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Neural signatures of reinforcement 
learning correlate with strategy 
adoption during spatial navigation
Dian Anggraini   1,4, Stefan Glasauer   2,3,4 & Klaus Wunderlich1,3,4

Human navigation is generally believed to rely on two types of strategy adoption, route-based and 
map-based strategies. Both types of navigation require making spatial decisions along the traversed 
way although formal computational and neural links between navigational strategies and mechanisms 
of value-based decision making have so far been underexplored in humans. Here we employed 
functional magnetic resonance imaging (fMRI) while subjects located different objects in a virtual 
environment. We then modelled their paths using reinforcement learning (RL) algorithms, which 
successfully explained decision behavior and its neural correlates. Our results show that subjects used a 
mixture of route and map-based navigation and their paths could be well explained by the model-free 
and model-based RL algorithms. Furthermore, the value signals of model-free choices during route-
based navigation modulated the BOLD signals in the ventro-medial prefrontal cortex (vmPFC), whereas 
the BOLD signals in parahippocampal and hippocampal regions pertained to model-based value 
signals during map-based navigation. Our findings suggest that the brain might share computational 
mechanisms and neural substrates for navigation and value-based decisions such that model-free 
choice guides route-based navigation and model-based choice directs map-based navigation. These 
findings open new avenues for computational modelling of wayfinding by directing attention to value-
based decision, differing from common direction and distances approaches.

When we navigate in daily life, we commonly do so with a goal in mind, such as going to a restaurant. To reach 
this destination, we can either follow a route that we know from previous journeys or, alternatively, work out 
the shortest path using our cognitive representation of the neighborhood. These two possibilities exemplify the 
route-based and map-based strategies respectively, two prominent strategy adoptions in wayfinding and spatial 
navigation1–3. The route-based strategy, which is a form of response learning, relies on associations between land-
marks and turns, as well as memory of travelled distances1,4,5. The medial prefrontal cortex, striatum, retrosple-
nial, and medial temporal regions appear to be important for route-based navigation5–9. In contrast, a map-based 
or place navigation requires knowledge of the spatial relationship between goals, landmarks, or other salient 
points in space10–12. This knowledge can be conceptualized as a cognitive map, which is defined as a mental rep-
resentation of spatial environment and enables one to acquire, store, code, and recall the relative locations as well 
as attributes of prior experience in that environment13–15. It is acquired by either active searching and exploration, 
or experiencing the environment using controlled navigational practices, such as exploration using path integra-
tion and sequenced neighborhood search16. Novel paths may be planned by first searching this map for the best 
path and then translating this knowledge into a sequence of movements. Map-based navigation engages a distrib-
uted system of brain areas including hippocampus17–20, parahippocampal21–23, and retrosplenial regions24. While 
these studies have identified which neural pathways are involved in each strategy, the computational mechanisms 
accounting for interaction of route and map-based navigation as well as its neural underpinnings remain a topic 
of debate, particularly in humans.

In this study, we address these questions by combining a 3D virtual environment, as typically used in imaging 
studies of spatial navigation, and modelling techniques from the field of value-based decision making. In contrast 
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to previous studies that mostly answered where in the brain different spatial navigation strategies take place, 
our approach allows us to also investigate how these processes might be solved computationally. In addition, 
this approach offers an experimental investigation into the utility of modelling techniques from value-based 
decision-making research in characterizing strategy adoption in spatial navigation.

Similar to the route-based and map-based strategies in spatial navigation, at least two complimentary sys-
tems have emerged as dominant behaviors for value-based decision making: model-free and model-based choice 
systems25–28. In the model-free choice, associations are formed between stimuli and actions by reinforcing pre-
viously successful actions. Knowledge of the task structure is not necessary for the model-free choice behavior. 
The model-based choice, on the other hand, relies on a cognitive model of the task structure to evaluate which 
sets of actions lead to the best outcome. This is done by searching through a map or graph of the task. Extensive 
neuroimaging studies have suggested computational principles for these two decision systems. These studies also 
elucidated putative corticostriatal circuits that underlie these computations29–31.

Since the computational principles underlying these two value-based choice systems successfully explain a 
multitude of decision behaviors, they may also provide a useful framework for spatial navigation. While links 
between spatial navigation and decision making have been previously suggested, mostly in investigations of ani-
mal wayfinding32–34, they were more general than our hypothesis that the brain shares some of the key computa-
tional mechanisms for navigation and for making value-based decisions in a way that model-free choice guides 
route-based navigation while model-based choice directs map-based navigation. Therefore, we used reinforce-
ment learning (RL) algorithms to model subjects’ traversed routes in the virtual environment. If RL models form 
the basis of navigational strategies, they should (1) account for subjects’ behaviors when they are free to choose 
their own navigational strategy, (2) distinguish the degree to which one system is used at each decision point, 
and (3) explain the role of different brain regions in processing navigational decisions by showing a correlation 
between BOLD activity and key internal variables of the RL models.

To test this hypothesis, we created a wayfinding task in a 3D virtual environment for human subjects. 
Functional magnetic resonance imaging (fMRI) was then used to investigate how blood oxygen level dependent 
(BOLD) activity is modulated by computational processes while subjects performed the wayfinding task. The 3D 
environment consisted of a 5 by 5 grid of rooms, each distinctively furnished to allow subjects to distinguish indi-
vidual rooms (see Fig. 1A,B). Each subject performed three phases of wayfinding tasks in the same environment. 
Subjects navigated by freely choosing one of the available doors. Since backtracking (leaving the room from the 
same door as entering it) was not allowed, rooms in the middle of the grid-world had three doors to choose from, 
rooms along the outside wall had two doors, and corner rooms had one. First, in the (i) encoding phase, subjects 
collected three rewards in the same predefined order and from the same starting position over eight trials. This 
repetition encouraged route-learning during the encoding phase. During the subsequent (ii) retrieval phase sub-
jects collected one randomly chosen reward in each trial from the same initial position as in the encoding phase. 
Lastly, during the (iii) search phase, subjects collected one randomly chosen reward at a time, from a different 
starting location. These phases, especially the retrieval and search phases, allowed subjects to use their preferred 
navigational strategy (further details on the wayfinding task are provided in the SI Method). By analyzing the 
paths that subjects took, we calculated three navigation indices. These indices describe the degree to which each 
subject followed previously learned routes (route-based strategy) or engaged in map-based navigation. Based 
on reinforcement learning models, we also fitted a parameter (ω) that explains whether subjects relied more on 
model-free or model-based choices during navigation.

