
����������
�������

Citation: Ullah, S.; Ahmad, J.; Khan,

M.A.; Alkhammash, E.H.; Hadjouni,

M.; Ghadi, Y.Y.; Saeed, F.; Pitropakis,

N. A New Intrusion Detection

System for the Internet of Things via

Deep Convolutional Neural Network

and Feature Engineering . Sensors

2022, 22, 3607. https://doi.org/

10.3390/s22103607

Academic Editor: Paolo Bellavista

Received: 7 April 2022

Accepted: 6 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A New Intrusion Detection System for the Internet of Things
via Deep Convolutional Neural Network and
Feature Engineering

Safi Ullah 1 , Jawad Ahmad 2,* , Muazzam A. Khan 1,3, Eman H. Alkhammash 4 , Myriam Hadjouni 5 ,
Yazeed Yasin Ghadi 6 , Faisal Saeed 7 and Nikolaos Pitropakis 2

1 Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan;
safiullah@cs.qau.edu.pk (S.U.); muazzam.khattak@qau.edu.pk (M.A.K.)

2 School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK; n.pitropakis@napier.ac.uk
3 Pakistan Academy of Sciences, Islamabad 44000, Pakistan
4 Department of Computer Science, College of Computers and Information Technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia; eman.kms@tu.edu.sa
5 Department of Computer Sciences, College of Computer and Information Science, Princess Nourah Bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; mfhaojouni@pnu.edu.sa
6 Department of Computer Science and Software Engineering, Al Ain University,

Abu Dhabi 122612, United Arab Emirates; yazeed.ghadi@aau.ac.ae
7 DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital

Technology, Birmingham City University, Birmingham B4 7XG, UK; faisal.saeed@bcu.ac.uk
* Correspondence: j.ahmad@napier.ac.uk

Abstract: The Internet of Things (IoT) is a widely used technology in automated network systems
across the world. The impact of the IoT on different industries has occurred in recent years. Many
IoT nodes collect, store, and process personal data, which is an ideal target for attackers. Several
researchers have worked on this problem and have presented many intrusion detection systems
(IDSs). The existing system has difficulties in improving performance and identifying subcategories
of cyberattacks. This paper proposes a deep-convolutional-neural-network (DCNN)-based IDS. A
DCNN consists of two convolutional layers and three fully connected dense layers. The proposed
model aims to improve performance and reduce computational power. Experiments were conducted
utilizing the IoTID20 dataset. The performance analysis of the proposed model was carried out
with several metrics, such as accuracy, precision, recall, and F1-score. A number of optimization
techniques were applied to the proposed model in which Adam, AdaMax, and Nadam performance
was optimum. In addition, the proposed model was compared with various advanced deep learning
(DL) and traditional machine learning (ML) techniques. All experimental analysis indicates that the
accuracy of the proposed approach is high and more robust than existing DL-based algorithms.

Keywords: convolution neural network; cybersecurity; deep learning; Internet of Things; intrusion
detection

1. Introduction

The IoT foresees the networking of a wide range of smart things in our environment
that are capable of accumulating, processing, and communicating data [1]. The IoT is a
widely used technology in automated network systems across the world that has had an
impact on different areas, such as the agricultural, medical, transport, and automobile
industries, and water monitoring in recent years [2,3]. The use of IoT devices has increased
dramatically, from 15.41 billion in 2015 to more than 35.8 billion in 2021, as homes and
businesses increasingly rely on online technology [4]. The IoT is anticipated to reach
75.44 billion devices by 2025, as shown in Figure 1, which will generate 79 zettabytes
(ZB) of data [5]. The IoT has been identified as a critical component of digitization for a
transforming society [6].

Sensors 2022, 22, 3607. https://doi.org/10.3390/s22103607 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103607
https://doi.org/10.3390/s22103607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9973-640X
https://orcid.org/0000-0001-6289-8248
https://orcid.org/0000-0002-0412-7127
https://orcid.org/0000-0001-9070-6821
https://orcid.org/0000-0002-7121-495X
https://orcid.org/0000-0002-2822-1708
https://orcid.org/0000-0002-3392-9970
https://doi.org/10.3390/s22103607
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103607?type=check_update&version=2

Sensors 2022, 22, 3607 2 of 16

Figure 1. Growth of IoT devices from 2015 to 2025 [5].

Many IoT devices capture, store, and process personal data, making them a feasible
target for assailants because of their distributed structure and openness [7]. The effective
deployment of IoT networks is becoming more dependent on security [8]. An IDS is
required to examine IoT network traffic for the identification of cyberattacks [9]. Several
researchers have worked on IDSs in which machine learning (ML) and deep learning (DL)
models play a key role [10]. ML and DL techniques are widely used in different fields,
such as in agriculture [11], medical [12], and automobile industries [13,14]. DL is a branch
of ML, and it is generalizable to new problems with complicated and high-dimensional
data. Furthermore, DL methods allow for the training of nonlinear models on big datasets
in a systematic way [15]. This is why DL performs well in detecting intrusions, as it not
only handles a large amount of data but also can generalize to new types of attacks in the
network [16].

The existing system has difficulties in improving performance and identifying subcat-
egories of cyberattacks. This paper proposes a DCNN followed by a deep-neural-networks
(DNN)-based IDS. The primary advantage of a DCNN is its ability to exploit the correlation
between features [17]. A DCNN works on a lower number of parameters than other DL
models [18]. Thus, the required computational power is decreased, and the learning process
is improved. The proposed system improves the performance of existing IDSs and extends
to subcategories of malicious attack detection in IoT networks. The IoT network intrusion
dataset 2020 (IoTID20) was used for experiments on the proposed model. This dataset
includes data for binary, multi-category, and subcategories of IoT networks.

