some scenarios
deleterious. Additionally, CIH worsens nonalcoholic fatty liver
disease and other types of liver injury in mice with diet-induced
obesity (Savransky et al., 2007a, Savransky et al., 2007c; Mesarwi
et al., 2021), and alters lipid metabolism (Drager et al., 2012; Jun
et al., 2012; Yao et al., 2013; Zhen et al., 2021). It is important to
note that the CIH model used in these studies is frequently
designed to simulate severe OSA—that is, with severe reductions
in nadir FiO2 (0.04–0.07), and a high ODI. The effects of less
severe CIH on glucose and lipid metabolism are not well
described.

FUTURE DIRECTIONS

Though much has been accomplished regarding our
understanding of the diverse cardio-metabolic consequences of
CSH and CIH, there are clearly areas which merit further
investigation. First, there are gaps in our understanding of the
physiological effects of milder CIH and CSH. CSH has been
investigated mostly with an FiO2 of 0.10, which likely represents a
level of hypoxemia more severe than commonly observed in
chronic heart/lung diseases in humans. It has been suggested that
one might expect adaptive, rather thanmaladaptive, physiological
responses to milder CIH (Navarrete-Opazo and Mitchell, 2014).
Second, some of the outcomes presented in this mini-review have
only a minimal amount of accompanying mechanistic data; there
is undoubtedly room to devote more complete exploration of
these concepts. Third, in particular when considering effects of
CSH, one must consider whether normobaric hypoxia differs
from hypobaric hypoxia, which has relevance for studies
involving physiological outcomes of CSH models intended to
mimic exposure to high altitude. Although there has been debate
about this topic for years (Millet et al., 2012; Mounier and
Brugniaux, 2012), animal studies examining the effects of CSH
are typically not performed in both conditions, creating
uncertainty about the impact of atmospheric pressure on the
outcome being measured. Indeed, the uncertainty on this point
extends to human-based research as well (Coppel et al., 2015).
Finally, in our group, we have noted unique cardio-metabolic
consequences of combined sustained and intermittent hypoxia,
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or “overlap hypoxia”, which may be used to model the COPD/
OSA overlap syndrome, or periodic breathing at high altitude
(Zhen et al., 2021). A systematic approach to understanding the
hypoxemia of this unique condition is needed.

CONCLUSION

Both CSH and CIH are associated with unique, and sometimes
maladaptive, physiological responses, though there are
considerable differences between these types of hypoxic
exposures. CSH and CIH are intended to mimic hypoxemia in
human disease states, but the heterogeneity of hypoxemia severity
in cardiovascular and pulmonary disease mandates that attention
be given to novel and more nuanced models. Future work can be
directed toward these goals, as well as toward better

understanding of the mechanisms by which hypoxia alters
cardio-metabolic physiology in animals.
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