In our task, our expectation was that subjects would use a mixture of route and map-based navigation across 
trials, and that their traversed routes could be well explained by the model-free and model-based RL models. 
Significant correlations between navigation indices and ω would then confirm that RL models account for indi-
viduals’ variability in strategy adoption during navigation. Moreover, we expected that correlates between BOLD 
activity and RL models’ key internal variables, such as value signals, from the model-free and the model-based 
choice systems may provide evidence that these algorithms explain how the brain computationally solves the 
navigation problem.

Results
Strategy Adoption during Wayfinding Task.  Most participants started early trials in the encoding phase 
by exploring the environment, often seen by moving from one side of the maze to the opposite until all rewards 
were collected. Then subjects either found the shortest paths to go between one reward and the next or established 
a certain route to go from one reward to the other (Fig. 1C). During retrieval and search phases, some subjects (16 
out of 27) used the optimal path at least 60% of the time to retrieve rewards. Others chose to follow the route they 
established during the earlier encoding phase. The latter was a clear sign of employing route-based navigation. 
Interestingly, during the search phase, when some subjects started on part of an established route they would sim-
ply follow it to reach the reward. However, when they started from a position that was not part of their established 
route, they located the reward using the shortest path. Those subjects might have constructed a cognitive map of 
the environment but used it only when required to plan a new path. Otherwise, they relented to the cognitively 
less demanding but potentially longer route strategy. Note that no subject chose exclusively one strategy over the 
other.

As a first crude measure to quantify strategy adoption in our subjects, we calculated three navigation indices 
based on: (1) the number of trials in which the shortest path was used (adapted from the work by Marchette and 
colleague19 and referred to as IPATH in this work), (2) the excess number of steps in comparison to the shortest 
path required to reach the target (referred as ISTEPS), (3) the number of repeated route trials (referred as IROUTE). 
Each navigation index was first calculated individually for each phase of the wayfinding task. To get an overview 
on how subjects performed throughout the entire experiment, every navigation index was then averaged across 
three phases of the wayfinding task. For both IPATH and ISTEPS, a value of 1 indicates that a subject would have used 
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the shortest path on every trial. In other words, the subject was primarily displaying a map-based strategy. This is 
because, by design, only subjects who had a good spatial representation of the environment could have reached 
the rewards using the shortest paths. In contrast, subjects whose scores were close to 0 predominantly used sub-
optimal long routes, suggesting that they lacked a map-like representation of the environment. The distribution 
of different values of IPATH, ISTEPS, and IROUTE revealed that although there are some subjects that showed a strong 
tendency toward either route or map-based navigation, the majority fell in between (Supplementary Table S1). 
Further details on the indices are provided in the Methods.

To measure subjects’ general spatial cognitive ability, subjects performed a paper-based Mental Rotation 
Test (MRT). We found significant correlations between the score on the MRT (M = 25.63, SD = 9.43, N = 25) 
and IPATH (M = 0.42, SD = 0.19, r(25) = 0.72, two-tailed t-test P < 2.11 × 10−5), ISTEPS (M = 0.68, SD = 0.22, 
r(25) = 0.72, two-tailed t-test P < 1.95 × 10−5) as well as IROUTE (M = 0.47, SD = 0.18, r(25) = −0.72, two-tailed 
t-test P < 2.44 × 10−5). These results indicate that greater ability to mentally represent and manipulate objects was 
associated with higher capability in planning shorter paths. These results are somewhat expected as object-based 
spatial ability (e.g. mental rotation, spatial visualization) is one of the prerequisites for good performance in 
map-based wayfinding35.

RL Model Fits to Navigation Data.  Similar to navigation in real-life, our wayfinding task is directed 
toward certain goals and requires decisions about directions along the traversed path. Subjects who used the short-
est path could find the reward rooms more quickly and thereby accumulated more rewards. To computationally 

Figure 1.  Wayfinding task and behavioral results. (A) Layout of the grid-world. The Virtual Reality (VR) 
environment consisted of a 5 by 5 grid of rooms. Each square represents a room which contained distinct 
furniture and objects to distinguish individual rooms. Black square represents starting position, colored squares 
reward locations and the number represents the order in which they need to be found. The wayfinding task 
consisted of three phases: encoding, retrieval, and search phase. During the search phase, subject had to locate 
one randomly chosen reward at each trial, each time starting from a different starting position. (B) Screenshots 
of the virtual reality environment. Each room is furnished with distinct objects to allow subjects to distinguish 
and recognize individual rooms. At each room (decision point) subjects could choose up to three directions 
(corner rooms had either one or two directions to choose). After a choice was made, an animation was leading 
to the room in the selected direction; this movement lasted 2.5–3 seconds jittered uniformly. The next room 
and, if applicable, the reward were presented. (C) Path from a representative participant (subject no. 1) who 
exhibited a tendency towards route-based strategy. During the encoding phase, the subject established by 
repetition a fixed route from one reward to the other. During the search phase, the subject still followed the 
established route to reach the reward when it started from a location on that previous route. However, when the 
subject started from a position which was not part of the original route, she could locate the reward room using 
the shortest possible path.
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assess subjects’ navigation strategy at every decision point, we modelled subjects’ choice behavior by fitting three 
different reinforcement learning (RL) algorithms: model-free, model-based, and a hybrid model formed as a 
weighted combination of model-free and model-based algorithms. These algorithms exemplify two strategies 
in value-based decision making: the model-based choice that creates a cognitive representation of the entire 
environment, and the model-free choice that simply increases action values along the taken paths that previ-
ously led to rewards (Fig. 2). The hybrid model assumes that subjects would employ both algorithms at a relative 
degree, represented by a fitted parameter weight (ω)25,36. We performed model fitting for each subject individually 
and assessed the relative goodness of fit in every phase (for details see Methods, Supplementary Methods, and 
Supplementary Table S2).