Contributions

• We proposed a DCNN technique for malicious activity identification in IoT networks.
• We improved performance and reduced the computational power of an IDS for low-

power IoT devices in the network.
• We identified the subcategory of cyberattacks in the IoT networks.
• We compared the proposed scheme with other DL and traditional ML techniques.

The remainder of the article is organized as follows. Section 2 discusses related
work and presents a literature comparison. A step-by-step methodology of the proposed
system is presented in Section 3. Section 4 provides a detailed analysis of the results and a
comparison with state-of-the-art models. This work is concluded in Section 5.

2. Related Works

Security is an essential part of an IoT network for stability, reliability, and safe com-
munication. Several researchers have proposed different techniques for the detection of
malicious attacks in IoT networks. Basati et al. [19] presented an IDS called deep feature
extraction (DFE). This model is based on a CNN. The authors mainly focused on those

Sensors 2022, 22, 3607 3 of 16

devices that have low processing power. They used UNSW-NB15, CICIDS2017, and KDD-
Cup99 datasets for their experiments. The model was tested for both binary and multi-class
classifications. Rashid et al. [20] proposed a stacking ensemble approach based on trees
for intrusion detection in the IoT. Two incursion datasets, NSL-KDD and UNSW-NB15,
were used to evaluate the efficacy of the proposed model. They also improved efficacy by
integrating feature selection strategies to identify the most relevant features.

Fatani et al. [21] introduced a novel feature engineering technique for the IDS system
while using the benefits of swarm intelligence (SI) techniques. Four popular public datasets,
CIC2017, NSL-KDD, BoT-IoT, and KDD99, were utilized to test the quality of the proposed
IDS technique. Alkahtani et al. [22] suggested three advanced and widely used DL models
for intrusion detection. The authors conducted experiments on long short-term memory
(LSTM), CNN, and a hybrid model of CNN–LSTM. They used the IoTID20 dataset for the
evaluation of these DL models. Keserwani et al. [23] presented a method for extracting
significant IoT network features for intrusion detection. The proposed method consists of
a combination of grey wolf optimization (GWO) and particle swarm optimization (PSO).
They utilized the KDDCup99, NSL-KDD, and CICIDS-2017 datasets.

A single hidden layer feedforward neural network (SLFN) method was introduced by
Qaddoura et al. [24] for malicious activity detection in IoT networks. The authors used data
reduction with clustering and the SMOTE oversampling technique. For the evaluation of
the model, they used accuracy, precision, recall, and G-mean. Saba et al. [25] introduced a
two-stage hybrid technique for the detection of malicious attacks in IoT networks. A genetic
algorithm (GA) was used to choose relevant features as well as the famous ML techniques,
such as support vector machine (SVM), ensemble classifier, and decision tree (DT).

The existing systems cannot identify the subcategories of multi-class attacks in the
network. In addition, for binary and multi-class detection, the performance of the existing
system can be improved. A comparison of the related work is given in Table 1.

Table 1. A comparison of existing work related to intrusion detection in IoT.

Authors Year Technique Dataset
Multi-Class
Detection

Sub-Categories
Multi-Class Detection

Basati et al. [19] 2022 DFE KDDCup99, CICIDS2017,
UNSW-NB15

×

Rashid et al. [20] 2022 Ensemble NSL-KDD, UNSW-NB15 × ×

Fatani et al. [21] 2022 AQU, PSO CIC2017, NSL-KDD,
BoT-IoT, KDD99

×

Alkahtani et al. [22] 2021 CNN-LSTM IoTID20 × ×

Keserwani et al. [23] 2021 GWO–PSO–RF KDDCup99, NSL–KDD,
CICIDS-2017

×

Qaddoura et al. [24] 2021 SLFN-SVM-
SMOTE IoTID20 ×

Saba et al. [25] 2021 GA-(SVM,
Ensemble, DT) NSL-KDD ×

Propose Study 2022 CNN-DNN IoTID20

3. The Proposed Framework

This section provides a detailed explanation of the utilized dataset, preprocessing ap-
proaches, the proposed deep convolutional neural network (DCNN), and evaluation metrics.

3.1. IoTID20 Dataset

The IoTID20 dataset was developed to identify cyberattacks in IoT networks. This
dataset was generated through home-connected smart devices using SKT NGU and EZVIZ
Wi-Fi cameras [26]. The main advantage of this dataset is that it includes modern com-

Sensors 2022, 22, 3607 4 of 16

munication data and new data on network interference detection. This dataset has 83 IoT
network features and three labels [27]: binary, category, and subcategory; details are given
in Table 2.

Table 2. Label details of IoTID20 dataset.

Binary Category Subcategory

Normal Normal Normal

Anomaly

DoS DoS-Synflooding

Mirai

Mirai-Ackflooding
Mirai-HTTP Flooding
Mirai-Hostbruteforceg
Mirai-UDP Flooding

MITM MITM ARP Spoofing

Scan Scan Port OS
Scan Hostport

3.2. Preprocessing

Data preprocessing is an essential step for ML/DL methods. Preprocessing converts
data into a suitable format for any neural network. This section consists of cleaning, label
encoding, feature engineering, normalization, and data splitting.

3.2.1. Dataset Cleaning

A dataset must be verified for empty and undefined instances before training a model.
In this experiment, the Python built-in library (Pandas) was used to validate the dataset.
The utilized IoTID20 dataset has some missing values. To clean the dataset, we removed all
missing value instances.

