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Simple Summary: Gliomas are heterogenous types of cancer, therefore the therapy should be
personalized and targeted toward specific pathways. We developed a methodology that corrected
strong batch effects from The Cancer Genome Atlas datasets and estimated glioma grade-specific
co-enrichment mechanisms using machine learning. Our findings created hypotheses for annotations,
e.g., pathways, that should be considered as therapeutic targets.

Abstract: Gliomas develop and grow in the brain and central nervous system. Examining glioma
grading processes is valuable for improving therapeutic challenges. One of the most extensive reposi-
tories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA). However, such
big cohorts should be processed with caution and evaluated thoroughly as they can contain batch and
other effects. Furthermore, biological mechanisms of cancer contain interactions among biomarkers.
Thus, we applied an interpretable machine learning approach to discover such relationships. This
type of transparent learning provides not only good predictability, but also reveals co-predictive
mechanisms among features. In this study, we corrected the strong and confounded batch effect in
the TCGA glioma data. We further used the corrected datasets to perform comprehensive machine
learning analysis applied on single-sample gene set enrichment scores using collections from the
Molecular Signature Database. Furthermore, using rule-based classifiers, we displayed networks
of co-enrichment related to glioma grades. Moreover, we validated our results using the external
glioma cohorts. We believe that utilizing corrected glioma cohorts from TCGA may improve the
application and validation of any future studies. Finally, the co-enrichment and survival analysis
provided detailed explanations for glioma progression and consequently, it should support the
targeted treatment.
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1. Introduction

Gliomas are heterogeneous brain and spinal cord tumors [1]. The expected survival
of patients with glioma is extremely poor. In recent years, it was one of the leading
cancer-related causes of death among most sex and age groups in adolescents and young
adults [2]. The World Health Organization (WHO) in 2007 used cell types to classify gliomas
into subtypes (astrocytoma, oligodendroglioma, oligoastrocytoma or ependymoma) or
grades from I to IV [3]. In 2016, the subtyping system was updated according to molecular
parameters such as the presence of a mutation in the IDH1 gene [4]. However, the subtyping
system update did not influence the grading system that is based on the histological criteria
derived from a biological behavior of neoplasm. Specifically, WHO discerns four glioma
grades that are defined as follows: grade I (GI or G1) with low proliferative potential,
grade II (GII or G2) with low-level proliferative activity, grade III (GIII or G3) histological
evidence of malignancy and grade IV (GIV or G4) cytologically malignant that is the most
malignant form of glioma [5]. Here, the grading system was adopted from The Cancer
Genome Atlas (TCGA) which classifies gliomas into lower-grade gliomas (LGG) including
GII and GIII [6] and glioblastoma multiforme (GBM) including GIV.

Biological mechanisms behind any tumor progression, including glioma, are robust
and affect many crucial signaling pathways. Numerous studies have identified alterations
in the genome and characterized core pathways that are dysregulated. The study by [7]
concluded that NF-κB participates in glioma angiogenesis that increases its malignancy.
Interestingly, NF-κB is a critical factor that regulates immune response and the development
of inflammatory diseases and cancer [8]. Furthermore, it has been established that the
following pathways are disrupted in GBMs: (1) growth factor downstream signaling via
phosphatidylinositol 3-kinase (PI3K) pathway; (2) apoptosis regulation via p53 signaling;
(3) cell cycle regulation via cyclin-dependent kinases and retinoblastoma 1 signaling (RB1)
pathway [9,10].

One of the most extensive data resources of transcriptomics datasets for gliomas is
TCGA [11]. TCGA hosts a broad collection of samples sequenced with an RNA-seq, as well
as other omics techniques. Recent studies have reported that various decision-unrelated
sources of bias, i.e., batch effects, could occur among cohorts obtained from different
sequencing facilities [12,13]. Importantly, a batch effect may influence the downstream
analyses, especially when confounded with the outcome of the analysis, such as TCGA-
LGG and TCGA-GBM. Furthermore, the impact of batch effect correction on datasets may
remove biologically-relevant information that drastically affects the statistical analysis
and thus, it shall be applied with great care [14]. To enhance reproducibility and limit
variation, researchers created projects aiming to precompute and unify public cohorts such
as recount2 or University of California, Santa Cruz (UCSC) Xena [15,16]. However, if the
batch effect is highly confounded with an outcome of interest, a novel methodology needs
to be designed and employed for correction.

