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A chloride ring is an ancient evolutionary innovation
mediating the assembly of the collagen IV scaffold of

basement membranes
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Collagen IV scaffold is a principal component of the basement
membrane (BM), a specialized extracellular matrix that is essen-
tial for animal multicellularity and tissue evolution. Scaffold
assembly begins with the trimerization of a-chains into protom-
ers inside the cell, which then are secreted and undergo oligo-
merization outside the cell. For the ubiquitous scaffold com-
posed of a1- and a2-chains, both intracellular and extracellular
stages are mediated by the noncollagenous domain (NC1). The
association of protomers is chloride-dependent, whereby chlo-
ride ions induce interactions of the protomers’ trimeric NC1
domains leading to NC1 hexamer formation. Here, we investi-
gated the mechanisms, kinetics, and functionality of the chlo-
ride ion-mediated protomer assembly by using a single-chain
technology to produce a stable NC1 trimer comprising a1, a2,
and al NC1 monomers. We observed that in the presence of
chloride, the single-chain NC1-trimer self-assembles into a hex-
amer, for which the crystal structure was determined. We dis-
covered that a chloride ring, comprising 12 ions, induces the
assembly of and stabilizes the NC1 hexamer. Furthermore, we
found that the chloride ring is evolutionarily conserved across
all animals, first appearing in cnidarians. These findings reveal a
fundamental role for the chloride ring in the assembly of colla-
gen IV scaffolds of BMs, a critical event enabling tissue evolu-
tion and development. Moreover, the single-chain technology is
foundational for generating trimeric NC1 domains of other
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a-chain compositions to investigate the a121, a345, and a565
collagen IV scaffolds and to develop therapies for managing
Alport syndrome, Goodpasture’s disease, and cancerous tumor
growth.

The fundamental architectural unit of metazoan epithelial
tissues is characterized by a layer of apical/basal-polarized cells
that are laterally connected by tight junctions between plasma
membranes and basally anchored via integrin receptors to a
basement membrane (BM)? (1, 2). The underlying BM, a spe-
cialized form of extracellular matrix (ECM), provides structural
integrity to tissues, guides cell migration and adhesion, delin-
eates apical—basal polarity, and modulates cell differentiation
during development (3—5). BM was a key innovation enabling
animal multicellularity (1, 6). How BMs function and how they
are assembled on the outside of cells remain paramount knowl-
edge gaps in cell biology (7).

BMs are assembled from a toolkit of proteins that includes a
collagen IV scaffold as a principal component (1, 6, 8, 10). This
scaffold confers structural integrity to tissues, binds integrins
for cell adhesion and signaling, binds bone morphogenic pro-
teins for signaling gradients during tissue development, and
tethers a diverse assortment of molecules, including laminins,
proteoglycans, and growth factors, which harbor a plethora of
functions (3, 4, 11-15). Scaffold assembly involves two stages of
a-chain oligomerization (Fig. 1). First, three a-chains oli-
gomerize forming a triple-helical protomer. In mammals, three
collagen IV protomers (a121, a345, and a565) are formed from
six genetically distinct a-chains (al-a6) (8). Second, two
protomers oligomerize via their trimeric noncollagenous
(NC1) domains forming an NC1 hexamer at the junction, and
four protomers oligomerize via the 7S domain forming a tetra-
meric structure. Numerous studies have provided compelling
evidence that the NC1 domain acts as a recognition module (8,

3 The abbreviations used are: BM, basement membrane; ECM, extracellular
matrix; PDB, Protein Data Bank; SEC, size-exclusion chromatography;
RMSD, root mean square deviation; AFM, atomic force microscopy.

SASBMB

© 2019 Pedchenko et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.


https://orcid.org/0000-0002-5479-7073
https://orcid.org/0000-0002-2519-8864
https://orcid.org/0000-0003-3856-4859
http://www.jbc.org/cgi/content/full/RA119.007426/DC1
http://www.pdb.org/pdb/explore/explore.do?structureId=6MPX
http://www.pdb.org/
mailto:sergey.budko@vanderbilt.edu
mailto:sergey.budko@vanderbilt.edu
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.RA119.007426&domain=pdf&date_stamp=2019-3-28

A chloride ring mediates assembly of collagen 1V scaffold
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Figure 1. Assembly of collagen IV scaffolds. Protomer assembly occurs within the cell, where two a1-chains (yellow) and one a2-chain (violet) associate into
a trimer via the globular NC1 domain followed by triple-helix formation in a zipper-like mode. Once secreted outside the cells, chloride concentration triggers
collagen IV protomers to oligomerize end-to-end via NC1 trimer-to-trimer association forming an NC1 hexamer bridging two protomers. Scaffold assembly
also involves the end-to-end oligomerization of four protomers forming a tetramer connected by a 7S domain.

16, 17), specifying and directing the assembly of chain-specific
scaffolds (Fig. 1).

In protomer oligomerization, the interaction between trim-
eric NC1 domains is a chloride-dependent event (16). The first
evidence for a role of chloride ions in scaffold assembly was
revealed from the crystal structure of @121 NC1 hexamers,
derived from a native collagen IV scaffold by collagenase diges-
tion, which showed the presence of a group of six Cl™ ions,
three per NC1 trimer, embedded at the NC1 trimer—trimer
interface (18). Our recent studies showed that the high concen-
tration of Cl™ ions on the outside of cells signals protomer
oligomerization and that CI™ ions bound to NC1 trimers trig-
ger a conformational switch, which mediates protomer oligo-
merization (16). Importantly, our recent studies of the crystal
structures of @121 NC1 hexamers revealed an additional group
of six Cl1™ ions that are embedded at the trimer—trimer inter-
face (19), indicating a role for these ions in hexamer assembly.