3.2.2. Label Encoding

Label encoding is a well-known encoding approach for dealing with categorical values.
It assigns a unique numeric value to each categorical value. For ML algorithms and DL
neural networks to operate, the input and output values must be integers. The utilized
dataset has some categorical features. Each categorical feature has several categories for
which one-hot encoding requires greater memory and more time [28]. In this study, the label
encoder approach was used to convert the categorical features into numeric.

3.2.3. Feature Engineering

Each dataset contains its own set of features. If a dataset contains multiple features
as well as certain insignificant features that have no impact on the output label, we must
eliminate those features from the dataset because they lead to overfitting and underfitting,
which significantly influence the executing time and performance of the classifier. In this
study, the filter approach was used. In filtering features, the extra tree classifier (ETC)
technique was applied. This method calculates the impact of each feature on the output
label. The utilized dataset has 83 features. We select all the features greater than 0.001 for
information gain. After applying the feature filtering approach, 62 features were selected.

3.2.4. Normalization

Normalization is a method commonly used in the preprocessing of data for ML/DL
algorithms. The purpose of normalization is to convert the numeric column values in a
dataset to a common scale while maintaining variations in value ranges. Each feature of the
IoTID20 dataset has different values. Some feature values are in the thousands, and some
have negative values that reduce the model performance. To solve this problem, the data
are normalized between 0 and 1 via min–max method, as represented by Equation (1).

Sensors 2022, 22, 3607 5 of 16

Data are converted into an array and reshaped (number of total records, number of input
features, 1) using Python’s NumPy library.

Xnorm =
x− xmin

xmax − xmin
(1)

3.2.5. Data Splitting

Splitting the data into train and test sets is one of the common preprocessing steps used
to evaluate the ML/DL models’ performance. In an unbalanced dataset, random splitting
of datasets can lead to an unequal split of data, which cannot evaluate the performance
of the model accurately. To address this problem, we used a stratified method to split the
dataset into train and test sets. A stratified sampling procedure splits the entire dataset into
homogenous sets. In this work, the stratified method splits the data into 80% train and
20% test sets for each class. A detailed splitting of the cleaned dataset for binary, category,
and subcategory classification is given in Table 3.

Table 3. A detailed distribution of IoTID20 dataset in train and test.

Type Class Instances Train Set Test Set

Binary Anomaly 585,342 468,274 117,068
Normal 40,073 32,058 8015

Total 625,415 500,332 125,083

Category

Mirai 415,309 332,247 83,062
Scan 75,265 60,212 15,053
DoS 59,391 47,513 11,878

MITM ARP Spoofing 35,377 28,302 7075
Normal 40,073 32,058 8015

Total 625,415 500,332 125,083

Sub-Category

Mirai-UDP Flooding 183,189 146,551 36,638
Mirai-Hostbruteforceg 121,178 96,943 24,235
Mirai-HTTP Flooding 55,818 44,654 11,164

Mirai-Ackflooding 55,124 44,099 11,025
DoS-Synflooding 59,391 47,513 11,878

Scan Port OS 53,073 42,458 10,615
Scan Hostport 22,192 17,754 4438

MITM ARP Spoofing 35,377 28,302 7075
Normal 40,073 32,058 8015

Total 625,415 500,332 125,083

3.3. Designing the DCNN Model

CNN is a DL technique that consists of convolutional layers, pooling layers, and fully
connected layers [29]. CNN is usually utilized for image classification and voice recognition.
In this study, we used a DCNN followed by a DNN for malicious activities identification
in IoT networks. The proposed approach consists of two 1D convolutional layers, two
max-pooling layers, flatten, and three dense layers, as shown in Figure 2. The input shape
in the first convolutional layer is (none, 62, 1). Here, “none” is the dynamic number
of instances, “62” is the number of input features and “1” is the third-dimension value.
The size of the kernel is three, and sixty-two filters were used in this layer, which produces
output in the form of (none, 62, 62). The output of the first convolutional layer is given as
an input in the max-pooling layer. In this layer, pool size four was used which produces
(none, 15, 62) output. The second convolutional layer is placed here, in which the size
of the kernel is three and thirty filters are used, which produce the output in the form of
(none, 15, 30). The output of the second convolutional layer is given as an input in the
max-pooling layer. In this layer, pool size two was used, which produces (none, 7, 30)
output. The convolutional layer not only converges the most important features but also
reduces noise [30]. The 1D convolutional layer is demonstrated in Equations (2) and (3).

Sensors 2022, 22, 3607 6 of 16

xk = bk +
N

∑
i=1

(si, wik) (2)

yk = f (xk) (3)

where xk is the input in the 1D convolutional layer. The output of the previous layer
neuron is represented by sk, wik represents the kernel from i to k. bk is the bias value of
the neuron in the convolutional layer. The ReLU activation function is represented by f ().
Equation (4) describes the ReLU. yk is the output of the 1D convolutional layer. The output
of the convolutional layer is the input in the pooling layer demonstrated in Equation (5).
We select the maximum value from region < which contains the output values of the
convolutional layer. sk is the output of the max-pooling layer.

f (xk) = max(0, xk) (4)

sk =
max
i∈< yk (5)

IoTID20 Dataset Dataset cleaning

Label Encoding

Normalisation

Feature engineering

Data Splitting (stratified)

P
re

p
ro

ce
ss

in
g

DCNN Model

O
u

tp
u

t

Convolution

Input

Convolution Max Pooling Max Pooling

Flatten
DNN

80% Train and

20% test sets

Figure 2. Architecture of the proposed DCNN model.