The fitted ω (averaged over three different phases) in the hybrid model (M = 0.50, SD = 0.23, N = 27) signif-
icantly correlated with spatial cognitive ability (as assessed by MRT, r(25) = 0.54, two-tailed t-test P < 0.0035) 
both IPATH (M = 0.42, SD = 0.19, r(25) = 0.88, two-tailed t-test P < 8.28 × 10−10) and ISTEPS (M = 0.68, SD = 0.22, 
r(25) = 0.80, two-tailed t-test P < 4.69 × 10−7). These results demonstrate that, across three phases of the wayfin-
ding task, subjects who often took the shortest paths or a relatively small number of steps also showed a tendency 
towards the model-based choice (Fig. 3A,B). In line with these results, we also found significant negative correla-
tion between ω and IROUTE (M = 0.48, SD = 0.18, r(25) = −0.82, two-tailed t-test P < 1.52 × 10−7). This shows that 
subjects who repeated learned routes are better explained by model-free RL (Fig. 3C).

While a more optimal map-based or model-based strategy allows shorter paths, the computational effort to 
plan those paths should be higher compared to route-based navigation. We therefore speculated that subjects who 
used a higher degree of map-based versus route-based strategies would, on average, show longer reaction times 
for each choice. Across subjects, we observed a significant positive correlation between average reaction times in 
subjects’ choices and IPATH (r = 0.67, P = 1.35 × 10−4) as well as ISTEPS (r = 0.79, P = 7.65 × 10−7), and a negative 
correlation between reaction times and IROUTE (r = −0.66, P = 1.91 × 10−4). We also found a significant positive 
correlation between reaction times and ω as measure for the relative degree of model-based versus model-free 
choices (r = 0.59, P = 0.0012). Furthermore, reaction times tended to be longer the farther away the room was 
from the reward (linear regression of distance on RT, random effects analysis: t(26) = 7.242, P = 1.08 × 10−17), indi-
cating that decisions far away from the reward might be more difficult than decisions close by.

Neural Signatures of Model-Free and Model-Based Choices.  We then investigated neural responses 
pertaining to choice valuations in every room. A key internal variable of the RL algorithms is the value of the 
chosen action. This value equals the expected reward after a choice has been made37 and is a signal that has been 

Figure 2.  Reinforcement learning models and model fits. The top panel displays action values, showing how 
valuable it is to move along the route in a certain state; the bottom panel shows the probability of taking certain 
actions in those state based on the action values. Black numbers are state values, blue numbers are probabilities 
of chosen action, green values refer to probabilities of other not chosen actions. Note that not all probabilities 
for non-preferred actions are shown. (A) Model free valuation based on the SARSA (λ) algorithm. After 
reaching a reward this algorithm updates the values only along the traversed path. (B) Model-based valuations 
derived from dynamic programming. The model-based algorithm updates values not only along the taken path, 
but across the entire grid world.
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reliably detected in BOLD fluctuations over a large number of studies37–43. For every decision point, we took the 
values of the chosen action (i.e. go to the left, right, or straight ahead), calculated separately based on model-free 
and model-based RL, along the traversed path as parametric modulators for our fMRI data. By analyzing three 
different phases of the wayfinding task in one GLM, we found that BOLD activity correlated significantly with 
the model-free value signals along left ventromedial prefrontal cortex [vmPFC, peak: x = −3, y = 47, z = −13] 
extending to left anterior cingulate cortex [ACC, peak: x = −3, y = 38, z = 5]. Other clusters included retrosplenial 
cortex [x = 6, y = −52, z = 32] and caudate nucleus [x = −9, y = 11, z = 14]. In contrast, significant correlations 
with the time series of model-based values were most prominently in the area of right parahippocampal gyrus 
[peak: x = 21, y = −46, z = 2] extending to hippocampus and bilateral calcarine gyrus. Additionally, activity in 
right precuneus [x = 27, y = −64, z = 29] and left retrosplenial cortex [x = −12, y = −31, z = 44] correlated with 
model-based values. See Fig. 4 for the activated areas and Supplementary Table S3 and Supplementary Table S4 
for a list of all activated areas. For correction of multiple comparisons, we set our significance threshold at P < 0.05 
whole-brain FWE corrected for multiple comparison at cluster level.

If our behavioral models explain subjects’ path choices and subjects’ brain activity represents crucial deci-
sion variables in this process, then we would expect that brain activity should be particularly well-explained in 
those subjects in whom our model also provides a good choice prediction. Specifically, model-free values should 
explain BOLD activity in vmPFC particularly well in those subjects for whom our hybrid model indicated a 
large route-based contribution. Similarly, brain activity in the parahippocampal/hippocampal area should be 
particularly well explained by the model-based values in those subjects in which the hybrid model indicated a 
large map-based contribution. Across subjects this would be expressed in a relationship between strategy choice 
(represented by the ω parameter) and strength of the activity pertaining to the parametric value signals of the 

Figure 3.  Correlation between navigation indices and ω parameters (n = 27). (A) Significant positive 
correlation between IPATH and ω parameters. (B) Significant positive correlation between ISTEP and ω parameters. 
(C) Significant negative correlation between IROUTE and ω parameters for the fMRI experiment. IPATH, ISTEP, 
IROUTE, and ω are averaged values for individual subject across three different phases of the wayfinding task.

