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Abstract: Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme
(GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated
the short-term effects of multiple irradiation on the cellular and extracellular glycosylated compo-
nents of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of
C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial
cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs)
(decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in
decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested
deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of
HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from
triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation
in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated
components of normal brain extracellular matrix (ECM) through inhibition of the functional activity
of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are
accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular
mechanism of negative side-effects of anti-GBM radiotherapy.

Keywords: glioblastoma; radiotherapy; tumor microenvironment; extracellular matrix; glycosyla-
tion; mouse brain irradiation; proteoglycan expression; chondroitin sulfate; heparan sulfate; glial
cell proliferation

1. Introduction

GBM remains one of the most aggressive and deadly malignant tumors [1], mainly due
to its relapse, which develops in 7–9 months after the first surgery [2] and results in disease
progression and patient death. Exactly these months seem to be of principal importance
for the disease prognosis, and a key event at that time period is adjuvant radiochemother-
apy [3]. A conventional protocol includes radiotherapy (RT) (60 Gy in 30 fractions) as an
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intrinsic component to eliminate the residual tumor cells [4,5]. Unfortunately, RT affects the
surrounding normal brain tissue as well and develops numerous negative side-effects [6,7]
with different molecular mechanisms involved [8,9]. Possibly, it interferes with the complex
interrelations between GBM cells and the surrounding normal brain tissue, contributing
to the formation of a specific pro-tumorous microenvironmental niche with elevated sus-
ceptibility to glioma cells’ proliferation [10–14]. Understanding the RT-induced changes in
the tumor microenvironment (TME) and normal brain tissue may provide opportunities
to target mechanisms that may promote amplified GBM aggressiveness in a previously
irradiated microenvironment [15].

One of the key components of brain ECM and TME is the glycosylated molecules
PGs and glycosaminoglycans (GAG) responsible for tissue structure and cell–cell and
cell–matrix interaction [16]. Among PGs, chondroitin sulfate proteoglycans (CSPGs) are
the main components of brain ECM, which play a special role in brain tissue organiza-
tion [17–19]. In GBM TME, substantial amounts of CSPG are associated with non-invasive
lesions, whereas low CSPG content is related to active invasion of glioma cells, suggesting
CSPGs as critical regulators of brain tumor histopathology [20]. The CSPG-rich microen-
vironment is associated with non-invasive tumor lesions through the binding of polysac-
charide CS chains with their receptor LAR (the leukocyte common antigen-related (LAR)
subfamily of receptor protein tyrosine phosphatases) while the absence of CSPGs induces
critical glioma invasion. The complex distribution of CSPGs in the TME can determine the
nonlinear invasion behaviors of glioma cells [21]. High expression of CSPG CD44 by GBM
cells is related to the mesenchymal GBM subtype and can be recommended for implementa-
tion in clinical practice for GBM subtyping [22–24]. Heparan sulfate proteoglycans (HSPGs)
are less abundant in normal brain tissue but tightly involved in neural differentiation and
glioma growth and invasion [25]. Significant increases in both polysaccharide HS content
and HSPG core proteins in GBM tissues are associated with poor disease prognosis [26],
supporting an important role of HS in the development of the nervous system and some of
its most malignant brain tumors [27].

The effects of radiation on brain ECM and glycosylated molecules of PGs/GAGs
are poorly investigated, and the recent data are summarized in the review [28]. It was
shown that the radioresistance of GBM cells depends on the expression level of neuro-glial
antigen 2 (NG2/CSPG4), which is the main biomarker of oligodendrocyte progenitor cells
(OPCs). OPCs may induce stemness and chemo-radioresistance in GBM cells, providing a
supportive function to promote the development of GBM relapse at the tumor border [29].
NG2-expressing GBM cells show resistance to ionizing radiation as well as rapidly recog-
nizing DNA damage and effectuating cell cycle checkpoint signaling through the induction
of ROS-scavenging enzymes, suggesting NG2 as an important prognostic factor for GBM
patient survival [30]. Single irradiation of mouse brain with a 7 Gy dose does not affect the
expression of a number of studied PGs (syndecan-1, glypican-1, HSPG2/perlecan, versican,
neurocan, CD44, decorin and biglycan) but results in a significant down-regulation of
brevican (3-10-fold) and NG2/CSPG4 (8-9-fold) expression in both the cerebral cortex and
subcortex in a mouse experimental model [31]. From a long-term perspective, the single
irradiation of normal brain with different doses (20, 30 or 40 Gy) with subsequent ortho-
topic implantation of nonirradiated mouse GBM tumor cells results in a more aggressive
and invasive growth of the cells with the histologic features commonly observed in recur-
rent high-grade tumors in patients [32]. Subcurative radiation significantly increases the
proportion of Ki-67-positive cells, CD44-positive cells and the number of MMP-2-positive
areas in the irradiated animals, which are associated with the active proliferation, invasion,
and migration of primary GBM cells [33]. Radiation-induced changes in hyaluronic acid (HA)
content are related to the invasiveness of GBM cells by generating movement tracked as an
ECM, and by acting as a signaling ligand for the CD44 receptor, leading to SRC activation,
which is sufficient for the mesenchymal shift of GBM cells [34]. Adjuvant radiochemotherapy
with temozolomide results in increased expression of glypican-1 (GPC-1), which is correlated
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with shorter overall survival of GBM patients [35], and affects HS content and distribution as
well as causing increased intertumor heterogeneity of HPSE in relapsed tumors [36].