The flatten method is used to convert the output shape of the last pooling layer into
a single-dimensional array. The output of the flatten is (none, 210) which is input in the
first dense layers. The output of the first dense layer is (none, 50) which is given as input
in the second dense layer. The second dense layer produces (none, 25) output which is

Sensors 2022, 22, 3607 7 of 16

input in the last dense layer. The ReLU activation function is used in dense layers. The last
dense layer produces output results in which sigmoid function for binary classification and
softmax function for multi-class classification are used, respectively. Sigmoid and softmax
are demonstrated in Equations (6) and (7).

σ(x) =
1

1 + e−x (6)

softmax(x)i =
exi

∑K
j=1 exj

(7)

3.4. Evaluation Metrics

The evaluation of the DCNN approach was carried out with accuracy, precision, recall,
and F1-score. We start by explaining these four parameters, true positive (TP), false negative
(FN), false positive (FP), and true negative (TN), which are used to compute the evaluation
metrics such as accuracy, precision, recall, and the F1-score. TP refers to the number of
instances that have been correctly identified as normal. The number of instances that
misclassify normal data as an attack is known as the FN. FP represents the number of
malicious instances that are wrongly classified as normal. TN represents the number of
instances that are classified correctly as malicious. All of these evaluation metrics were
calculated by using Equations (8)–(11).

Accuracy =
α + β

α + β + γ + δ
(8)

Precision =
α

α + γ
(9)

Recall =
α

α + δ
(10)

F1-score =
2× (Precision × Recall)

Precision + Recall
(11)

where α represents TP, β represents TN, γ represents FP, and δ represents FN.

3.5. Experimental Platform

Experiments on the DCNN model were conducted with the HP ProBook G5 8th gener-
ation laptop. This laptop contains 24 GB ram and an Intel Core i5 processor. In software
specifications, we used Windows 11 Pro, Python 3.8.5, Tensorflow, and Keras library.

4. Performance Analysis

This section provides a detailed evaluation of the proposed model. The proposed
DCNN model was evaluated on the IoTID20 dataset. The performance of the DCNN
was tested for binary, multi-class categories, and multi-class subcategories classifications.
This section presents a comparison of convolutional layers followed by dense layers for
multi-class categories and multi-class subcategories. The same comparison was performed
for famous optimizers. The optimal solutions were selected from the comparison and
compared with other ML/DL models.

4.1. Performance Evaluation of Convolutional and Dense Layers

The CNN algorithm consists of convolutional layers, pooling layers, and fully con-
nected layers. This experiment was conducted for one and two convolutional layers,
followed by fully connected dense 1–5 layers. These experiments were conducted for the
multi-class category and subcategory classification. A detailed comparison is given in
Tables 4 and 5. The experimental results showed that the average optimal solution is two
convolutional layers and three dense layers.

Sensors 2022, 22, 3607 8 of 16

Table 4. A comparison of CNN layers for multi-class category classification.

Convolutional Layers Dense Layers Accuracy Precision Recall F1-Score

1 1 0.9465 0.92 0.9297 0.9237

1 3 0.9798 0.9712 0.9723 0.9716

2 1 0.9791 0.9756 0.9656 0.9701

2 2 0.9823 0.9744 0.9753 0.9747

2 3 0.9833 0.9742 0.9788 0.9764

2 4 0.9794 0.9697 0.9735 0.9713

2 5 0.9813 0.974 0.9757 0.9744

Table 5. A comparison of CNN layers for multi-class sub-category classification.

Convolutional Layers Dense Layers Accuracy Precision Recall F1-Score

1 1 0.7232 0.7056 0.6443 0.6182

1 3 0.7633 0.7660 0.7157 0.6804

2 1 0.7690 0.7518 0.6563 0.7008

2 2 0.7731 0.7955 0.7320 0.6989

2 3 0.7755 0.7876 0.7343 0.7600

2 4 0.7732 0.7890 0.6790 0.6541

2 5 0.7650 0.8499 0.6527 0.6160

4.2. Performance Evaluation of Optimizers

An optimizer is a function used to update the neural network weights and learning
rates. It helps to reduce the loss and improve the performance of the model [31,32].
Famous optimizers for DL algorithms are stochastic gradient descent (SGD), root mean
square propagation (RMSProp), adaptive moment estimation (Adam), adaptive moment
estimation maximization (AdaMax), and Nesterov-accelerated adaptive moment estimation
(Nadam). The performances of these modifiers are optimal for CNN, as validated in Ref. [33].
The aforementioned five optimizers were used in this experiment. A detailed comparison of
optimizers for the multi-class category and subcategory classification is shown in Tables 6
and 7, respectively. The experimental results show that Adam, Nadam, and AdaMax were
the top three optimizers in this experiment.

Table 6. A detailed comparison of optimizers for multi-class category classification.

Optimizer Accuracy Precision Recall F1-Score

SGD 0.9789 0.9676 0.9706 0.9690

RMSprop 0.7630 0.7457 0.7195 0.6527

Adam 0.9801 0.9761 0.9695 0.9725

Nadam 0.9838 0.9773 0.9783 0.9777

AdaMax 0.9806 0.9726 0.9721 0.9723

Table 7. A detailed comparison of optimizers for multi-class sub-category classification.

Optimizer Accuracy Precision Recall F1-Score

SGD 0.9789 0.9676 0.9706 0.969

RMSprop 0.7630 0.7457 0.7195 0.6527

Adam 0.9801 0.9761 0.9695 0.9725

Nadam 0.9838 0.9773 0.9783 0.9777

Adamax 0.9806 0.9726 0.9721 0.9723

Sensors 2022, 22, 3607 9 of 16

4.3. Performance Analysis of the Proposed DCNN

In this study, we propose a DCNN architecture for malicious activities identification in
IoT networks. For DCNN, the above results show that the optimal solution for the IoTID20
dataset is two convolutional layers, followed by three dense layers. In addition, from the
above results, we selected the top three optimizers (Adam, Nadam, and AdaMax) for
this experiment. This section provides a detailed classification of binary-class, multi-class
category, and multi-class subcategories for batch sizes 32, 64, 128, and 256.