In this study, we investigated the mechanisms, kinetics, and
functionality of the 12 chloride ions in protomer oligomeriza-
tion in the formation of @121 scaffolds. For these studies, we
used novel single-chain technology to produce a stable recom-
binant «121 NC1 trimer. We discovered that the 12 ions form a
chloride ring at the interface of NC1 trimers, which induces
assembly and stabilizes the NC1 hexamer. Collectively, our
findings reveal a fundamental role for chloride ions in the
assembly of collagen IV scaffolds of BMs, a critical event that
enabled tissue evolution and development in animals.

Results

Experimental approach to investigate the role of chloride ions
in hexamer assembly

In our previous study, we focused on the role of various ions
in the assembly mechanism whereby NC1 monomers oli-
gomerize forming NC1 hexamers. Chloride ions were found to
induce hexamer assembly directly from monomers (16). Under
these conditions, hexamer assembly involves two steps: mono-
mers first oligomerize into trimers and, in turn, NC1 trimers
oligomerize forming the NC1 hexamer. Initial findings suggest
that chloride ions mediate the latter step, a critical step of scaf-
fold assembly in tissues.

Here, we sought to directly investigate the mechanisms,
kinetics, and function of chloride ions in the oligomerization of
NCI1 trimers forming hexamers (Fig. 2). A trimeric state of NC1
domains is only stable when it is attached to a folded triple
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Figure 2. Approach to generate a stable NC1 trimer without a triple
helix. A, in a collagen IV protomer, the intermediate state of the NC1
trimer is stabilized by the triple helix. B, without a triple-helical segment,
the NC1 trimer dissociates into monomers under low-chloride concentra-
tion. C, using recombinant technology, a single-chain NC1-trimer com-
posed of a1-, a2-, and a1-chains (sc121 NC1-trimer) can be generated. D,
theoretically, sc121 NC1-trimer can be induced by chloride ions to self-
assemble into a hexamer.

helical portion of the collagen IV molecule (Fig. 2, A and B).
Although a significantly shortened segment of triple helix can
stabilize trimers of NC1 at low chloride concentrations (16),
such trimers have limitations that precluded their use in study-
ing the mechanism of NC1 trimer—to—hexamer assembly, a
native process outside the cells. These limitations include a low
yield in production, a susceptibility to proteolysis, and a loss of
the trimeric structure at physiological temperature (16).

To overcome these challenges, we developed a novel strategy
to stabilize the NC1 trimer. Analysis of the crystal structures of
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Figure 3. Design of a single-chain NC1-trimer. A, NC1 domain of each chain contains two C4 sub-domains. Shown are C4, (white) and C4, (black) sub-
domains of the a1-chain in a backbone representation. B, two C4 sub-domains are pulled away to highlight a native three-residue linker Ala—Pro-Ala (A-P-A).
G, trimmed C4, and C4, sub-domains are superimposed to demonstrate overall structural similarity and close geometrical positions of the N and C termini. D,
single-chain construct design combining accordingly trimmed «1- (highlighted in yellow), a2- (violet), and a1 (yellow)-chains using similar-to-native linkers
Gly-Thr-Gly (G-T-G) and Ala-Pro-Gly (A-P-G) (shown in red) between domains. Disulfide bonds are shown in cyan indicating their localization within the
individual C4 sub-domains. The figure was generated using PDB code 1t61 of the collagen IV NC1 domain from the placenta basement membrane.

the a121 NC1 hexamer revealed that the N and C termini of
adjacent domains of the NC1 trimer are proximal to each other
(20, 21). Thus, using two linkers, three NC1 monomers can be
linked into a single polypeptide (Fig. 2C). Furthermore, the sub-
domain architecture of an NC1 monomer represents the short-
est possible linker, which potentially would prevent undesired
linker flexibility, add to trimer stability, provide better resis-
tance to proteolysis of linkers, and exclude the possibility of
domain swapping. Single-chain approaches have been success-
fully applied to produce and solve the crystal structures of trim-
erization domains of collagen-like proteins adiponectin (22)
and complement protein Clq (23).

Design of the single-chain a121 NC1 trimer

The monomeric NC1 domain of al and o2 collagen IV
chains consists of two C4 sub-domains (C4, and C4,) con-
nected by a short three-residue linker (Fig. 3, A and B). The
linker sequence is conserved with Ala-Pro-Ala being a consen-
sus for a-chains of collagen IV (Fig. S1A). The C4 atomic struc-
tures are superimposable (Fig. 3C), and positions of either N or
C termini trimmed down to core sequences (with removed
linkers and terminal extensions) coincide. Thus, native C4,—
C4.,, connections can be supplemented with similar artificial
connections between C4, and C4, of adjacent domains to gen-
erate a single-chain 121 NC1 trimer (sc121 NC1 trimer) com-
bining six C4 sub-domains (Fig. 3D). Exact trimming and link-
ing sequences for al-a2 and a2—-al connections are provided
in Fig. S2, Band C. The resulting polypeptide construct (Fig. S2)
also contains an N-terminal FLAG-tag sequence for immuno-
precipitation and a signal peptide for secretion. Such a complex
polypeptide should have a pathway for successful oxidative
folding and formation of 18 disulfides. The polypeptide back-
bone of C4 has a knot-free topology, which does not require
sequential folding of C4 sub-domains. We hypothesized that
each C4 sub-domain represents an independent folding unit
where the three disulfides (Fig. 3D) significantly restrain its
structure upon oxidation. Indeed, the protein was expressed
and secreted in a soluble form with all cysteines oxidized into
disulfides (see below).
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sc121 NC1-trimers form NC1 hexamers in the presence of
chloride ions

The sc121 NC1-trimer was collected from the cell culture
medium containing a regular C1~ concentration and purified in
the presence of 150 mm NaCl. After size-exclusion chromatog-
raphy (SEC) on a column equilibrated with 25 mm Tris-HCI, pH
7.5, supplemented with 150 mm NaCl, the protein eluted as a
single peak (Fig. 44, indicated by blue line) with an apparent
molecular mass of 113 kDa, according to a protein calibration
kit. The major peak was pooled and analyzed by SDS-PAGE,
which showed a single band that was sensitive to reduction (Fig.
4B), expected because the protein contains 18 potential disul-
fide bonds. The protein was concentrated to the same volume
of sample that was initially applied to the column, and was
re-run over the same column, but equilibrated with Cl™ -free
buffer, 25 mm Tris acetate, pH 7.5, supplemented with 150 mm
sodium acetate. A clear shift was detected for the position of the
major peak with an elution volume that corresponded to an
apparent molecular mass of 60 kDa (Fig. 44, indicated by red
line).