Figure 4.  Correlations of model predicted values with BOLD signals. (A) Correlates of model-free 
valuations in medial/vmPFC, striatum, and retrosplenial cortex. (B) Correlates of model-based valuation in 
parahippocampal and medial temporal lobe region as well as the left retrosplenial cortex. Displayed results are 
significant at P < 0.05 whole brain FWE corrected at the cluster level.
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corresponding model (β-parameter estimates in the general linear model) of the fMRI analysis. Consistent with 
our conjecture, we found a significant negative correlation (r(25) = −0.386, two-tailed t-test P = 0.046) between 
ω from the behavioral model and β estimates in ventromedial PFC for model-free value signals (Fig. 5A). Note 
that a smaller ω indicates a larger degree of route-based influences. As expected, we did not find a correlation 
(r(25) = −0.081, two-tailed t-test P = 0.687) between ω and the β estimates for the model-based value signals 
in the medial PFC (Fig. 5A). Similarly, we found a significant positive correlation (r(25) = 0.404, two-tailed 
t-test P = 0.036) between ω and the extracted parameter estimates of the model-based value signals in right 
parahippocampal gyrus (Fig. 5B). Again, we did not find a significant correlation (r(25) = −0.0029, two-tailed 
t-test P = 0.988) between ω and parameter estimates of the model-free β estimates in the parahippocampal area 
(Fig. 5B). This confirms that our RL models explain a larger proportion of the fluctuation in the neuronal data in 
those subjects whose choices are well explained by the respective model. That is, the more subjects lean towards 
one navigation strategy, the more clearly the computational value signals of the corresponding decision mech-
anisms are seen in either the vmPFC or the parahippocampal area. Our test was not sensitive enough to show a 
significant difference between the two correlations in both parahippocampal gyrus (Fisher-z = 1.494, P = 0.068) 
and mPFC (Fisher-z = −1.129, P = 0.129). What we showed was that, across subjects and within a certain brain 
region, there is a relationship between strategy choice on the behavioral level and the representation of the corre-
sponding value signal in the brain. In effect, these results show that BOLD activity in vmPFC and parahippocam-
pal area reflected model-free or model-based valuations in proportion matching those that determine subjects’ 
use of route-based or map-based navigation.

We also tested several alternative hypotheses for putative signals that the brain might keep track of during 
navigation. One such hypothesis is that the brain combines values from the model-free and model-based using 
the relative weight parameter ω. We tested for this by looking for neural signals pertaining to values of the hybrid 
RL model, which is a weighted combination of model-free and model-based values. These signals did not survive 
cluster level correction for multiple comparison.

We further explored the idea that the brain encodes the distance to goals during navigation. We found that 
while activity in the precuneus positively correlated with the distance to goal, activity in fusiform and caudate 
increased as subjects approach the goal. Consistent with previous studies, activity in precuneus may be indicative 

Figure 5.  Correlation between subjects’ relative degree of model-based behavior (ω) and β-parameter estimates 
of the model-free parametric regressor. (A) In vmPFC, we found a significant negative correlation between 
the ω parameter in the behavioral hybrid model and β-estimates in the GLM from the parametric regressor 
of model-free values. That means, across subjects, the larger the relative degree of model-free choice behavior 
of a subject, the stronger was her representation of model-free values in the BOLD signal in vmPFC. No such 
relationship was found for the model-based value regressor. (B) In the parahipocampal gyrus, we found a 
significant positive correlation between ω and β- estimates from the parametric regressor of model-free values. 
The larger the relative degree of model-based choice behavior in a subject, the bigger was her representation of 
model-based values in the BOLD signal in the parahipocampal gyrus. No such correlation was found for the 
model-free value regressor.
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of a spatial updating process during navigation44,45. Because there might be a functional relationship between dis-
tance to goal and choice values, we also tested if our earlier results for model-based and model-free choice values 
are indeed correlates of value signals, or could potentially be only a spurious result of this relation. To test for this, 
we estimated separate GLMs containing both value signals and distance parametric regressors without orthogo-
nalization, letting them directly compete for variance. Any remaining activation in this analysis can be attributed 
uniquely to one or the other regressor. Importantly, we still found a significantly correlated BOLD activity with 
model-based and model-free value signals in medial temporal region in this design (see Supplementary Fig. S6).

Discussion
We show that human subjects are adept at flexibly employing route-based and map-based strategies while nav-
igating in a wayfinding task. Their choices in each room correlated well with the fitted parameter ω from the 
hybrid model, which is a mixture of model-free and model-based RL algorithms. The computational processes 
of model-free and model-based RL were also represented at the neural level. Model-based valuation during 
map-based navigation strongly modulated activity in parahippocampal and medial temporal lobe (MTL) areas, 
while BOLD responses in striatum and vmPFC pertained to model-free valuations. Furthermore, we found a 
direct link between the degree to which subjects used one navigation strategy and the neural representation of 
value signals associated with the corresponding decision mechanisms.

Converging evidence from both animal and human studies has suggested that navigation predominantly relies 
on two types of strategy adoption generally termed as route-based versus map-based navigation46,47. In most 
previous studies on spatial navigation subjects were constrained to one navigation strategy, such as passively fol-
lowing a certain route during the encoding phase5,9,12. Our encoding phase is different in that we allows subjects 
to explore. This feature is helpful to elucidate the computational mechanisms accounting for route and map-based 
navigation. Because subjects are not constrained to one strategy over the other, we can observe the use of both 
strategies in the same environment. While our encoding phase emphasized the formation of a route between 
a single starting position and a sequence of three reward locations, it simultaneously allowed the formation of 
a map-like representation over time because subjects could freely move within the environment. The retrieval 
phase then allowed further memory formation of how every target location can be reached from the starting 
position.