4.3.1. DCNN Evaluation for Binary-Class Classification

The performance of the proposed approach was tested for a binary-class scenario.
The DCNN model was trained with the IoTID20 dataset for 50 epochs, and the binary
cross-entropy function was used to calculate the loss. In the first step, the proposed
DCNN performance for the Adam optimizer is compared in the bar graphs in Figure 3.
Based on the findings, the proposed model had the highest anomaly detection accuracy of
99.89% at batch size 128. For this optimizer, the other evaluation scores, namely, precision,
recall, and F1-score, were 99.77%, 99.37%, and 99.57%, respectively. In the second step,
all the experiments for the Nadam optimizer were rearranged with the same batch sizes.
The proposed DCNN performance for the Nadam optimizer is compared in the bar graphs
in Figure 4. Based on the findings, the proposed model had the highest anomaly detection
accuracy of 99.91% at batch size 128. For this optimizer, the other evaluation scores, namely,
precision, recall, and F1-score, are 99.87%, 99.38%, and 99.62%, respectively. In the third
step, all the experiments for the AdaMax optimizer were repeated with the same batch sizes.
The proposed DCNN performance for the Nadam optimizer is compared in the bar graphs
in Figure 5. Based on the findings, the proposed model had the highest anomaly detection
accuracy of 99.86% at batch size 128. For this optimizer, the other evaluation scores, namely,
precision, recall, and F1-score, were 99.74%, 99.14%, and 99.44%, respectively.

Figure 3. Adam optimizer for binary class scenario.

Sensors 2022, 22, 3607 10 of 16

Figure 4. Nadam optimizer for binary class scenario.

Figure 5. AdaMax optimizer for binary class scenario.

4.3.2. DCNN Evaluation for Multi-Class Category Classification

In this stage, the performance of the proposed study was evaluated for a multi-class
category classification scenario. The DCNN model was trained with the IoTID20 dataset
for 50 epochs, and a sparse categorical cross-entropy function was used to calculate the
loss. As noted previously, for the binary-class studies, an Adam optimizer was chosen at
the initial stage. The proposed DCNN performance for the Adam optimizer is compared
in the bar graphs in Figure 6. Based on the analysis of the results, the proposed model
had the highest anomaly detection accuracy of 98.13% at batch size 64. For this optimizer,
the other performance scores, namely, precision, recall, and F1-score, were 97.40%, 97.53%,
and 97.45%, respectively. In the second step, all the experiments for the Nadam optimizer
were rearranged with the same batch sizes. The proposed DCNN performance for the
Nadam optimizer is compared in the bar graphs in Figure 7. Based on the analysis of the
results, the proposed model had the highest anomaly detection accuracy of 98.38% at batch
size 32. For this optimizer, the other performance scores, namely, precision, recall, and F1-
score, were 97.73%, 97.83%, and 97.77%, respectively. In the third step, all the experiments
for the AdaMax optimizer were repeated with the same batch sizes. The proposed DCNN
performance for the Nadam optimizer is compared in the bar graphs in Figure 8. Based
on the analysis of the results, the proposed model had the highest anomaly detection

Sensors 2022, 22, 3607 11 of 16

accuracy of 98.06% at batch size 32. For this optimizer, the other performance scores,
namely, precision, recall, and F1-score, were 97.26%, 97.21%, and 97.23%, respectively.

Figure 6. Adam optimizer for multi-class category classification scenario.

Figure 7. Nadam optimizer for multi-class category classification scenario.

Figure 8. AdaMax optimizer for multi-class category classification scenario.

Sensors 2022, 22, 3607 12 of 16

4.3.3. DCNN Evaluation for Multi-Class Subcategory Classification

In the final stage, the performance of the proposed study was evaluated for multi-
class subcategory classification scenarios. The DCNN model was trained with the IoTID20
dataset for 100 epochs, and a sparse categorical cross-entropy function was used to calculate
the loss. As noted previously, for the binary and multi-class category studies, an Adam
optimizer was chosen at the initial stage. The proposed DCNN performance for the Adam
optimizer is compared in the bar graphs in Figure 9. Based on the analysis of the results,
the proposed model had the highest anomaly detection accuracy of 77.55% at batch size 32.
For this optimizer, the other performance scores, namely, precision, recall, and F1-score,
were 78.76%, 73.43%, and 76.00%, respectively. In the second step, all the experiments for
the Nadam optimizer were rearranged with the same batch sizes. The proposed DCNN
performance for the Nadam optimizer is compared in the bar graphs in Figure 10. Based
on the analysis of the results, the proposed model had the highest anomaly detection
accuracy of 77.44% at batch size 64. For this optimizer, the other performance scores,
namely, precision, recall, and F1-score, were 86.02%, 72.58%, and 78.73%, respectively.
In the third step, all the experiments for the AdaMax optimizer were repeated with the
same batch sizes. The proposed DCNN performance for the Nadam optimizer is compared
in the bar graphs in Figure 11. Based on the analysis of the results, the proposed model
had the highest anomaly detection accuracy of 77.11% at batch size 64. For this optimizer,
the other performance scores, namely, precision, recall, and F1-score, were 77.35%, 70.85%,
and 73.95%, respectively.

Figure 9. Adam optimizer for multi-class sub-category classification scenario.

Figure 10. Nadam optimizer for multi-class sub-category classification scenario.