These results suggest that the sc121 NC1-trimer occurred in
a hexamer configuration in the cell culture medium, but upon
removal of chloride the hexamer dissociated into NC1 trimers.
The apparent molecular masses are less than expected, as
the calculated molecular mass of the single-chain NCI1-
trimer is 76.2 kDa and the corresponding hexamer is 152.4
kDa. This phenomenon is consistent with our previous data
on chloride-dependent hexamer assembly using monomeric
NC1 chains (16). Whereas elution profiles of high molecular
mass complexes assembled from monomeric or single-chain
trimeric NC1 domains are identical on a SEC column in the
presence of chloride, the samples in Cl ™ -free buffer eluted at
different positions, corresponding to the monomeric and tri-
meric states (Fig. 4, C and D, indicated by red lines). Upon
the addition of chloride, sc121 NC1-trimers re-assembled
into hexamers (Fig. 4C). This behavior is identical to that of
NC1 monomers in the presence of chloride, as described
previously (Fig. 4D) (16).
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Figure 4. Chloride controls dissociation and re-assembly of the NC1 hexamer. A, sc121 NC1-trimer elutes from a size-exclusion column at two distinct
positions depending on the presence (blue) or absence (red) of chloride, suggesting that it exists as a hexamer and a single-chain trimer, respectively. B,
SDS-PAGE analysis of sc121 NC1-trimer under nonreducing and reducing conditions demonstrates homogeneity of the protein and the presence of intramo-
lecular disulfide bonds. C, chloride ions induce re-assembly of the hexamer from sc121 NC1-trimers. D, similar re-assembly of the hexamer from NC1 domain
monomers purified from bovine lens basement membrane occurs under the same conditions.

Moreover, sc121 NC1-trimers have the capacity to co-as-
semble with tissue-derived a1 and a2 NC1 monomers, forming
a complex that elutes in the position of NC1 hexamer. The
monomers were incubated with the sc121 NC1-trimer in the
presence of Cl ™, and a composition of formed hexamers was
analyzed after immunoprecipitation with the FLAG tag of the
recombinanttrimer (Fig. S3). Bothbovine a1l and a2 NC1 mono-
mers were incorporated into the heterotypic hexamer along
with the sc121 NCI1-trimer. Together, these results indicate
that the sc121 NC1-trimer harbors the capacity to interact with
chloride ions which induces (a) self-dimerization forming a
hexamer and (b) oligomerization with NC1 monomers forming
a heterotypic hexamer.

Atomic model of NC1 hexamer assembled from sc121
NC1-trimers

The putative NC1 hexamer formed from sc121 NC1-trimers
in the presence of chloride was collected from an SEC column,
concentrated, and used for crystallization trials while maintain-
ing the high chloride concentration. Ultimately, it was crystal-
lized in space group P4,2,2 with a single polypeptide chain per
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asymmetric unit (Table S1). The crystal structure was deter-
mined using X-ray diffraction. The overall atomic structure is
identical to the previously reported structures for human and
bovine NC1 domains isolated from tissues (Fig. S4). Least-
square superimpositions revealed no significant variations
between corresponding Ca atoms. Despite being of human ori-
gin, our structure fits bovine structures (1t60 and 1t61, RMSD
0.35-0.38 A) slightly better than human (PDB code 1LI1,
RMSD ~0.49 A). These minor discrepancies can be attributed
to the different crystallization conditions and crystal packing.
Structural identity for native and recombinant proteins dem-
onstrates the validity of our strategy of sc121 NC1-trimer pro-
duction. All C4 —C4 linkers, native and artificial, are well-struc-
tured and are related by a pseudo-hexagonal symmetry (Fig. 5).
All linker residues have a well-defined electron density map
(Fig. S5). Although slightly higher for the artificial sequences,
atomic displacement factors are comparable (Fig. S5F).
Previously reported structures of NC1 domains derived from
al21 scaffolds have one or several hexamers per asymmetric
unit, where each hexamer contains two NC1 trimers related
by a pseudo 2-fold rotation symmetry. Here, the hexamer is
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Figure 5. Artificial linkers mimic the pattern of native C4-C4 connec-
tions. Stereo pairs of backbone wire-frames are viewed from putative triple-
helical part for native NC1-trimer (A) or sc121 NC1-trimer (B). Two linkers,
Gly-Thr-Gly (GTG) and Ala-Pro-Gly (APG) (shown in red), connect three chains
into a single polypeptide. C, superimposition of native and sc121 NC1-trimers
shows minimal distortion from introduced linkers.

formed by two sc121 NCl1-trimers related by a crystal 2-fold
rotation symmetry (Fig. 6). These results show that in the pres-
ence of chloride the sc121 NC1-trimer assembles into a hex-
amer configuration.