To our knowledge, one previous neuroimaging study on value-based decision making has attempted to char-
acterize neural and computational substrates of reinforcement learning using a wayfinding paradigm48. Albeit 
the task created for their study adopted a grid-world configuration commonly used in human navigation, their 
research questions were more concerned with value-based decision making. For instance, their task included 
visual cues that constantly informed subjects about the location of the target. Moreover, throughout the exper-
iment, there was an ongoing reconfiguration of the grid-world and occasional random teleportations of the 
subject. These features are useful to study neural mechanisms of reinforcement learning in a probabilistic envi-
ronment but preclude investigation of wayfinding using optimal or repeated routes. Consequently, in comparison 
to this study, our task mimics more of an everyday experience. This allows us to study human spatial naviga-
tion where subjects can combine and switch between different strategies depending on which is optimal in each 
situation.

In the present study we make no claims about the neural mechanism of how the brain compares values of the 
available choices in every room. We therefore only tested for a neural representation of the value of the chosen 
action because this post-choice value component has been consistently shown in numerous studies to be a reliable 
signal present in the brain. It is possible that during the choice, the brain also represents value components of the 
alternative actions in each room either as sum or differences between values49, or that the representation might 
change as a function of time from one to the other during the decision process50. Since subjects have to compare 
multiple alternative actions and consider multiple navigation strategies, testing for a representation of values of 
the not chosen actions would be more difficult in the present study. Note, however, that the signal component 
of the chosen value is also part of an aggregated signal such as a prediction error, a sum, or difference of action 
values31 and is therefore a very robust signal in BOLD data.

The properties and neural correlates of route and map-based strategies have been intensively investigated in 
both humans46,51 and animals52. Although the terminology has evolved, the route-map dichotomy is still valid. 
Previous studies have also investigated the emergence of route vs. map knowledge and suggested that landmark 
knowledge (necessary for route navigation) and survey knowledge can be acquired in parallel53 and that prefer-
ential engagement of route and map-based navigation may be a dimension along which individuals vary19,54. In 
the neuroimaging literature, some results strongly support the route-map dichotomy1,3,8,9,20,55, other data reveals 
overlapping or common activations, suggesting that in some cases, the dichotomy may not be so clear cut2,5,11,56. 
Our data supports not only a functional separation in wayfinding between medial prefrontal cortex for route 
based and medial temporal areas for map based strategies but also include common activations such as in the 
retrosplenial cortex.

In the parahippocampal and MTL area, we observed activations related to choice values that are likely cor-
relates of model-based choice computations. The hippocampus has been shown to play a key role in processing 
relative spatial and contextual information, as well as in encoding cognitive maps of the spatial environment and 
the current position in space in both animals14,57,58 and humans59–61. These processes are crucial for our wayfin-
ding task for forming a map-like representation of the environment. To do this, subjects need to not only keep 
track of their current location relative to the reward location but also to integrate and transform spatial informa-
tion into survey knowledge (or an allocentric reference system). Moreover, the parahippocampal gyrus responds 
selectively to visual scenes depicting places62 and is also specifically involved in the retrieval of spatial context 
compared with non-spatial context63–65, identification and retrieval of landmarks66,67, as well as spatial relation-
ship and relevance of landmarks encountered during navigation8,68–70. A coherent map-like representation of a 
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complex environment, such as the one used in the present study, requires the ability to identify and retrieve dif-
ferent landmarks as well as to form links between landmark identity and the layout of local areas. Consequently, 
model-based computations in the parahippocampal and MTL area during our wayfinding task could be indica-
tive of searching and planning within a mental representation of the virtual environment to find the shortest path 
to reach the goal.

For the neural correlates of model-free choices, we observed activations in vmPFC and caudate nucleus, which 
are consistent with previous studies in animals and humans26,59,71. Our model-free algorithm assigns values to 
subjects’ choices along the taken path. This approach emphasizes the character of route-based navigation includ-
ing temporal relations between landmarks and sequences of turns2,8,9,72. In addition, different studies have pro-
posed that vmPFC encodes stimulus-reward associations25,73–77. Thus, by representing model-free valuation, the 
brain may recall previously cached landmark-action associations. Activity in the vmPFC has also been observed 
in spatial working memory tasks as well as during retrieval of information about order and context78–81. Recent 
studies have found grid-cell coding in the human brain61,82. Note that the findings of grid cells in medial prefron-
tal cortex do not contradict our results here as we investigate different brain mechanism: while grid cells are most 
likely used to store a cognitive representation of the environment, we examined possible computations how the 
brain might find routes within such a representation based on reward values. Due to our parametric analysis, acti-
vated areas in the present study highlight only regions where BOLD activity correlates with specific decision value 
signals and not areas generally involved in spatial navigation or in forming grid-like representations of the envi-
ronment. In rats, the dorsolateral striatum (DLS) has been shown to be involved in a spatial learning process that 
relies on rewarded stimulus-response behavior, i.e. model-free choices34,83. In other words, neural activity in this 
region correlates with learning of turns and response to stimuli, which is the hallmark of route-based navigation. 
In humans, several fMRI studies report that the caudate is activated during route-following and route-recognition 
tasks1,5,9,19,84. Thus, we argue that the encoding of model-free valuations in the vmPFC and left caudate nucleus 
during our navigation study may reflect computational mechanisms necessary for encoding of relations between 
landmarks as well as tracing of sequence of turns and places, which are crucial for route-based navigation.

The retrosplenial involvement in navigation has been demonstrated in electrophysiological, neuroimag-
ing, and lesion studies9,20,21,85. This area is anatomically closely linked to various medial temporal regions and 
mid-dorsolateral prefrontal cortex. Patients with retrosplenial lesions have been reported to be unable to form 
or recall links between landmark identity and couldn’t derive navigational information from landmarks24. These 
two processes are crucial to route-based navigation. Moreover, neuroimaging studies reported performance 
dependent activation in retrosplenial cortex during mental navigation85. Other studies suggested the correlation 
of retrosplenial activation with the amount of survey knowledge acquired following learning the spatial relation 
in an environment9,20. These findings, along with the modulated activity in this region by both model-based and 
model-free regressors, support its prominent role in processing landmark information and using landmarks to 
navigate and discern space. This role is important for both route and map-based navigation.