Sensors 2022, 22, 3607 13 of 16

Figure 11. AdaMax optimizer for multi-class sub-category classification scenario.

4.4. Performance Discussion

The performance of the proposed DCNN was analyzed for binary, multi-class category,
and multi-class subcategory classification. The results presented earlier show a comparison
of optimizers and batch sizes. Based on the performance analysis of the proposed model for
binary class, the Nadam optimizer with a batch size of 128 performs better than the others.
Similarly, in the performance analysis of the proposed model for the multi-class category
and subcategory classification, the Adam optimizer with a batch size of 32 performs better
than others. For testing the performance of the proposed model, k-fold cross-validation
was also used, where the “k” value is 7. The results of the k-fold cross-validation are
approximately equivalent.

4.5. Performance Comparison with Other DL and Traditional ML-Based IDSs

The performance of the proposed DCNN was compared with other DL and tradi-
tional ML methods to evaluate its efficacy. LSTM, gated recurrent unit (GRU), deep neural
network (DNN), deep belief network (DBN), deep autoencoder (DAE), and multilayer
perceptron (MLP) are examples of DL methods. Decision tree (DT), logistic regression
(LR), naive Bayes (NB), support vector machine (SVM), and k-nearest neighbors (KNN)
are all examples of traditional ML methods. All of these methods were implemented
in the same environment for an accurate performance comparison. The preprocessing
steps were the same for all models, including the proposed model. We split the dataset
into 80% train and 20% test sets. For all of the DL algorithms, we used Adam optimizer
and default batch size 32. The optimal solution of each model was used for the compar-
ison. The hidden layers used in LSTM, GRU, DNN, DBN, AE, and MLP are 3, 3, 4, 4, 6,
and 10, respectively. The number of training epochs for all these models was the same as
the proposed model. A detailed analysis for binary-class category, multi-class category,
and subcategory classifications is shown in Tables 8–10, respectively. According to the
results, the performance of the proposed DCNN model is optimal as compared to other
DL models. The proposed model detection accuracy is 99.84%, 98.12%, and 77.55% for
binary-class, multi-class, and subcategory classifications, respectively.

For optimal performance, each DL model requires multiple layers that maximize
computational power. The proposed DCNN model improves the performance and also
reduces computational power as it narrows to specific features, compared to other ML and
DL models. Comparing the performance of the proposed DCNN with other ML and DL
models shows the optimal results.

Sensors 2022, 22, 3607 14 of 16

Table 8. A comparison of DCNN with other DL models on binary-class.

Models Accuracy Precision Recall F1-Score

LSTM 0.9952 0.9943 0.9662 0.9797

GRU 0.9959 0.9856 0.9807 0.9832

DNN 0.9981 0.9983 0.9862 0.9922

DBN 0.9969 0.9937 0.9807 0.9871

AE 0.9974 0.9895 0.9887 0.9891

MLP 0.9972 0.9938 0.9832 0.9884

DT 0.9857 0.9819 0.9861 0.9840

LR 0.9659 0.9034 0.7879 0.8345

NB 0.6504 0.5765 0.8093 0.6733

SVM 0.9744 0.9199 0.8552 0.8844

KNN 0.9983 0.9964 0.9894 0.9929

Proposed DCNN 0.9984 0.9967 0.9902 0.9934

Table 9. A comparison of DCNN with other DL models on multi-class category.

Model Accuracy Precision Recall F1-Score

LSTM 0.9584 0.9543 0.9201 0.9355

GRU 0.9681 0.9576 0.9468 0.9519

DNN 0.9547 0.9340 0.9447 0.9367

DBN 0.9589 0.9430 0.9549 0.9469

AE 0.9644 0.9515 0.9440 0.9456

MLP 0.9238 0.8933 0.8436 0.8529

DT 0.9770 0.9744 0.9737 0.9741

LR 0.8314 0.7728 0.7297 0.7311

NB 0.6772 0.6628 0.7381 0.6479

SVM 0.8557 0.8416 0.7845 0.7883

KNN 0.9793 0.9746 0.9699 0.9722

Proposed DCNN 0.9812 0.9713 0.9783 0.9746

Table 10. A comparison of DCNN with other DL models on multi-class sub-category.

Model Accuracy Precision Recall F1-Score

LSTM 0.7141 0.6993 0.5992 0.6453

GRU 0.7615 0.7571 0.6996 0.7272

DNN 0.7483 0.7244 0.6610 0.6912

DBN 0.6888 0.6916 0.6166 0.6519

AE 0.7535 0.7805 0.7016 0.7389

MLP 0.7065 0.7124 0.6263 0.6665

DT 0.7530 0.7508 0.7362 0.7413

LR 0.5481 0.4457 0.4239 0.4142

NB 0.5298 0.4878 0.5032 0.4481

SVM 0.6240 0.4888 0.4741 0.4624

KNN 0.7621 0.7634 0.7477 0.7515

Proposed DCNN 0.7755 0.7876 0.7343 0.7600

Sensors 2022, 22, 3607 15 of 16

5. Conclusions

This study presents a new DCNN-based DL model and feature engineering method
for malicious attack detection in IoT networks. The objective was to improve performance
and reduce computational power. The proposed DCNN model successfully improves
performance and reduces computational power. It is useful for low-power IoT network
devices. The IoTID20 dataset was used to analyze the performance of the proposed DCNN
model. The proposed model was evaluated for binary, multi-class category, and subcategory
classifications. Experiments were performed for different layers of the CNN algorithm,
and an optimal solution was selected. The proposed model was evaluated in-depth with
Adam, Nadam, and AdaMax optimizers. The Nadam optimizer peformance was optimum
for binary, multi-class category, and multi-class subcategory with 128, 32, and 64 batch sizes,
respectively. The proposed model was also compared with state-of-the-art DL techniques
and other traditional ML algorithms for a broader view in terms of efficacy, robustness, etc.
The experimental analysis indicates that the proposed approach obtained optimum results
when compared through accuracy, precision, recall, and F1-score parameters.