Two groups of chloride ions at the hexamer interface

In the crystal structure of €121 NC1 hexamers, derived from
a native collagen IV scaffold, two sets of ions were found at the
interface between NCI1 trimers and assigned to six Cl™ and six
K" ions (18). Our recent data on NC1 hexamer assembly clearly
demonstrated a Cl™- but not K*-dependent mechanism of
assembly (16), prompting us to reassess the identity of K™ ions.
Re-analysis of structural data pointed to a possibility that sites
originally assigned to K™ are rather occupied by an additional
six C1™. Very recently, the same conclusion was reached based
on structural data of different NC1 hexamers assembled from
recombinant polypeptides (19). The number of ions at the
trimer—trimer interface of 121 NC1 hexamers in reported
structures varies depending on protein source, preparation,
crystallization conditions, and resolution, where 6, 8, 11, 12,
and 14 ions per hexamer were identified (18 —21). To determine
the number and positions of Cl ™~ ions involved into stabilization
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rotation
axis

Figure 6. Two single-chain NC1-trimers form a hexamer. Asymmetric unit
is a single polypeptide chain of the sc121 NC1-trimer represented as a surface
marked in yellow for a1 and violet for «2 NC1 domains. A triple helix, which is
not a part of this structure, is shown as a cartoon for orientation purpose. The
biological unit of a hexamer observed in the crystal structure can be gener-
ated by applying a crystallographic 2-fold rotation symmetry to the asymmet-
ric unit.

of the NC1 hexamer, here we purposely purified and crystal-
lized the sc121 NCl1-trimer in the presence of high chloride
concentration to mimic natural extracellular CI™ content.

Analysis of the hexamer formed from sc121 NC1-trimers
revealed aset of 12 Cl™ ions at the trimer—trimer interface (Fig.
7). These ions form two structurally different groups (Fig. 8).
Group 1 has been previously identified (18) and includes six
chloride ions (16). Group 2 has been recently suggested and also
includes six chloride ions (19). Several factors support the C1™
nature for the observed electron densities (Fig. S6). Original
phasing for the NC1 domain was done using an anomalous
signal from Br™ ions (belonging to the same halide group as
Cl7). All 12 positions (both groups) exhibited anomalous sig-
nals from bromide ions. Although crystal soaking was done
using KBr salt, these sites were occupied by Br~ and not K™
ions. A crystal structure of the NC1 domain derived from
human placenta contains six acetate ions instead of group 2
chlorides (chloride ions were excluded during protein prepara-
tion and in crystallization solutions) indicating the preference
for negative charges at these locations. Collectively, all 12 Cl™ at
the trimer—trimer interface have well-defined and comparable
electron density (Fig. S6) and B-factor values in the range from
23 to 27 A2, like atoms of nearby residues. Together, the 12 ions
form a chloride ring at the hexamer interface (Fig. 7).

Analysis of the solvent-accessible surface of the trimer and
the hexamer shows that group 1 chloride ions are solvent-ac-
cessible in the trimer only, but group 2 ions remain solvent-
exposed in the assembled hexamer (Fig. 9). Every Cl~ of group
2 is sitting in a pocket, which communicates with the outside
through a portal. The nature and geometry of such a structure
points to a sensing mechanism of chloride concentration,
where bound CI™ ions are in dynamic equilibrium with free
ions in solution.
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Figure 7. Two groups of chloride ions coordinate the hexamer struc-
ture composed of two sc121 NC1-trimers. The biological unit, a hex-
amer, is depicted as ribbons. Interaction of two sc121 NC1-trimers (shown
in light gray and black) is mediated by two groups of chloride ions (shown
in blue for group 1 and green for group 2). Each group has two symmetry-
related layers. All four layers are parallel to each other and to the equato-
rial plane of the hexamer. Solid lines are drawn between Cl™~ ions for each
layer for presenting an array of planes. A dashed line represents a 2-fold
rotation symmetry axis.

Characterization of the oligomeric states of sc121 NC1-trimer
in solution

To verify oligomeric states in solution, we performed sedi-
mentation equilibrium ultracentrifugation (Fig. 10A). For
material collected from the major peak in the Cl ™ -rich condi-
tions, we determined the molecular mass of 148 * 10 kDa,
which is consistent with the hexameric state of NC1 (calculated
mass is 152 kDa). Cl ™ -free material demonstrated a nonideal
behavior and an average molecular mass of 100 = 8 kDa
(expected mass for the trimer is 76 kDa), which might reflect an
equilibrium between a hexamer and a trimer. Indeed, using a
model of trimer—to—hexamer self-association with the mass of
the trimer fixed to 74 kDa, we fitted the sedimentation equilib-
rium curve and estimated the K, value to be 37 um. The fraction
of trimer under the experimental conditions (0.3 mg/ml con-
centration of the protein in Cl™ -free buffer) corresponded to
~89%. Because the hexamer fraction was not observed on the
sieve column, the k. of the hexamer—to—trimer reaction is
significantly faster than running time of a size-exclusion chro-
matography (~30 min).

We verified the Cl™-dependent oligomeric state of our
samples using an imaging mode of atomic force microscopy
(AFM) (Fig. 10B). Sample preparation included incubation
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of 20-40 ul containing tens of nanograms of protein at the
surface of freshly cleaved mica to allow for noncovalent
adhesion of molecules followed by a short wash with deion-
ized water and fast drying. The wash step with water
removed Cl™ and thus initiated dissociation of the hexamers
into sc121 NC1-trimers. Surprisingly, dissociated molecules
stayed in contact with mica while diffused on the surface
(Fig. 10B). As a result, we observed pairs of NC1 trimers for
Cl™ -containing samples and random distribution of NC1
trimers prepared from Cl™ -free solutions.

CD far-UV spectrum (Fig. 114) confirmed the identity of the
secondary structure content of the recombinant single-chain
NC1 domain and tissue-derived NC1 domains (24). Moreover,
this content is largely the same for the hexamer and the trimer.
However, the hexamer stabilized by the Cl ™~ ions demonstrated
significantly higher (by ~20 °C) resistance to irreversible heat
denaturation and precipitation than the trimer in the Cl™ -free
buffer (Fig. 11B).

Together, our results confirmed the Cl™-dependent nature
of the NC1 hexamer and competence of our artificially sta-
bilized single chain sc121 NC1-trimer for hexamer assembly.
The trimer at low Cl™ concentration represents an interme-
diate state suitable for quantitative analysis of the hexamer
assembly. This system provides an excellent model for study-
ing the process of hexamer assembly induced by exposure to
high Cl™ concentration, which happens outside cells when
full-length collagen IV is secreted to the extracellular
environment.