In previous publications, we elaborated on a mouse model to study the irradiation
effect on brain tissue in vivo [37] and demonstrated short-term effects of single irradiation
on the brain tissue morphology and PGs profile in mouse brain tissue [38]. However, the
effects of multiple irradiation (modeling clinical RT) on brain PGs/GAGs and their func-
tional significance remain unknown. In this study, we investigated the effects of multiple
radiation on glycosylated components of the mouse brain, the molecular mechanism of
their deregulation in irradiated tissue and the functional consequences of their changes for
the proliferative and invasive capacity of GBM cells.

2. Results
2.1. Multiple Irradiation Affects Extracellular Components of Normal Mouse Brain Tissue

To investigate the short-term effects of multiple X-ray irradiation on the extracellular
components of normal mouse brain tissue, the brains of experimental C57Bl/6 mice were
irradiated using an ElektaAxesse linear clinical accelerator (6 MeV energy, three times with
24 h intervals, 7 Gy each). The scheme of the experiment is provided in Figure 1.
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Figure 1. Scheme of the experiment on triple irradiation of mouse brain.

In total, the experimental groups included control (n = 6), anesthetized (n = 18) and
irradiated (n = 18) animals, and their tissue morphology, expression of PG core proteins and
GAG content were analyzed 24, 48 and 72 h after the last irradiation (six animals/time-point).

Haematoxylin-Eosin staining of the tissue samples did not reveal any significant changes
in brain tissue morphology upon triple irradiation during the 24–72 h period (Figure 2).
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However, molecular changes were observed and demonstrated a quick response to
multiple irradiation in terms of the transcriptional activity of a number of CSPG core
proteins (Figure 3A,B).
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expression normalized to Gapdh, irradiated samples normalized to the appropriate control ones (anesthesia only). Bars
represent the mean± SD from triplicate experiments (OriginPro 8.5). ANOVA, a value of p < 0.05 was considered statistically
significant (* p < 0.05). (C,D) Immunohistochemical staining for decorin and brevican core proteins. Magnification ×400,
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The observed changes were most pronounced in the cortex at 48 h after irradiation—
down-regulation of versican (-2-5-fold) and up-regulation of brevican (+3-4-fold), CD44
(+6-7-fold) and decorin (+6-7-fold) with continuous restoration by 72 h after irradiation
(Figure 3A). The subcortex structures demonstrated a relative resistance to irradiation in
terms of PGs’ expression—down-regulation of versican (-4-fold), decorin (-3-fold) and
biglycan (-2-fold) expression with a quick restoration of these changes by 72 h after irra-
diation (Figure 3B). Expression levels of other studied PGs proteoglycans (syndecan-1,
glypican-1, HSPG2/perlecan, CSPG4/NG2 and neurocan) were not changed upon irra-
diation. Interestingly, an increased scatter in the data was sometimes observed in the
experimental groups (in contrast to the control animals, where the scatter of data was not
large). It is quite possible that the irradiation of experimental animals results in significant
variability in terms of individual responses, which leads to a large scatter of the values for
the studied parameters.

These early transcriptional changes were not exactly translated into the appropriate
changes in the contents of the respective core proteins. Immunohistochemical staining did
not reveal significant deterioration in decorin and brevican content upon irradiation in
any brain zone (Figure 3C,D), although brevican demonstrated a tendency to be decreased,
especially in the ECM of the subcortex structures by 72 h after irradiation (Figure 3D).

As for GAG content (Figure 4A–D), the dot-blot analysis showed a 2–2.5-fold decreased
overall content of HS polysaccharide chains (p < 0.05) and a pronounced tendency towards
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decreased CS content (although not statistically significant) in the cortex (Figure 4A,C) but
not the subcortex (Figure 4B,D) mouse brain zones.
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Figure 4. GAGs’ content in triple irradiated mouse brain tissue at 24, 48 and 72 h after irradiation. (A,B) CS content in cortex
and subcortex structures (respectively). (C,D) HS content in cortex and subcortex structures (respectively). GAG content is
normalized to total protein content, bars represent the mean ± SD from triplicate experiments (OriginPro 8.5). ANOVA, a
value of p < 0.05 was considered statistically significant (* p < 0.05). (E,F) Overall transcriptional activity of the HS biosynthetic
system in triple irradiated mouse brain tissue. The intensity of the amplified DNA fragments of HS biosynthesis-related genes
was normalized to that of Gapdh. The stacked columns reflect the contribution of each gene to the total expression level based
on the mean expression levels from triplicate experiments (Origin 8.5). Control—anesthetized animals.