Author Contributions: S.U., J.A., M.A.K., E.H.A., M.H., F.S. and Y.Y.G. performed formal analysis
and original draft preparation. Y.Y.G., F.S. and N.P. proposed the main ideas and validated analysis.
S.U., E.H.A., M.H., F.S., N.P., Y.Y.G. and J.A. crystallized framework and also revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Taif University Researchers Supporting Project number (TURSP-
2020/292) Taif University, Taif, Saudi Arabia. This work is also supported by Princess Nourah
bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R193), Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The publicly available dataset can be found at: https://sites.google.
com/view/iot-network-intrusion-dataset/home (accessed on 28 January 2022).

Acknowledgments: The authors would like to acknowledge Taif University Researchers Supporting
Project number (TURSP-2020/292) Taif University, Taif, Saudi Arabia. The authors would like also to
acknowledge Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2022R193), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Farooq, M.S.; Sohail, O.O.; Abid, A.; Rasheed, S. A Survey on the Role of IoT in Agriculture for the Implementation of Smart

Livestock Environment. IEEE Access 2022, 10, 9483–9505. [CrossRef]
2. Ullah, I.; Mahmoud, Q.H. Design and development of a deep learning-based model for anomaly detection in IoT networks. IEEE

Access 2021, 9, 103906–103926. [CrossRef]
3. Mezni, H.; Driss, M.; Boulila, W.; Atitallah, S.B.; Sellami, M.; Alharbi, N. SmartWater: A Service-Oriented and Sensor Cloud-Based

Framework for Smart Monitoring of Water Environments. Remote Sens. 2022, 14, 922. [CrossRef]
4. Alam, T. A Reliable Communication Framework and Its Use in Internet of Things (IoT). Int. J. Sci. Res. Comput. Sci. Eng. Inf.

Technol. 2018, 3, 450–456.
5. Al-Bahri, M.; Yankovsky, A.; Borodin, A.; Kirichek, R. Testbed for identify IoT-devices based on digital object architecture.

In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 129–137.

6. Nguyen, X.H.; Nguyen, X.D.; Huynh, H.H.; Le, K.H. Realguard: A Lightweight Network Intrusion Detection System for IoT
Gateways. Sensors 2022, 22, 432. [CrossRef] [PubMed]

7. Zhang, Y.; Li, P.; Wang, X. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access
2019, 7, 31711–31722. [CrossRef]

8. Conti, M.; Dehghantanha, A.; Franke, K.; Watson, S. Internet of Things security and forensics: Challenges and opportunities.
Future Gener. Comput. Syst. 2018, 78, 544–546. [CrossRef]

9. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

https://sites.google.com/view/iot-network-intrusion-dataset/home
https://sites.google.com/view/iot-network-intrusion-dataset/home
http://doi.org/10.1109/ACCESS.2022.3142848
http://dx.doi.org/10.1109/ACCESS.2021.3094024
http://dx.doi.org/10.3390/rs14040922
http://dx.doi.org/10.3390/s22020432
http://www.ncbi.nlm.nih.gov/pubmed/35062393
http://dx.doi.org/10.1109/ACCESS.2019.2903723
http://dx.doi.org/10.1016/j.future.2017.07.060
http://dx.doi.org/10.3390/app9204396

Sensors 2022, 22, 3607 16 of 16

10. Gao, Z.J.; Pansare, N.; Jermaine, C. Declarative parameterizations of user-defined functions for large-scale machine learning and
optimization. IEEE Trans. Knowl. Data Eng. 2018, 31, 2079–2092. [CrossRef]

11. Guo, Z.; Qi, W.; Huang, Y.; Zhao, J.; Yang, H.; Koo, V.C.; Li, N. Identification of Crop Type Based on C-AENN Using Time Series
Sentinel-1A SAR Data. Remote Sens. 2022, 14, 1379. [CrossRef]

12. Liu, Z.Y.C.; Chamberlin, A.J.; Tallam, K.; Jones, I.J.; Lamore, L.L.; Bauer, J.; Bresciani, M.; Wolfe, C.M.; Casagrandi, R.; Mari, L.;
et al. Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of
Schistosomiasis in Senegal, Africa. Remote Sens. 2022, 14, 1345. [CrossRef]

13. Salunkhe, S.S.; Pal, S.; Agrawal, A.; Rai, R.; Mole, S.; Jos, B.M. Energy optimization for CAN bus and media controls in electric
vehicles using deep learning algorithms. J. Supercomput. 2022, 78, 8493–8508. [CrossRef]

14. Lin, J.; Diekmann, P.; Framing, C.E.; Zweigel, R.; Abel, D. Maritime Environment Perception Based on Deep Learning. IEEE
Trans. Intell. Transp. Syst. 2022. [CrossRef]

15. Heaton, J. Ian goodfellow, yoshua bengio, and aaron courville: Deep learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307.
[CrossRef]

16. Mighan, S.N.; Kahani, M. A novel scalable intrusion detection system based on deep learning. Int. J. Inf. Secur. 2021, 20, 387–403.
[CrossRef]

17. Al-Turaiki, I.; Altwaijry, N. A convolutional neural network for improved anomaly-based network intrusion detection. Big Data
2021, 9, 233–252. [CrossRef]