Kinetics of hexamer assembly from sc121 NC1-trimers

We quantitatively analyzed the assembly process of the hex-
amer from the NC1 intermediate-state trimer under varying
conditions. We performed a series of experiments under differ-
ent C1~ concentrations, protein concentrations, and tempera-
ture and measured the assembly kinetics (Fig. 12) using the
sc121 NC1-trimer as well as monomers for comparison. For all
conditions, the sc121 NC1-trimer assembled into the hexamer
more efficiently than monomers, except very low Cl~ concen-
trations (Fig. 124) and initial kinetics (Fig. 12D), where the
sc121 NC1-trimer behaved indistinguishably from monomers.
Trimer—to—hexamer assembly should follow a simple bimolec-
ular reaction mechanism (Reaction 1) where two trimers T
form a hexamer H, as opposed to a multistep assembly process
from monomers M.

T+T=H

Reaction 1

Two constants, k, and k,, describe association and dissocia-
tion rates, respectively, via the differential Equation 1.

aT_ k1% + kH = 2dH
de T TR Sdr

(Eq. 1)

In case of high Cl™ concentration, k, is negligible (the hex-
amer is stable), and the reaction can be described by a single rate
constant k,.
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Group 1

Figure 8. Chloride ions coordinate the sc121 NC1-trimer-trimer interface. Interactions for group 1 (blue spheres) and group 2 (green) Cl~ ions are shown.
Residues of the one sc121 NC1-trimer are labeled in white and of the opposite sc121 NC1-trimer is in black. Coordination by residues and water molecules is
shown as white and black dashed lines for the two trimers, respectively. Additional water molecules participate in coordination of group 1 chloride ions, as

shown by gray dashed lines (upper panel).

T+ Tﬁ H (Eq.2)
The differential Equation 2 becomes Equation 3.
% = —k,[TP (Eq.3)
Its general solution is given by Equation 4.
(M1 = (Eq.4)

k, -t + const

Given that all protein is trimeric at time point ¢ = 0, the final
solution is shown in Equation 5.

[Tl =

ka‘t‘i‘?o

(Eq.5)

This can be used to find the time-dependent concentration
of the hexamer as shown in Equation 6.

TO_[T]_TO 1

(H=""5 2

(Eq.6)
2ka t+ ?0

We used Equation 6 to fit experimental kinetic data (Fig.
S7A) and derived k, = 3.45 + 0.12M "~ 's~'. Equation 6 allows us
to predict the hexamer fraction at any given time and from any
starting trimer concentration. Predicted concentration-depen-
dent data perfectly fit the experimental values (Fig. S7B), fur-
ther validating the second-order reaction model. As expected,
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the kinetics are concentration-dependent. Theoretical values
calculated for the hexamer formation kinetics are presented in
Fig. S7C using a range of protein concentrations.

To estimate the activation energy E,, for assembly, we fit the
temperature data (Fig. S7D) using Equation 6 and the following
form of the Arrhenius Equation 7 for kZ,

1 1
ki =kl e‘fﬂ(f?r‘ Tro) (Eq.7)
where k’° = k_ at T, = 310.15 K (37 °C). The resulting value of
the activation energy is 49.5 = 2.3 k] m~ .

Evolution of the chloride ring

Collagen IV is conserved across all animals (1, 10); however,
the evolutionary conservation of the chloride ring is unknown.
To determine the evolutionary origin and conservation of the
chloride ring and the residues of the chloride switch (16), we
aligned amino acid sequences of NC1 domains across several
metazoan representatives and annotated those residues whose
side chains coordinate chloride ions and participate in the chlo-
ride switch (Fig. 13). Group 1 residues occur in at least one
a-chain in all animals, except for both sponge representatives.
Group 2 residues first occurred within cnidarians and were
conserved across bilaterians, except for fruit fly and one colla-
gen IV chain in Caenorhabditis elegans and Ciona intestinalis.

Residues of the chloride switch occur in at least one a-chain
in all species, except for the calcareous sponge representative
(Fig. 13). Interestingly, in fruit fly, the a2-chain lacks the switch,
group 1, and group 2 residues, whereas the al-chain contains
switch and group 1 residues, suggesting an alternative mecha-
nism of hexamer assembly. Importantly, there is a transition
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Figure 9. Solvent accessibility of groups 1 and 2 chloride ions. Group 1
ions (blue) are solvent-accessible in the sc121 NC1-trimer (A) but not in the
assembled hexamer. In contrast, group 2 ions (green) are solvent-accessible in
the assembled hexamer through portals (B). Solvent-accessible surfaces of
the trimer and the hexamer are colored in yellow for a1 and in violet for a2.
Fragments of the triple helix are shown as cartoons for orientation purposes
only and are not part of the reported structure.

within nonbilaterian animals wherein only switch and group 1
residues occur in Trichoplax, sponges, and comb jelly, whereas
the switch, group 1 and group 2 residues occur within cnidar-
ians and were conserved across bilaterians. This analysis indi-
cates that the chloride ring is a fundamental feature of collagen
IV scaffolds that first appeared in a last common ancestor of
cnidarians and bilaterians.