To look for the potential molecular mechanism of CS and HS down-regulation in
irradiated brain tissues, the transcriptional activity of HS biosynthesis-related genes was
investigated by real-time RT-PCR. No change in the pattern and expression levels of the
studied genes (Ext1, Ext2, Ndst1, Ndst2, Glce, Hs2st1/2Ost1, Hs3st1/3Ost1, Hs6st1/6Ost1,
Sulf1, Sulf2 and Hpse) was detected, suggesting that the potential de-regulation of HS
biosynthesis seems to occur on a post-transcriptional level (Figure 4E,F).

Overall, the obtained data demonstrate the fast reaction of PG core proteins’ expression to
multiple irradiation of normal brain tissue, mainly at the transcriptional level, and a relatively
fast restoration of this parameter during the observed 72 h time period. At the same time,
irradiation affected the polysaccharide component of PGs and the observed decrease in the
CS and HS content in irradiated tissues possessed a more pronounced effect.
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2.2. Irradiation Inhibits the Functional Activity of Cellular Components of Normal Brain Tissue

Brain ECM is produced mainly by glial cells, the attenuated secretory activity of which
may be responsible for the observed decrease in the content of ECM components upon
irradiation. To investigate the effects of multiple irradiation towards cellular components of
brain tissue, primary glial cultures were established from the control and triple irradiated
C57Bl/6 mouse brains (7 Gy/day) 72 h after the last irradiation using the gentleMACS™
Octo Dissociator (MiltenyiBiotec) and cultured for 20 days. The cells were monitored for
proliferation rate and viability using the IN Cell Analyzer 2200 high-throughput screening
platform (GE Healthcare) (Figure 5).

The primary glial cells from irradiated brains demonstrated less adhesion to poly-
D-lysine-covered culture plastic and a smaller amount of cells at 15 days in vitro (DIV)
(Figure 5A), lower viability (the maximal percentage of the dead cells reached 13% at 72 h
of cultivation) (Figure 5B) and an extremely low proliferation rate with a doubling time of
28–29 days versus 4–5 days for normal glial primary cultures (Figure 5C,D). The observed
effects suggest that the irradiation-induced inhibition of the functional activity of normal
brain glial cells might result in the delayed recovery of normal brain tissue after RT.
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(B) Viability of the cultures during the 24–192 h time period. (C) Growth curve of the primary glial cells. (D). Doubling time
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considered statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Irradiation affected the capacity of the primary glial cells to express the core proteins
of the main PGs and also to produce polysaccharide GAG chains (CS and HS). The overall
transcriptional activity of PG core protein-coding genes in primary glial cells was signifi-
cantly down-regulated (Figure 6F), mainly due to the decreased expression of predominant
brain tissue PGs—syndecan-1 (-7.9-fold), perlecan (-2.8-fold), decorin (-6.5-fold), biglycan
(-3.6-fold) and CD44 (-1.4-fold) (Figure 6E).

Thus, multiple irradiation of the brain results in a significant decrease in the viability
and proliferative activity of glial cells in normal mouse brain tissue and their ability to
produce major components of brain ECM as PGs and GAGs.
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Figure 6. Co-culture of primary glial cultures from irradiated mouse brains with GBM cells. (A) Microphotograph of the
co-culture of U87 GBM cells with glial cells from the control or irradiated brain tissues. Magnification ×200, scale bar
500 µm. (B) Quantitative analysis of a number of U87 cells per 0.5 × 0.5 cm square (Zeiss LSM710 tile-scan + CellProfiler
4.1.3). * p < 0.05. (C) Immunofluorescence analysis of PG core proteins (decorin, brevican) and GAG content (CS, HS) in
primary glial cells co-cultured with U87 GBM cells or triple-irradiated or both. Visualization of the studied antigens with
Alexa Fluor 488 secondary antibodies (green), U87-RFP cells (red) and DAPI (blue). Magnification ×400, scale bar 100 µm.
(D) Quantitative analysis of the PG core proteins and GAG content in the glial cultures from control and irradiated mouse
brain tissues (CellProfiler4.1.3. software). ANOVA, * p < 0.05, ** p< 0.01, *** p < 0.001.

2.3. Irradiation-Induced Changes in PGs’ Expression and GAG Content Affect the Interaction of
Primary Glial Culture with GBM Cells

To investigate the functional role of the demonstrated changes in the cellular compo-
nents of normal brain tissue for GBM progression, the primary glial cultures from normal
and triple-irradiated mouse brains were co-cultured with human U87 GBM cells (Figure 6).

The analysis of the adhesive and proliferative capacity of GBM cells by confocal
microscopy showed a significant increase in the number of U87 cells on irradiated glial
cultures (Figure 6A,B), indicating irradiated brain cells as being a more favorable substrate
for cancer cells. The interaction of U87 cells with control and irradiated primary glial
cultures occurred in different ways—normal glial cells enveloped GBM cells, restricting
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their adhesion and proliferation, whereas glial cells from irradiated brain seemed not to
possess this capability (Figure 6A).

The effect was accompanied by complex changes in the PG core proteins and GAG (CS,
HS) content. In spite of the decrease in mRNA levels for key brain PGs in irradiated brain tissue
(Figure 5E,F), the protein content of decorin and brevican in primary glial cells was increased
(+1,5-fold) but the CS content was decreased 1,5-fold, which presupposes a deterioration of the
PG core proteins’ glycosylation in brain tissue upon irradiation (Figure 6C,D).