Since our subjects were not confined to one navigation strategy or the other, they could apply both strategies 
during the experiment. One might speculate that using such a mixture could result in integrating information 
from both model-free and model-based computations in a weighted manner for every choice. In our experi-
ment, however, we did not find direct evidence for such an integration as there was no significant correlation 
between value signals of the hybrid model and BOLD activity. This would support the hypothesis that route and 
map-based evaluations are not necessarily integrated on every decision point. Instead, we suggest there were trials 
when subjects relied heavily on either route or map-based strategy to guide their choices during navigation. Note, 
however, that by design, our hybrid model cannot finally discriminate between both hypotheses. Either way, our 
calculation of a behavioral weight of model-based versus model-free computations is still meaningful since ω is 
fitted over all trials and indicates an aggregated relative degree of model-based versus model-free choices over the 
course of the experiment.

In our experiment, the target rooms that subjects had to find contained a reward (subjects were paid according 
to how many targets they found) that we could use to update RL values. Therefore, one could argue that we only 
observed RL learning because of the rewarding nature of the task and this process might not be causally linked 
to making navigational choices. To rule out the influence of an external monetary reward on our results, we con-
ducted an additional behavioral experiment. The wayfinding task was similar to the one presented here but with-
out monetary rewards. We found no differences in subjects’ choice or navigation behavior (see Supplementary 
Results, Supplementary Methods, and Supplementary Fig. S5 for details and results). On a neural level, even 
in situations without explicit reward, goal-directed navigation requires the brain to represent the goal location 
as some form of intrinsic reward and the brain employs the same reward learning machinery whether rewards 
are real or fictitious86,87. Moreover, if our results were only due to the value of reward, we would expect that the 
observed brain activations would only mirror the one found in pure decision making. Here we find BOLD activity 
pertaining to value-based computations in medial temporal regions that are not commonly associated with RL 
but frequently reported during spatial navigation. All this taken together, it is very likely that our findings indeed 
form the bases of wayfinding towards the goal state.

In conclusion, our findings show that successful navigation requires the ability to flexibly integrate different 
strategies depending on the given situation. Importantly, our results also suggest that the neural computations 
during employment of these strategies might be algorithmically described by RL models. Such a link between 
value-based decision making and spatial behavior seems plausible given the central role that choice has played in 
navigation from the beginning of the evolution of central nervous systems.
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Methods
Participants.  27 right-handed females, 20–29 years of age, participated in the wayfinding task while under-
going functional Magnetic Resonance Imaging (fMRI). The decision to recruit only one gender was based on the 
aim to reduce variance in performance and strategies across subjects and thereby increase power of the tests. This 
is a common practice in psychological experiments that are designed to study general population mechanism 
compared to individual differences within the population88. While this may limit generalizability of our findings 
here to men, we are currently conducting a follow up study that includes participants across different gender and 
age groups that will address these issues. Two additional participants were not included in the analysis because 
they did not complete all trials of the experiment. All participants had normal or corrected-to-normal vision 
and no history of either neurological/psychiatric illness or any other contraindications to the MRI environment.

Experimental Procedure.  The study was approved by the ethics committee of the Medical Faculty of the 
Ludwig-Maximilian-University Munich, all relevant ethical regulations and guidelines were followed. All partic-
ipants provided written informed consent before the experiment and were paid a compensation of 25 to 30 EUR 
based on the number of collected rewards during the experiment.

The core of our wayfinding task is a Virtual Environment (VE) consisted of a maze, divided into different 
rooms in a grid-like manner. Each of them was connected to the adjacent room and furnished with unique set of 
furniture. Thus, each room is different from all other rooms. While inside one of the room, no information from 
the neighboring room could be perceived. Three of these rooms are designated as reward rooms. Each reward 
room contained one of three target objects that subjects had to find while navigating through the maze.

The complete experiment consisted of one practice session and one fMRI session. The practice session was 
conducted three to five days before the fMRI scanning session. The VE for the practice session consisted of 4 by 
4 grid of rooms (16 in totals) with different furnishing than the one we used for the fMRI session. The VE was 
presented on a 24-inch computer screen.

For the fMRI scanning session, the VE consisted of 5 by 5 grid of rooms (25 in totals). Participants completed 
one training phase and three test phases (encoding, retrieval, and search phase). During the training phase, right 
after subjects enter the MRI, they were instructed to freely explore the 5 by 5 grid without any rewards present. 
Thus, subjects could learn to move with the button press and get comfortable with the stimulus material.

In each trial of the encoding phase, participants were instructed to find three rewards in exact order. This was 
ensured by making each reward visible only if the previous reward had been found. Once participants had found 
all three rewards, they were brought back to the same starting position. They then had to perform the exact same 
task. In total, subjects performed 8 trials, i.e. navigating from the starting position to reward 1, then reward 2, and 
finally reward 3, during the encoding phase. The task design of a consecutive reward sequence in the encoding 
phase facilitated route learning.

In each trial of the retrieval phase (navigating from the starting position to a designated single reward), sub-
jects were asked to find one reward at a time for a total of 15 trials. The task design of this phase was well suited to 
differentiate between route and map strategies. When ask to find reward 2, a subject using a perfect route-based 
strategy would first visit reward 1 and then go from there to reward 2. On the other hand, a subject using an ideal 
map-based strategy would go directly from starting point S to reward 2.

During each trial of the search phase, subjects were instructed to find one randomly selected reward at a time, 
i.e. only the reward that was indicated on the screen. This time, however, the starting position for every new trial 
was different from the one they encountered during the encoding and retrieval phases.