Discussion

BM signaling is pivotal to cell behavior and differentiation,
yet many assembly mechanisms of its toolkit proteins remain
undefined (7, 25), including those for collagen IV scaffolds
(5, 26). Collagen secretion is accompanied by a change of
chloride concentration from about 5 mm inside the cells to
about 100 mM on the outside of the cells. Such a chloride
concentration switch triggers the formation of the NC1 hex-
amer, a critical step in the assembly of collagen IV scaffold
(16). The single-chain NC1-trimer technology provided an
approach to directly investigate how chloride ions induce
collagen IV protomer oligomerization (Fig. 2), a key step in
scaffold assembly (5, 16, 26). We found that 12 chloride ions
form a chloride ring at the hexamer interface (Fig. 7) and

SASBMB

induce the sc121 NCI1-trimer to self-assemble (Fig. 4) into
hexamer with an atomic structure identical to that of hex-
amers from tissues (Fig. S4) (18, 21). The chloride ring is
composed of two structurally distinct groups of six ions.
Group 1 ions induce hexamer assembly, and group 2 ions
stabilize the hexamer structure. The overall mechanism of
chloride function in collagen IV scaffold assembly in a bio-
logical context is summarized in Fig. 14.

In the first stage of oligomerization, group 1 ions activate a
molecular switch within the NC1-trimeric domain that induces
trimer—trimer interactions, forming an NC1 hexamer (Fig. 14),
as shown previously (16). Extracellular C1™ disrupts the intra-
molecular salt bridge Arg-76 —Asp-78, and specific binding of a
Cl™ ion causes coordination of the Arg-76 backbone amide,
thus orienting the side chain toward an opposing NC1 trimer
and ultimately forming salt bridges with Glu-175 and Asn-187
side chains (16). Cl ™ ion coordination is fulfilled by a short loop
(residues «al_74-78, o2_298-302, or al_521-525), ionic
interaction with arginine side chain (a1_Arg-179, al_Arg-626,
or a2_Arg-402) of an opposing trimer, and hydrogen bonding
with two water molecules (Fig. 8 and Table S2). Within the
hexamer structure, group 1 ions are buried deep and are located
on the trimer face, hooked by the backbone loops that provide
two amide and one Ca hydrogen bonds (Fig. 8).

In the second stage of oligomerization, group 2 ions stabilize
the quaternary structure of the assembled hexamer (Fig. 14).
Each ion has extensive hydrogen bonding from both trimers
and ionic interaction with the side chain of arginine (al_Arg-
76, al_Arg-523, or a2_Arg-300) (Fig. 8 and Table S2). Interest-
ingly, these arginines are re-oriented by group 1 chlorides (16).
Thus, group 1 and group 2 ions form a continuous network of
interactions that stabilize the hexamer interface. Sequence
variations between al- and a2-chains lead to two patterns of
coordination, with or without water molecules. In the a2-chain,
the hydroxyl group of Tyr-288 (Phe-64 and Phe-511 in «l)
coordinates Cl™ instead of one water molecule, and the side
chain of Tyr-296 (Asn-183 and Asn-630 in «1) provides C-H
hydrogen bonding and sterically excludes the possibility of
accommodating another water molecule (Fig. 8 and Table S2).
Collectively, each Cl™ ion of group 2 coordinates three O—H
(two for water-free pattern), two N—H, and four C—H hydrogen
bonds and one ionic interaction (Table S2).

Group 2 Cl™ ions, located close to the equatorial plane of the
hexamer (Fig. 7), are probably in equilibrium with solution, so
local CI™ concentration is crucial for maintaining the popula-
tion of these sites and hexamer stability. The mechanism of
assembly and stabilization is fully reversible (Fig. 4). Exchange
of chloride ions from the medium to the binding sites can pro-
ceed through open portals (Fig. 8B). If CI™ concentration is
insufficient to maintain a critical number of group 2 ions, the
hexamer will dissociate into trimers where group 1 ions will
become solvent-accessible and lost, which would conse-
quently lead to structural changes at the trimer interface
making it incompatible with trimer—trimer docking. In sum-
mary, the 12 CI™ ions of groups 1 and 2 constitute a chloride
ring located at the trimer—trimer interface of the hexamer.
Functionally, group 1 ions activate the NC1 trimer to assem-
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Figure 10. Oligomeric state of sc121 NC1-trimer under Cl~-containing and Cl~-free conditions. A, sedimentation equilibrium experiments using analyt-
ical centrifugation demonstrate the difference in molecular mass of the sc121 NC1-trimer in Cl”-containing (blue) and Cl™ -free (red) buffers. B, atomic force
microscopy images of the same samples are used to directly visualize the difference in oligomeric state of the sc121 NC1-trimer. Top, wide-field; bottom, closer
view. When deposited from Cl~-containing buffers (left), sc121-NC1 initially associated with the mica as hexamers, rinsing with water-induced dissociation into
pairs of trimers. Conversely, only randomly distributed sc121 NC1-trimers were observed when deposited from CI™ -free solutions (right).

ble into an NC1 hexamer, and group 2 ions stabilize the with the chloride switch emerged first in the last common
hexamer structure (Fig. 14). ancestor of nonbilaterian animals and were conserved through-

Importantly, the chloride ring was an evolutionarily ancient  out the animal kingdom. Binding sites for group 2 ions emerged
innovation that is highly conserved across the animal kingdom  in the last common ancestor of cnidarians and bilaterians and
(Fig. 13). Binding sites for group 1 ions and residues involved were conserved throughout Bilateria. Thus, we conclude that
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Figure 11. Chloride has a minor effect on secondary structure, but ther-
mal stability of the hexamer is greatly increased compared with the
trimer. A, CD spectra of the NC1 hexamer assembled from sc121 NC1-trimers
in Cl™-containing buffer (blue) and in CI”-free buffer (red). B, thermal dena-
turation profile was monitored by measuring the CD signal at 230 nm.

the chloride ring is a fundamental structural feature mediating
the assembly of collagen IV scaffolds of basement membranes
and represents a critical innovation that helped enable tissue
evolution and development.