18. Aldweesh, A.; Derhab, A.; Emam, A.Z. Deep learning approaches for anomaly-based intrusion detection systems: A survey,
taxonomy, and open issues. Knowl. Based Syst. 2020, 189, 105124. [CrossRef]

19. Basati, A.; Faghih, M.M. DFE: Efficient IoT network intrusion detection using deep feature extraction. Neural Comput. Appl. 2022,
1–21. [CrossRef]

20. Rashid, M.; Kamruzzaman, J.; Imam, T.; Wibowo, S.; Gordon, S. A tree-based stacking ensemble technique with feature selection
for network intrusion detection. Appl. Intell. 2022, 1–14. [CrossRef]

21. Fatani, A.; Dahou, A.; Al-Qaness, M.A.; Lu, S.; Abd Elaziz, M. Advanced Feature Extraction and Selection Approach Using Deep
Learning and Aquila Optimizer for IoT Intrusion Detection System. Sensors 2022, 22, 140. [CrossRef]

22. Alkahtani, H.; Aldhyani, T.H. Intrusion detection system to advance internet of things infrastructure-based deep learning
algorithms. Complexity 2021, 2021, 5579851. [CrossRef]

23. Keserwani, P.K.; Govil, M.C.; Pilli, E.S.; Govil, P. A smart anomaly-based intrusion detection system for the Internet of Things
(IoT) network using GWO–PSO–RF model. J. Reliab. Intell. Environ. 2021, 7, 3–21. [CrossRef]

24. Qaddoura, R.; Al-Zoubi, A.; Almomani, I.; Faris, H. A multi-stage classification approach for iot intrusion detection based on
clustering with oversampling. Appl. Sci. 2021, 11, 3022. [CrossRef]

25. Saba, T.; Sadad, T.; Rehman, A.; Mehmood, Z.; Javaid, Q. Intrusion detection system through advance machine learning for the
internet of things networks. IT Prof. 2021, 23, 58–64. [CrossRef]

26. Kang, H.; Ahn, D.H.; Lee, G.M.; Yoo, J.D.; Park, K.H.; Kim, H.K. IoT Network Intrusion Dataset. 2019. Available online:
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset (accessed on 28 January 2022). [CrossRef]

27. Ullah, I.; Mahmoud, Q.H. A scheme for generating a dataset for anomalous activity detection in iot networks. In Proceedings of
the Canadian Conference on Artificial Intelligence, Ottawa, ON, Canada, 13–15 May 2020; pp. 508–520.

28. Dahouda, M.K.; Joe, I. A Deep-Learned Embedding Technique for Categorical Features Encoding. IEEE Access 2021, 9, 114381–
114391. [CrossRef]

29. Riyaz, B.; Ganapathy, S. A deep learning approach for effective intrusion detection in wireless networks using CNN. Soft Comput.
2020, 24, 17265–17278. [CrossRef]

30. Zhang, H.; Huang, L.; Wu, C.Q.; Li, Z. An effective convolutional neural network based on SMOTE and Gaussian mixture model
for intrusion detection in imbalanced dataset. Comput. Netw. 2020, 177, 107315. [CrossRef]

31. Vidhya, A. A Comprehensive Guide on Deep Learning Optimizers. Available online: https://www.analyticsvidhya.com/blog/
2021/10/a-comprehensive-guide-on-deep-learning-optimizers/ (accessed on 7 October 2021).

32. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. Available online: https://ruder.io/optimizing-gradient-
descent/ (accessed on 19 January 2016).

33. Vani, S.; Rao, T.M. An experimental approach towards the performance assessment of various optimizers on convolutional neural
network. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli,
India, 23–25 April 2019; pp. 331–336.

http://dx.doi.org/10.1109/TKDE.2018.2873325
http://dx.doi.org/10.3390/rs14061379
http://dx.doi.org/10.3390/rs14061345
http://dx.doi.org/10.1007/s11227-021-04186-5
http://dx.doi.org/10.1109/TITS.2022.3140933
http://dx.doi.org/10.1007/s10710-017-9314-z
http://dx.doi.org/10.1007/s10207-020-00508-5
http://dx.doi.org/10.1089/big.2020.0263
http://dx.doi.org/10.1016/j.knosys.2019.105124
http://dx.doi.org/10.1007/s00521-021-06826-6
http://dx.doi.org/10.1007/s10489-021-02968-1
http://dx.doi.org/10.3390/s22010140
http://dx.doi.org/10.1155/2021/5579851
http://dx.doi.org/10.1007/s40860-020-00126-x
http://dx.doi.org/10.3390/app11073022
http://dx.doi.org/10.1109/MITP.2020.2992710
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
http://dx.doi.org/10.21227/q70p-q449
http://dx.doi.org/10.1109/ACCESS.2021.3104357
http://dx.doi.org/10.1007/s00500-020-05017-0
http://dx.doi.org/10.1016/j.comnet.2020.107315
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/
https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/

	Introduction
	Related Works
	The Proposed Framework
	IoTID20 Dataset
	Preprocessing
	Dataset Cleaning
	Label Encoding
	Feature Engineering
	Normalization
	Data Splitting

	Designing the DCNN Model
	Evaluation Metrics
	Experimental Platform

	Performance Analysis
	Performance Evaluation of Convolutional and Dense Layers
	Performance Evaluation of Optimizers
	Performance Analysis of the Proposed DCNN
	DCNN Evaluation for Binary-Class Classification
	DCNN Evaluation for Multi-Class Category Classification
	DCNN Evaluation for Multi-Class Subcategory Classification

	Performance Discussion
	Performance Comparison with Other DL and Traditional ML-Based IDSs

	Conclusions
	References