In addition to the wayfinding task, participants also performed a paper-based Mental Rotation Task (MRT).
For clarity, we summarize a few terms used in this study:
Phase: the game type played by the subject: encoding, retrieval, and search.
Run: the fMRI run (the scanner was stopped between runs for subjects to talk with experimenter and take 

short break). Note that our encoding phase consists of 8 trials and was conducted within two fMRI runs (4 trials 
in each run) to give subjects time to rest and minimize head motion. The retrieval and search phases were each 
conducted in a single fMRI run.

Trial: the sequences of actions from the starting location to the reward location. During the encoding phase, 
this means from start to reward 3 via reward 1 and reward 2. During retrieval and search phases, a trial means 
from start to whichever single reward was to be located.

Set of trials: group of all trials where subjects need to find a certain reward, across all task phases (e.g. all trials 
where subjects had to find reward 2 from encoding, retrieval, and search phases).

Navigation Indices.  To quantify strategy adoption during the wayfinding task, we calculated three naviga-
tion indices. For each navigation index, we calculated the index separately for each phase of the wayfinding task 
(adapted from a study by Marchette and colleague19). We first measured (1) the number of trials when subjects 
used the shortest path to find the rewards, (2) the steps taken to complete one trial in excess of the minimal num-
ber of steps, and (3) number of trials where subjects repeated learned routes.

IPATH and ISTEPS.  We then calculated the proportion of trials with the shortest path to the total number of trials 
in a respective phase

=I n
n

_
_

,
(1)PATH

shortest trial

total trial

where nshortest_trial is the number of trials when subjects used the shortest path to find the rewards and ntotal_trial is 
the number of trials in a given phase.
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Alternatively, we determined a navigation index based on calculating the excess steps in each phase. We then 
defined this index as

=
−

−
I

n n
n n

_ _
_ _

,
(2)

STEPS
steps obs steps

steps shortest steps

max

max

where nmax_steps is the maximum number of steps found in each phase across all subjects, nshortest_steps is the number 
of shortest steps to reach reward (i.e. number of steps in optimal path), nobs_steps is the number of steps a subjects 
actually took. A score of 1 on both indices suggests that a subject used the shortest path on every trial, i.e., the 
subject was primarily displaying a map-based strategy. In contrast, a score of 0 indicates that a subject always used 
a suboptimal longer path.

IROUTE. In both IPATH and ISTEPS, a score of 0 does not necessarily indicate that subjects simply followed previ-
ously established route to reach rewards. To address this issue, we also calculated the proportion of trials where 
subjects simply repeated previously learned routes. We defined this index as

=
+

I n
n n

_
_ _

,
(3)ROUTE

route trial

route trial shortest trial

where nroute_trial is the number of trials when subjects repeated learned routes. The minimum overlap between 
the current path and the path in the encoding phase need to be at least 60% to be counted towards the index 
IROUTE. By using the number of repetitions of a path as quantitative measure in our IROUTE index, we do not have 
to define an arbitrary single cutoff value for how often a path needs to be repeated in order to be considered as a 
well-known route. Note that for the encoding phase, this index might be less meaningful because subjects were 
still learning the environment and their task was to establish a certain route.

IPATH, ISTEPS, and IROUTE were first calculated for each phase separately. To get a general idea on how participants 
navigate throughout the entire experiment, we then averaged each index over all three phases of the wayfinding 
task.

Reinforcement learning model.  We modelled the sequence of subjects’ choices (ai) by comparing them 
step by step to those predicted by different learning algorithms as having encountered the same state (s), action 
(a) and reward (r). As we had 5 by 5 grid, the wayfinding task consisted of 25 states and in each state, subjects 
could have up to three actions depending on which direction the subject was facing. The wayfinding task con-
sisted of three rewards, the goal for both model-free and model-based algorithms is to learn the state-action value 
function Q(s,a) mapping at each state-action pair to each reward. We assume no interference or generalization 
between the three rewards conditions, and thus each algorithm was subdivided into three independent task set, 
one for each reward.

Model-free reinforcement learning.  For model-free learning, we used the SARSA with eligibility traces (SARSA 
(λ)) to calculate model-free value or QMF

89. This algorithm has three free parameters: learning-rate (α), inverse 
temperature (β) and eligibility parameter (λ). Each state-action pair is associated with a value QMF(s,a) all initially 
set to 0. The eligibility trace Z, set to 1 at the beginning of the trial and assumed not to be carried over from trial to 
trial, allows us to update each state-action pair along a subject’s encountered trajectory. For every trial t in which 
the subject located the reward (r), the state-action value is updated for each step i in that trial according to the 
following:

Q s a Q s a Z( , ) ( , ) , (4)MF i t i t MF i t i t i t i, 1 , 1 , , ,α δ← ++ +

where

δ ← + −+ +R Q s a Q s a( , ) ( , ), (5)i t MF i t i t MF i t i t, 1, 1, , ,

and

← λ .Z s a Z s a( , ) ( , ) (6)i t i t i t i t, , , ,

Model-based reinforcement learning.  A model-based approach learns the configuration of the grid world and 
computes action values by searching across possible trajectories to locate the reward48. Based on the grid-world 
configuration, we compute state-action values based on a planning process terminating at reward states. 
Specifically, for each action a in room s, we first initialized all QMB(s,a) to 0. Then, for all state-action pairs (s,a) 
and adjacent (next room) state-action pairs (s’, a’) we iteratively perform the following:

γ
←







′ ′ ≠
′ ′ − ∗ ′ ′′∈ ′∈

Q s a
R s if R s

max Q s a max Q s a otherwise
( , )

( ) ( ) 0
( , ) ( ( , )) (7)

MB
a A MB a A MB

The algorithm has one fixed parameter γ that is set to 0.1. We took model-based values (QMB) to be the val-
ues resulting after the algorithm converged (this occurred within 25 iterations). Note that computations of 
model-based value did not depend on the trial t or step i of the subject.
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Hybrid model.  In addition to model-free and model-based algorithm, we also considered a hybrid model36,90 
in which the model predicted values for the actions are calculated as a weighted linear combination of the values 
from model-free and model-based algorithms:

ω ω= − +Q Q Q(1 ) (8)hybrid MF MB

The relative degree that the model-based algorithm contributed over the model-free is captured by the weight 
parameter (ω). We took this ω as a free parameter, which was fitted individually for each subject but assumed to 
be constant throughout a single phase of the wayfinding task.