A growing number of examples indicate that the chloride
gradient between intracellular compartments and the extra-
cellular environment has a general impact on secreted pro-
teins. In addition to collagen IV assembly (16), the gradient is
critical for collagen type I fibril formation (27, 28). Another
example is the direct effect of chloride on WNKI1 kinase
signaling (29). Low Cl~ concentration inside cells prevents
premature network formation of ECM molecules (16) and
may help to minimize the size of molecules for secretion
(30). Similar to our findings, chloride can affect oligomeri-
zation of other proteins as has been shown for the dimeriza-
tion of bacterial alkaline phosphatase (31). Moreover, Cl™ is
a significant hydrogen bond acceptor that can coordinate
multiple groups at the same time. Given the abundance of
Cl™ in all organisms, the structural and functional impact of
this ion is probably underappreciated.

Chloride ion is vital for multiple physiological processes. Dis-
balance of chloride concentration affects blood pressure, gas
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exchange, acid-base equilibrium, neural signal transduction,
gastrointestinal and kidney functions, etc. (32). A dramatic
decrease, by about 30%, of chloride concentration in blood
plasma is observed in patients with cystic fibrosis (33). All these
conditions might also lead to defects in the basement mem-
brane due to impaired collagen IV scaffold formation, a new
aspect to be investigated.

Finally, we conclude that the single-chain NC1-trimer is a
novel and powerful tool to study a plethora of questions about
the mechanisms underlying specificity and stability of the NC1
trimer and hexamer assembly. The rationale for this is compe-
tence of the sc121 NCI1-trimer for Cl™ -dependent self-assem-
bly of hexamer, the structural identity of the hexamer to the
native structure, and co-assembly of sc121 NC1-trimer with
tissue-derived NC1 monomers forming a heterotypic hexamer.
Moreover, this single-chain trimer technology can be used to
explore assembly, structure, and function of «121, @345, and
a565 collagen IV scaffolds, as well as the pathogenesis of dis-
eases involving these scaffolds. In addition, the technology pro-
vides a framework for production, formulation, and adminis-
tration of potential collagen IV replacement therapies in Alport
syndrome, and for screening of drug candidates as inhibitors of
scaffold assembly for use as anti-angiogenic and anti-fibrotic
agents.

Experimental procedures
Cloning, expression, and purification

Human sequences encoding residues 1438 —1666 of a1-chain, a
Gly-Thr—Gly linker, residues 1490 —1709 of a2-chain, a Ala—Pro—
Gly linker, and residues 1446 -1669 (including final C-terminal
residues) of al-chain of collagen IV NC1 domain were subse-
quently cloned in-frame with the SPARC signal peptide and the
FLAG tag of the pRc-X vector (34) (pRe-X_ala2al-scNC1)
between restriction sites Nhel and BspDI. Linkers between
al-a2-chains and a2—al-chains were designed to contain re-
striction sites Kpnl and Xmal, respectively (encoding Gly-Thr
and Pro-Gly residues of Gly-Thr-Gly and Ala-Pro-Gly linkers).
These restriction sites simplified cloning and generated a con-
venient vector suitable for generation of other combinations
of collagen IV chains. The DNA sequence is available upon
request. The resulting plasmid was sequence-verified and
transfected into HEK293 cells. Stable clones were isolated
using antibiotic selection with G-418. Protein expression in
conditioned media was verified by Western blotting using
rat anti-collagen IV NC1 (1:250 dilution, JK2; from Y. Sado,
Shigei Medical Research Institute, Okayama, Japan). Several
clones were selected based on the highest level of expression
ofsc121 NC1-trimer. The recombinant protein fused with an
N-terminal FLAG-tag was purified as described (35). Size-exclu-
sion chromatography using Superdex 200 Increase 10/300 GL col-
umn (GE Healthcare) was used for the final purification steps.
Purified product yielded a single band on SDS-PAGE under
nonreducing conditions verifying homogeneous oxidation of
disulfide bonds (Fig. 9B). The final yield from two selected clones
varied from 1.5 to 3 mg/liter of serum-free Dulbecco’s modified
Eagle’s medium to 3— 6 mg/liter of media supplemented with 10%
fetal bovine serum.

J. Biol. Chem. (2019) 294(20) 7968-7981 7977



A chloride ring mediates assembly of collagen IV scaffold

A

100 1

assembled from
sc121 NC1-trimers

80 A1

assembled from
a1l and a2
NC1 monomers

60 -

40 A

20 A

Hexamer, % total peak area

150 200 250 300

NaCl, mM

100

O

100 1

80 A

60 -

40 A

20 A

Hexamer, % total peek area

40

Temperature, °C

B

80 1
©
o
[\
X
3 60 -
o
©
ks
X 40
=
£
(]
3 20 -
T
0 v + + T
0.0 0.5 1.0 15 2.0

Protein, mg/mi

O

100 -

80 -

L)

40

20 1

Hexamer, % total peak area

10 15 20 25

Time, h
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Crystallization and structure determination

The sc121 NCl1-trimer was crystallized in tetragonal form
(space group, P4,2,2,) using the hanging drop vapor diffusion
method. The protein solution (11 mg/ml) in 5 mm Tris-HCl, pH
7.5, 150 mm NaCl was mixed for the drop solution in a 1:1
proportion with a reservoir solution of 0.085 m HEPES, pH 7.5,
1.68 M ammonium sulfate, and 1.5% (w/v) PEG 400. The crystals
grew to a final size 0f 0.5 X 0.5 X 0.3 mm after 2—5 days at 22 °C.
The crystals were briefly dipped into a cryoprotectant solution
containing the reservoir solution and 30% (v/v) glycerol and
then frozen in liquid nitrogen. Data collection was performed
remotely on crystals cryocooled to 100 K at the Life Sciences
Collaborative Access Team beamline 21-ID-G at the Advanced
Photon Source, Argonne National Laboratory. Data extending
to 1.9 A resolution were indexed using iMOSFLM (36) and then
scaled and merged using Scala (37). Amplitudes were converted
to structure factors using Ctruncate (38). Five percent of the
data were set aside to monitor R, .. Initial phases were obtained
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by molecular replacement using Phaser-MR (39) and the previ-
ously solved alala2 NCI1 trimer (PDB code 1LI1) (21) as the
search model. One scNC1 polypeptide was found per asymmet-
ric unit (V,, = 2.6 A3/Da; solvent content = 53% (40)). Refine-
ment of the sc121 NCI1-trimer was carried out using Phenix
(41) with TLS restraints. The models were manually adjusted
between each refinement cycle using Coot (42). Model geome-
try assessed using MolProbity (43) showed 97.5% of the resi-
dues in the favored region and 2.5% in the additionally allowed
region, with none in the outlier regions. The final data collec-
tion and refinement statistics are shown in Table S1. Model
superimpositions were done using LSQ Superpose function in
Coot (42).