In this experiment, two variables (irradiation and presence of U87 GBM cells) devel-
oped a complex effect on PG content—decorin expression was increased upon irradiation
and unchanged upon the addition of U87 cells, but the combined impact was a significant
(5-8-fold) decrease in decorin content. At the same time, irradiation and U87 cells had
opposite effects on brevican (+1,5-fold and -3-fold, respectively) and CS content (-1-5-
fold and +1,5-fold, respectively) but their combination demonstrated the predominant
effect of irradiation on CS content and those of U87 for brevican expression (Figure 6C,D).
HS content in primary glial cells was more stable and did not show any significant changes
upon irradiation or U87 co-culture (Figure 6C,D).

Overall, the obtained results demonstrate a significant increase in the ability of
U87 GBM cells to adhere and proliferate on the primary glial cultures obtained in vitro from
the triple-irradiated mouse brain compared to the control ones. Irradiation and co-culture
with U87 cells resulted in complex deterioration of decorin and brevican core proteins’
expression and the contents of the polysaccharide chains of CS but not HS.

2.4. GBM Cells Proliferate More Actively on Organotypic Slices from Irradiated Brain Tissue

To investigate the functional contribution of ECM to the irradiation effects on brain tissue,
organotypic brain slices were obtained from control and irradiated brains (experimental system
with preserved ECM called ex vivo [39]), characterized for PGs’ expression and co-cultured with
U87 cells. The irradiated organotypic brain slices were characterized by a significant increase in
the mRNA levels of some PG core proteins (syndecan-1 and decorin, 2-fold) (Figure 7A) and
elevated overall transcriptional activity of the main PGs (Figure 7B).

Co-culture of the irradiated brain slices with GBM U87 cells revealed a significant
increase in the adhesion and proliferative activity of the cancer cells on organotypic brain
slices ex vivo (* p < 0.05) and a tendency towards a more active invasion of U87 cells within
the brain slices (Figure 7C,D). These results suggest that intact brain tissue is capable of
restricting the adhesion and proliferation of GBM cells, whereas irradiated tissue loses this
ability.

Taken together, the obtained data, for the first time, demonstrate the proof-of-principle
that the irradiation-induced changes in glycosylated components (PGs, GAGs) of normal
brain tissue might contribute to the adhesion and proliferation of GBM cells on irradiated
brain tissue and GBM relapse development.
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Figure 7. Co-culture of organotypic brain tissue slices ex vivo with GBM cells. (A) Effects of
multiple irradiation on PGs’ expression in brain tissue. Real-time RT–PCR analysis, intensity of
the amplified DNA fragments normalized to that of Gapdh, bars represent the mean ± SD from
triplicate experiments, Student t-test (OriginPro 8.5). (B) Overall transcriptional activity of PG core
protein-coding genes in brain tissue from control and irradiated mouse brains. The stacked columns
compare the contribution of each value to a total across categories. (C) Confocal microscopy of
U87-RFP cells seeded on the control and irradiated brain slices. Cells nuclei are stained with DAPI.
Scale bar 500 µm. (D) Quantitative analysis of the U87-RFP cells on the control and irradiated brain
tissues. ANOVA and post-hoc Fisher’s LSD test, * p < 0.05, ** p < 0.01.

3. Discussion

The obtained results regarding the negative effects of multiple irradiation on PGs’
expression and GAGs’ composition in normal mouse brain tissue support and extend our
previous data on the ability of even a single 7 Gy irradiation to interfere in the transcrip-
tional activity of some PG-coding genes [31]. This dose was chosen from the literature data
and validated further in terms of the absence of evident effects on brain tissue morphology
in a single-irradiation study. In fact, the choice of radiation dose in the development of
each specific experimental model is very important and the literature describes a variety
of radiation dosages used—1 Gy [40], 2 Gy [41], 4 Gy [42–44], 5 Gy [45,46], 7 Gy [47–49],
8 Gy [41,50], 10 Gy [51–54], 20 Gy [41,55], 25 Gy [54,56] and 30 Gy [57] depending on the
study purpose and design.

This study represents a complex investigation in which analysis of the expression
levels of a comprehensive set of PGs (syndecan-1, glypican-1, HSPG2/perlecan, versican,
neurocan, brevican, NG2/CSPG4, CD44, decorin and biglycan) upon multiple irradiation
was performed for the first time. For the listed PGs, only NG2/CSPG4 [29,30], CD44 [33]
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and glypican-1 [35] were identified previously as radiation-related genes. Irradiation-
induced changes in decorin and brevican expression, for the first time, revealed them as
radiation-responsive genes involved in RT side-effects.