Model fitting.  For each algorithm, we estimated a set of free parameters separately for each subject and for each 
phase of the wayfinding task by mean of hierarchical model fitting84. Further details on the model fitting and 
calculation of model evidence are provided in the SI Methods.

Analysis of reaction times (RT).  We computed, across subjects, correlation coefficients between subjects’ navi-
gation indices and average RT in all choices of the subject. For the analysis of the relationship between distance 
to goal and RT we first regressed, separately for each subject, the distance to the reward for every choice on RT. 
We then took the resulting β-parameters of every subject into a second level analysis and tested against 0 with a 
t-test. This ensured that subjects were treated as random factor in the analysis. Note that we used only across sub-
jects’ analysis in these tests (i.e. this way we could test if subjects who are on average more map-based showed on 
average higher RT) compared to analyzing individual trials within subjects. The reason for this is that our indices 
give a relative degree of the strategy for every subject over an entire phase of the experiment but do not classify 
individual trials into map or route trials.

fMRI Data Analysis.  General Linear Model (GLM) for fMRI data analysis.  An event related analy-
sis was applied on two levels using the general linear model approach as implemented in SPM12. Individual 
(random-effects) model parameters were used to generate regressors for the analysis of the fMRI data. The GLM 
included the following: event regressors covering the time when subjects saw (1) the instruction, (2) the room, (3) 
chose which direction they wanted to go (button press), (4) animation of movement, and (5) seeing the reward. 
Our analysis focused on the times when subject entered each room and the button press to indicate where to go 
next. For our primary hypothesis, the decision time points were parametrically modulated by (1) model-free cho-
sen values (QMF(s,a)) and (2) model-based chosen values (QMB(s,a))). We used separate regressors for each task 
phase, and the beta coefficients were subsequently averaged across phases at the contrast level. Parametric regres-
sors were not serially orthogonalized, thus allowing each regressor to account independently for the response 
at each voxel. Using this approach, we let the model-free and model-based value regressor directly compete for 
variance in the BOLD signal. In this approach, only variance that is exclusively explained by one or the other 
regressor is assigned to the regressor but not the variance that is shared by both.

All regressors were convolved with the canonical hemodynamic response function as provided by SPM12 and 
its temporal derivative. The six rigid-body motion parameters from head motion correction were also included in 
the model as regressors of no interest. At the first level, linear weighted contrasts were used to identify effects of 
interest, providing contrast images for group effects analyzed at the second (random-effect) level.

Second level analysis.  Calculated linear contrasts of parameter estimates, from the first level GLM analysis, for 
each regressor were then brought to the separate second level random-effects analysis, wherein one sample t-test 
provided effect for each regressor of interest. For correction of multiple comparisons, we set our significance 
threshold at P < 0.05 whole-brain FWE corrected for multiple comparison at cluster level. The minimum spatial 
extent, k = 25, for the threshold was estimated based on the underlying voxel-wise P value with a cluster defining 
threshold of P = 0.001.

Details on the fMRI preprocessing are provided in the Supplementary Method.

Region of Interest Analysis.  We extracted data for all region of interest analyses using a cross-validation 
leave-one-out procedure: we re-estimated our second-level analysis 27 times, always leaving out one subject91. 
Starting at the peak voxel for the value signals in mPFC and right parahippocampal gyrus we selected the nearest 
maximum in these cross-validation second-level analyses. Using that new peak voxel, we then extracted the data 
from the left-out subject and averaged across voxels within a 4 mm sphere around that peak.

We then extracted ß-parameter estimates using either model-free or model-based parametric value regres-
sors in these ROIs and calculate the correlation between these β and the fitted parameter ω from our behavioral 
hybrid learning model. This analysis provides additional information over the previous GLM analysis: the GLM 
identifies regions in which BOLD activity fluctuates with value signals of model-free and model-based RL on a 
population level without considering to which degree an individual subject of the group uses the corresponding 
strategy. The ROI analysis the tests the hypothesis that activity in these regions, which correlate with value signals, 
is indeed related to the degree at which an individual subject employs that strategy behaviorally.

Since circular analysis, the use of the same dataset and contrast for selection and selective analysis, has been 
a common pitfall in systems neuroscience92, we pay particular attention to avoid it here. Our ROI analysis is not 
subject to such ‘double-dipping’ for the following reasons: (1) we used a cross-validation leave-one-out procedure 
to define our regions of interest, ensuring that the data that is used to define the ROI is independent from the data 
extracted of this ROI (2) the value-contrasts used in defining and extracting the ROI data (ß) are from a different 
RL model then the one providing the behavioral ω parameter that is correlated against the ROI data, making both 
independent by design (see description above).



www.nature.com/scientificreports/

1 2SCieNtifiC Reports |  (2018) 8:10110  | DOI:10.1038/s41598-018-28241-z

Data Availability and Resource Sharing.  The datasets generated during the current study are available 
from the first author Dian Anggraini (dian.anggraini.lmu@outlook.de) upon reasonable request. The following 
software were used for the experimental design, VR environment for the wayfinding task, and data analysis: 
Worldviz Vizard 4.0 (https://worldviz.com); SPM12 (https://fil.ion.ucl.ac.uk, RRID:SCR_007037); Xjview (https://
alivelearn.net/xjview/, RRID:SCR_008642); SPM Anatomy Toolbox (https://fz-juelich.de/, RRID:SCR_013273); 
mricron (https://nitrc.org/mricron, RRID: SCR_002403).
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