Oligomeric state analysis

Size-exclusion chromatography of tissue-extracted NC1
hexamer and the recombinant sc121-NC1 hexamer was con-
ducted with a Superdex 200 Increase 10/300GL gel-filtration
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Figure 13. Evolutionary analysis of amino acid residues of collagen IV NC1 domains that are directly involved in chloride-dependent hexamer
assembly. The side chain of Arg/Lys-179 (blue) is coordinated by a group 1 chloride ion of the opposite trimer. Group 2 chloride ions coordinate side
chains of residues Phe/Tyr-64, Asn-66, Arg-76, and Tyr/His-189 of both trimers (green). Chloride ions of group 1 are also involved in switching of Arg-76
interaction with Asp-78 on the same trimer to Glu-175 and Asn/Asp-187 on the opposite trimer (all boxed) (16). The chloride switch is determined by the
presence of at least residues Arg-76, Asp/Glu-78, and Glu-175. Prediction of group 1 Cl~ coordination (blue ball) is based on the presence of Arg/Lys-179
directly involved in binding to the ion. Prediction of group 2 CI™ coordination (green ball) is based on the presence of all four residues, Phe/Tyr-64,

Asn-66, Arg-76, and Tyr/His-189.

column (GE Healthcare), using an AKTA purifier (GE Health-
care) at a 0.5 ml/min flow rate. Two eluants were used: 25 mm
Tris-HCI, pH 7.5, with 150 mm NaCl (TBS, Cl™ -reach buffer),
and 25 mwm Tris acetate, pH 7.5, with 150 mm sodium acetate
(TNA, Cl™ -depleted buffer). Eluting proteins were monitored
by A,g, Apparent sizes were calculated using a calibration
curve where logarithm of the molecular mass was plotted
against normalized retention volume (44) of protein
standards (Bio-Rad). The area under hexamer peak was inte-
grated using Unicorn software (GE Healthcare) and
expressed as a percentage of the total peak area for quanti-
tation of hexamer assembly.

Sedimentation equilibrium measurements were performed
with a Beckman model XLA analytical ultracentrifuge. Samples
of 0.3 mg/ml concentration were in TBS or TNA buffers. Runs
were carried out at 4 °C in an An60-Ti rotor using 12-mm cells
and Epon two-channel centerpieces. The rotor speeds used
were 9,000 and 10,000 rpm for TBS and TNA buffers, respec-

SASBMB

tively, and equilibria were reached after 48 h. The SEDNTERP
(45) program was used to calculate v,,, = 0.725 cm® g~ !, and
densities of TBS (1.0051 g cm ™ ®) and TNA (1.0054 g cm ™)
buffers. Data analysis was performed using the SEDFIT and
SEDPHAT software (46, 47).

The sample preparation for atomic force microscopy was done
on mica (Highest Grade V1 AFM Mica Discs, 10 mm, Ted Pella).
The samples in TBS or TNA buffers were diluted into a ~1-2
pg/ml solution, and 50 wl was deposited onto freshly cleaved mica.
After a 30-s incubation period, the excess unbound proteins were
washed with ultrapure water for ~10 s, and the mica was dried
immediately under filtered air. All proteins were imaged under dry
conditions, and the solution conditions of the samples refer to the
conditions in which they were deposited onto mica. AFM imaging
was done with an Asylum Research MFP-3D atomic force micro-
scope using AC tapping mode in air. AFM tips with a 160 kHz
resonance frequency and 5 newtons/m force constant (MikroM-
asch, HQ: NSC14/AL BS) were used.
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Figure 14. Summary model for the role of the chloride ring in the assem-
bly of collagen IV scaffolds. Group 1 Cl™ ions, three per trimer, populate two
NC1 trimers, activating the surface for docking and hexamer formation. The
bimolecular assembly reaction proceeds with the k, rate constant. Finally, the
quaternary structure of the hexamer is stabilized by six group 2 Cl " ions, three
per trimer. The chloride ring of 12 remains a structural component providing
integrity to the collagen IV scaffold.

Secondary structure comparison and thermal stability

Far-UV CD spectra were recorded on a Jasco model J-810
spectrometer equipped with Peltier temperature control unit
(JASCO Corp.) using a quartz cell of 1-mm path length at 20 °C.
The spectra were normalized for concentration and path length
to obtain the mean molar residue ellipticity. Thermal scanning
curves were recorded at 230 nm with the heating rate of
0.5 °C/min.

Hexamer assembly analysis

In vitro assembly of the sc121 NCl1-trimers and tissue-ex-
tracted monomers at 1 mg/ml concentration in 25 mm Tris
acetate buffer, pH 7.5, was induced by adding NaCl at 150 mm
final concentration and incubated for 24 h at 37 °C unless spec-
ified otherwise. The products of assembly were fractionated
and analyzed on size-exclusion chromatography.

Data presentation, fitting, and analysis

3D images were generated using Blender (www.blender.
org).* Protein structure figures were generated using PyMOL
(9). Experimental data fitting was done using the Gnuplot pro-
gram (www.gnuplot.info).* Plots were visualized with the Grace
program (http://plasma-gate.weizmann.ac.il/Grace/).* Protein
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structure figures were generated using PyMOL (9). Figure
assembly and labeling were done using GIMP and Inkscape
software.
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