Another important RT-induced change in brain tissue was a significant brain-zone-
dependent (in the cortex but not the subcortex) decrease in the contents of CS and HS, which
play an important functional role in brain tissue organization and GBM development along
with numerous other radiation-responsive genes [58–61] and miRNA [62]. It was shown
that CSPGs, being a major component of the brain ECM, serve as a central organizer of the
brain TME, contribute to its physical structure and induce or inhibit glioma invasion by
regulating the dynamics of the CSPG receptor LAR as well as the spatiotemporal activation
status of resident astrocytes and tumor-associated microglia [21]. The fundamental switch
between two distinct states of GBM (invasion and non-invasion) is directly associated with
the amount of glycosylated CSPGs in the tumor ECM, which induce the activation of tumor-
associated microglia and the formation of the astrogliotic capsule that directly inhibits
tumor invasion. Its absence from GBM presents an environment that is favorable to diffuse
infiltration and GBM progression [20]. Previously, we showed that the degradation of CS
in brain ECM directly affects the adhesion and invasion of GBM cells to brain tissue [38].
The results presented here demonstrate that this important component of brain tissue is
responsive to multiple X-ray irradiation, which results in a decrease in CSPG expression
and CS content in normal brain tissue and activated adhesion and proliferation of GBM
cells in irradiated brain tissue.

Interestingly, no significant changes were detected in HSPGs’ expression upon triple
irradiation, although the published data demonstrate an involvement of HSPGs, polysac-
charide HS molecules and their degrading enzyme heparanase (HPSE) in the migration
and invasion of cancer cells and glioma invasion and progression [63–65]. It turns out
that different PGs/GAGs respond differently to multiple irradiation—some CSPG core
proteins/CS respond to it, while HSPGs show resistance.

Since the main producer of PGs/GAGs in the brain tissue are glial cells, a comparative
analysis of glial primary cultures from the control and triple-irradiated brain tissues was
performed in this study. Multiple irradiation resulted in a significant decrease in the
viability and proliferative activity of the glial cells, affecting their ability to produce major
components of brain ECM as PGs/GAGs and resist the adhesion and proliferation of GBM
U87 cells in co-culture systems in vitro and ex vivo. These data remain consistent with
previously published results on the role of microglia in GBM progression. It was shown
in the literature that glial cells (comprising ~50% of all brain cells) are tightly involved
in GBM cells’ growth and limited response to radiation or chemotherapy [66]. Microglial
cells (MG) affect the migration and proliferation of GBM cells in 2D and 3D co-culture
systems, eliciting drug resistance to chemotherapeutic drugs (especially in 3D cultures) [67].
Glioma-associated microglia and macrophages (GAMs) contribute to GBM biology, with
direct involvement in the degradation of the ECM through GAM-secreted factors, which
represents a crucial mechanism that allows the expansion of tumors and parenchyma
invasion [68]. The results presented here show for the first time that glial cells might
contribute to the development of GBM not only through the degradation of the ECM but
also through a decrease in the production of its key components.

Our data on the involvement of normal glial cells in the adhesion and proliferation of
GBM cells through the reorganization of glycosylated components of brain ECM suppose
a novel molecular mechanism underpinning the negative effects of RT on GBM cells’
survival and on relapse development—irradiation/inhibition of the biosynthetic activity
of glial cells/deterioration of the PG expression and GAG content/reorganization of brain
ECM/proliferation and invasion of the residual glioma cells/GBM relapse development.

To prevent or attenuate the negative consequences of the multiple irradiation to normal
brain tissue, it may be worth trying to revise the single dose of radiation (downward),
similarly to how it was applied in the case of salvage RT in the treatment of recurrent
GBM [69]. The identification of decorin, brevican and CS/HS as key components of the
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brain tissue that respond to multiple irradiation would outline the direction of their further
study as potential markers of the radiotoxicity of the chosen RT regimen on normal brain
tissue or as targets for the development of new protective drugs to protect brain tissue.

4. Materials and Methods
4.1. Animals and Tissue Samples

All experiments were performed on 2-month-old male C57BL/6 mice (n = 54) obtained
from the SPF animal house at the Institute of Cytology and Genetics (Novosibirsk, Russia).
Animals were housed in polycarbonate cages at a temperature of 25 ± 1 ◦C, a humidity of
50–60%, under 12/12 h light/dark cycles, with free access to water and food. Animals were
sacrificed by cervical dislocation (AVMA Guidelines for the Euthanasia of Animals, 2013).
Freshly excised brain tissue was divided, and half of the tissue was immediately fixed in
10% neutral buffered formalin, then routinely processed and embedded in paraffin using
the Shandon Citadel 2000 Tissue Processor and the HistoStar Embedding Workstation
(Thermo Fisher Scientific, Waltham, MA, USA). The second half was divided into cortex and
subcortex sections and was preserved with RNALater solution (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. All procedures with
the experimental animals were conducted in accordance with the European Communities
Council Directive 2010/63/EU and approved by the local Committee for Biomedical Ethics
of the Institute of Molecular Biology and Biophysics FRC FTM (code 07-11012017). All
efforts were made to minimize animal suffering and to reduce the number of animals used.

4.2. Animals’ Irradiation

The detailed protocol for animal irradiation and the justification for the irradiation
parameters chosen are described in [31,37]. Briefly, to anesthetize mice, intraperitoneal
injection with Domitor (Orion Corporation, Espoo, Finland; 0.125 mg/kg of body weight)
followed by Zoletil injection after 10 min (Valdepharm, Valdreuil, France; 20 mg/kg) into
another part of mouse abdomen was used. The anesthetized animals were irradiated
with a single dose of 7 Gy during three consecutive days (total dose of 21 Gy) using the
ElektaAxesse clinical linear accelerator (Elekta Ltd., Crawley, UK) (E.N. Meshalkin National
Medical Research Center, Novosibirsk, Russia) or the VEPP-4 research accelerator complex
(Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia). Brain tissue samples
were obtained after 24 h, 48 h or 72 h after the last irradiation (6 animals/each group).

Irradiation zones included the whole mouse brain (for ElektaAxesse) or the whole
mouse head (for VEPP-4), and irradiation doses were given according to the X-ray sources
settings and controlled using Gafchromic EBT3 radiochrome film (Ashland Specialty
Ingredients, Wilmington, DE, USA) according to Politko et al. [37]. The control irradiated
film was scanned with a Canon 9000f mark II (Canon, Tokyo, Japan) and quantification
analysis was performed using the ImagePro6 program.

4.3. Real-Time RT-PCR Analysis

Total RNA was extracted from the tissue samples using the QIAzol Lysis Reagent
(Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions. The
integrity and quality of the isolated RNA were checked by agarose gel electrophoresis, and
total RNA concentration was measured with the Qubit–iT RNA Assays Kit (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. cDNA was
synthesized from 0.5 µg of total RNA using a First Strand cDNA Synthesis kit (Fermentas,
Hanover, MD, USA) and 1/10th of the product was subjected to PCR analysis. Real-time
PCR for mouse PGs and HS metabolic enzymes was performed using the CFX96 Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA) and the Taq-polymerase (IMCB,
Novosibirsk, Russia), SYBR Green (Thermo Fisher Scientific, Waltham, MA, USA). The
PCR conditions were: 95 ◦C for 3 min, then 95 ◦C for 20 s, 59 ◦C for 15 s, and 72 ◦C for 30 s
for 40 cycles; the total reaction volume was 25 µL. Gapdh was used as the reference gene.
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The fold change for each mRNA was calculated using the 2−∆Ct method. Six biological
replicates were used for RT-PCR analysis. The used primers are listed in Table 1.

Table 1. Sequences of primers used in PCR analysis.

Gene Sequence

Sdc1
5′-GGTCTGGGCAGCATGAGAC-3′

5′-GGAGGAACATTTACAGCCACA-3′

Gpc1 5′-CTTTAGCCTGAGCGATGTGC-3′

5′-GGCCAAATTCTCCTCCATCT-3′

Hspg2 5′-CCGTGCTATGGACTTCAACG-3′

5′-TGAGCTGTGGAGGGTGTATG-3′

Vcan
5′-GGAGGTCTACTTGGGGTGAG-3′

5′-GGGTGATGAAGTTTCTGCGAG-3′

Bcan
5′-GTGGAGTGGCTGTGGCTC-3′

5′-AACATAGGCAGCGGAAACC-3′

Cspg4 5′-TCTTACCTTGGCCCTGTTGG-3′

5′-ACTCTGGTCAGAGCTGAGGG-3′

Dcn
5′-CCCCTGATATCTATGTGCCC-3′

5′-GTTGTGTCGGGTGGAAAATC-3′

Bgn 5′-GCCTGACAACCTAGTCCACC-3′

5′-CAGCAAGGTGAGTAGCCACA-3′

Ncan
5′-F CCAGCGACATGGGAGTAGAT-3′

5′-GGGACACTGGGTGAGATCAA-3′

CD44
5′-CAAGTTTTGGTGGCACACAG-3′

5′-AGCGGCAGGTTACATTCAAA-3′

Gapdh 5′-CGTCCCGTAGACAAAATGGT-3′

5′-TTGATGGCAACAATCTCCAC-3′

4.4. Histological Study

Routine staining of 3.5-µm coronal tissue sections with Haematoxylin and Eosin (H&E)
was performed on a Microm HMS740 (Thermo Scientific, Waltham, MA, USA) and docu-
mented by light microscopy (Axiostar Plus, Zeiss, Jena, Germany) with magnification ×400.
Ten microscopic fields were estimated for each specimen; the staining was analyzed inde-
pendently by two qualified pathologists.

4.5. Immunohistochemical Analysis

For immunohistochemistry, 3- to 4-µm sections of formalin-fixed, paraffin-embedded
tissue were deparaffinized, and antigen was retrieved by treatment with sodium citrate buffer
(10 mM sodium citrate, 0.05% Tween-20) at 95–98 ◦C for 20 min. Non-specific binding block-
ing, immunostaining and visualization were performed using Mouse- and Rabbit-specific
HRP/DAB (ABC) Detection IHC kits (Abcam cat. N ab64264) according to the manufacturer’s
instructions. The rabbit polyclonal anti-decorin (Abcam, cat. N ab175404, 1:100) and rabbit
polyclonal anti-brevican antibody (Abcam cat. N ab111719, 1:100) primary antibodies were
used for immunostaining for 1 h at room temperature. The sections were counterstained
with hematoxylin and observed by light microscopy using an AxioScopeA1 microscope
(Zeiss, Jena, Germany). Quantitative analysis was performed with the ZENblue program
(Zeiss, Jena, Germany).
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4.6. Immunocytochemical Analysis

For ICC experiments, cells were grown on coverslips coated with poly-D-lysine
(Gibco, Waltham, MA, USA). Cells were washed once with PBS prior to fixation with 4%
PBS-buffered formaldehyde (10 min, RT). After 3 × PBS rinse, cells were permeabilized
with 0.1% Triton-X100 in PBS for 5 min and washed three times with PBS. Non-specific
antibody binding was blocked with PBST (PBS with 0.05% Tween-20) containing 1% BSA
(Sigma-Aldrich, St. Louis, MO, USA) and the samples were incubated with primary
antibodies diluted in 1% BSA in PBST for 1 h at room temperature: rabbit anti-decorin
antibody (Abcam ab175404, 1:100), rabbit anti-brevican antibody (Abcam ab111719, 1:100),
mouse anti-CS antibody (Sigma-Aldrich C8035, CS-56, 1:100) or mouse anti-HS antibody
(Millipore, clone T320.11, 1:100). Following 3 × 5 min washes with PBST, the samples
were incubated for 1 h in the dark with anti-mouse or anti-rabbit AlexaFluor-488-labelled
secondary antibodies (Abcam ab150117 or ab150077, respectively, 1:1000). Samples were
washed three times with PBST, and mounted on slides using SlowFade Diamond mounting
medium with DAPI (Thermo Scientific, Waltham, MA, USA). Slides were analyzed with an
LSM 710 laser confocal microscope (Zeiss, Jena, Germany).

4.7. Dot-Blots for Total GAG Content

Brain tissue samples were lysed with RIPA-buffer (Thermo Scientific, Waltham, MA,
USA) containing “Complete” Protease Inhibitor Cocktail (Roche, Indianapolis, IN, USA),
sonicated using a Microson XL-2000 Ultrasonic liquid processor (Qsonica, Newtown, CT,
USA) at 15 µm amplitude (45 W) and centrifuged for 15 min at 14,000 gat + 4 ◦C. The
protein concentration was quantified using the Pierce™ BCA Protein Assay Kit (Thermo
Scientific, Waltham, MA, USA). Quantities of 1 µg of total proteins were dot-blotted onto
PVDF membranes (Millipore, Burlington, MA, USA in a volume of 1µL. The membranes
were blocked with 5% non-fat milk in PBST for 1 h and incubated with mouse anti-CS
primary antibody (Sigma-Aldrich C8035, CS-56, 1:500) or anti-HS antibody (Millipore,
clone T320.11, 1:500) diluted in 1% non-fat milk in PBST overnight at 4 ◦C followed by
the secondary peroxidase-conjugated antibody goat anti-Mouse IgG (Abcam, Cambridge,
UK) for 1 h at room temperature. GAGs were detected with an Optiblot ECL Detection Kit
(Abcam, Cambridge, UK) according to the manufacturer’s instructions. Blots were imaged
using ChemiDoc (BioRad, Hercules, CA, USA) and analyzed semi-quantitatively using
ImageLab 6.0.1 (BioRad, Hercules, CA, USA) software, the chemiluminescent signal was
normalized to total protein content according to Coomassie staining.

4.8. Primary Culture

Primary mixed glia was obtained using the gentleMACS™ Octo Dissociator with
Heaters, and the Adult Brain Dissociation Kit (MiltenyiBiotec, Bergisch Gladbach, Ger-
many), according to the manufacturer’s protocol. Briefly, two 10-week-old C57BL/6J
mice per experimental group were sacrificed by cervical dislocation, and brains were
removed and washed in cold PBS once. Brains were cut into 0.5 cm slices and transferred
to C Tubes (MiltenyiBiotec, Bergisch Gladbach, Germany) containing enzyme mix 1. En-
zyme mix 2 was added and the brains were dissociated using the gentleMACS program
37C_ABDK_01. After the termination of the program, the suspension was filtered through
a 70-µm strainer and centrifuged at 300× g for 10 min at room temperature. The pellet
was resuspended in Debris Removal Solution and debris was removed by centrifugation
at 3000× g for 10 min at room temperature. Cells were washed with cold PBS, incubated
with 1 × Red Blood Cell Removal Solution for 10 min at 4 ◦C and centrifuged at 300× g
for 10 min at room temperature. The pelleted cells were resuspended in IMDM (Gibco,
Waltham, MA, USA) medium supplemented with 2 mM L-glutamine, 100 units/mL peni-
cillin, 100 µg/mL streptomycin and 10% fetal bovine serum. Cells were seeded onto
poly-D-lysine-covered flasks and incubated at 37 ◦C in a humidified 5% CO2 incubator.
The medium was changed completely after 24 h and 1

2 of the medium was changed every
3 days. Primary cultures were grown for 11 days (up to 90% confluency) before being
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passaged for further experiments: some cells were seeded onto coverslips for ICC analysis
and co-culture with U87-RFP cells; some cells—onto 96-well plates for proliferation assay;
some cells—into culture flasks for RT-PCR analysis. After passaging, cells were grown for
9 additional days before analyses, totaling 20 days in culture.

4.9. Cell Viability and Proliferation Assay

Cell viability and proliferation were detected by Hoechst 33342/propidium iodide (PI)
staining using the IN Cell Analyzer 2200 (GE Healthcare, Chicago, IL, USA). Primary mixed
glial cells from control and irradiated brains were seeded onto 96-well plates at 104 cells
per well and allowed to attach and grow for 24 h. Cells’ viability and proliferation were
analyzed at 24, 48, 72, 144, 168 and 192 h after plating. Cells were stained with Hoechst
33,342 (Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C and PI (Sigma-Aldrich,
St. Louis, MO, USA) for 10 min at 37 ◦C. An IN Cell Analyzer 2200 cell imaging system
(GE Healthcare, Chicago, IL, USA) was used to perform automatic imaging of six fields
per well under 200×magnification, in brightfield and fluorescence channels. The images
produced were used to analyze live and dead cells using the IN Cell Investigator software
(GE Healthcare, Chicago, IL, USA).

4.10. Organotypic Hippocampal Slice Culture

Organotypic hippocampal slice cultures (OHSCs) were prepared according to the
previously described protocol [70] with modifications. Briefly, control or irradiated mice
were sacrificed by cervical dislocation, decapitated, and the brains were rapidly removed
under aseptic conditions and placed into ice-cold Hank’s balanced solution with 0.9%
glucose. The hippocampi were removed and cut rapidly into 500 µm transversal slices with
a manual McIlwain tissue chopper (Stoelting Co., Wood Dale, IL, USA). The slices were
transferred to Millicell culture inserts (Millipore, PICM0RG50) placed into a 6-well plate
containing 1.2 mL of culture medium, consisting of Neurobasal medium supplemented
with B27 and GlutaMAX (Gibco, Waltham, MA, USA). The organotypic hippocampal slices
were cultivated in a 90% humidified atmosphere with 5% CO2 at 37 ◦C. The medium was
changed on the next day, and from day 3 of the experiment, the medium was changed
twice a week.

4.11. Co-Culture of GBM Cells with the Primary Brain Cultures In Vitro and Organotypic
Cultures Ex Vivo

For co-culture experiments, human GBM U87 cells stably expressing RFP (U87-RFP
cells) (AntiCancer Inc., San Diego, CA, USA) were used. Cells were maintained in IMDM
medium supplemented with 2 mM L-glutamine, 100 units/mL penicillin, 100 µg/mL
streptomycin and 10% fetal bovine serum at 37 ◦C in a humidified 5% CO2 incubator.
For co-culture with U87-RFP cells, primary mixed glial cultures were grown up to 70%
confluency on poly-D-lysine-coated coverslips placed in 12-well plates. In addition, 103

U87-RFP cells were added to each well and co-cultivated for 7 days. Co-cultures were
washed once with PBS prior to fixation with 4% PBS-buffered formaldehyde (10 min, room
temperature) and used for immunostaining.

For co-culture with organotypic slices, U87-RFP cells were harvested using trypsin/EDTA,
pelleted by centrifugation and resuspended in Neurobasal medium.

To analyze the adhesion of tumor cells to the surface of organotypic slices, 12,500 cells
in 10 µL were applied onto each slice, incubated for 2 h at 37 ◦C and 5% CO2, washed in
PBS, and fixed in 10% neutral buffered formalin at 4 ◦C for 16 h. To assess the proliferation
of tumor cells and their invasion into organotypic slices, 5000 cells in 10 µL were applied
onto each slice, incubated for 7 days at 37 ◦C and 5% CO2, then washed with PBS and fixed
in 10% neutral buffered formalin at 4 ◦C for 16 h. After fixation, organotypic slices-U87-RFP
co-cultures were washed three times in PBS, transferred onto microscope slides and covered
with a coverslip using SlowFade Diamond medium with DAPI (Thermo Scientific, Waltham,
MA, USA). These co-cultures were visualized using LSM 710 laser confocal microscope
(Zeiss, Jena, Germany). Images were acquired in z-stack and tile-scan modes to visualize
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the signal over the entire volume of the slice. The acquisition, processing and analysis
of images were performed using the ZEN Black 2012 software (Zeiss, Jena, Germany).
Tumor cell adhesion was determined as the percentage of the slice surface area occupied by
tumor cells (summarized signal from 20 µm deep slice volume); the proliferation of tumor
cells was determined as a percentage of the area occupied by tumor cells in the maximum
intensity projection mode (summarized signal from the whole slice volume); the invasion
of tumor cells was determined as a percentage of the area occupied by tumor cells at a
depth of 25 µm from the slice surface.

4.12. Statistical Analysis

ANOVA analysis with Fisher’s Least Significant Difference (LSD) Post-Hoc test was
performed to determine statistical significance between the studied groups. Data were ex-
pressed as means ± SD. Statistical analysis was performed using ORIGIN Pro 8.5 software;
a value of p < 0.05 was considered to indicate a statistically significant difference.
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