In recent years, machine learning (ML) has been applied successfully in many scientific
areas, including life sciences [17–19]. This popular field has been shown to effectively
support knowledge mining and patterns recognition in big biological data [20]. For example,
the prediction of a cancer outcome using ML techniques led to the detection of biomarkers
and the exploration of novel ways of treatment [21]. An accurate prediction of the disease
condition is a substantial challenge. However, the interpretation of ML models is also
extremely challenging and increasingly fascinating [22]. Furthermore, the effect of batch on
ML has also been studied [23]. The study showed that the bias is carried through the ML
process and, thus it can affect the results and conclusions.

In this study, we corrected the strong batch effect between LGG and GBM cohorts from
TCGA. For the corrected data, we provided a comprehensive ML analysis for two models
of glioma grading: (1) GII vs. GIII and (2) LGG vs. GBM. To decrease variation from the
batch effect, we used unified TCGA cohorts from the UCSC Xena repository [16] that were
recomputed under the UCSC Toil RNA-seq pipeline. The analysis was divided into two
stages. First, we focused on analyzing differentially expressed genes (DEGs). Second, we
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performed a single-sample gene set enrichment analysis (ssGSEA) that was followed by a
comprehensive ML evaluation and analysis. We applied ssGSEA to detect the most accurate
Molecular Signatures Database (MSigDB) [24–26] collections that discern between glioma
grades. Next, topmost collections were used to determine dependencies among annotations
that revealed co-enrichment for glioma grading. Finally, we validated our results and
evaluated the survival of the glioma patients for the most co-enriched annotations.

2. Materials and Methods

This study focused on developing a methodology for ML-based analysis of glioma
cohorts from TCGA (Figure 1). First, we aimed at correcting the strong batch effect that
biased the ML analysis performance. After successfully correcting the datasets, we per-
formed two separate analyses: (1) Differential gene expression analysis; (2) ML analysis on
ssGSEA scores based on MSigDB collections. Finally, two cohorts from the Chinese Glioma
Genome Atlas (CGGA) [27] were used for validating the results. Below, we included
detailed descriptions of the applied methods.
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Figure 1. Overview of the pipeline applied in this work. Following preprocessing were two separate
analyses: The lower tier of the pipeline illustrates the steps employed for identification and basic
analysis of DEGs, while the upper tier demonstrates the steps for ssGSEA analysis based on ML
approaches using MSigDB collections. The final step illustrates the validation of the results.

2.1. Preprocessing of Gene Expression Datasets

Initially, we analyzed raw transcriptomics data from the TCGA repository. To perform
the analysis, we collected RNA-seq datasets from Genomic Data Commons (GDC; [28],
including TCGA-LGG and TCGA-GBM cohorts. Using principal component analysis (PCA),
we observed a strong variability between GDC-based cohorts (Figure S1A). Therefore, we
used a unified and transcript per million-normalized dataset from UCSC Xena Toil RNA-seq
recompute data hub, which contains merged cohorts TCGA, TARGET and GTEx [29]. We
chose this cohort to allow future expansion of the analysis as it also includes TARGET and
GTEx. However, even for the unified cohort, strong variability was still visible (Figure S1B).
Therefore, we attempted to correct for unknown sources of batch effects (Figure S1C,D,
Table S1) [30]. Using an ML evaluation and Student’s t-test, we examined how bias
influences classification between particular grades groups (Table S1). We found that
classifiers result in very high quality for randomly chosen genes (Figure S2A–D) and an
unusually high fraction of these genes being DEGs (Figure S2E).

In the next step, we examined principal components (PCs) of the unified cohort and
we retrieved Gaussian mixtures (GMs) from the first PC (PC1) (Figure S3, Table S1). This
allowed us to detect mixtures that corresponded to hidden groups of samples. Based on PC1,
two GMs could be distinguished (Figure S3A–C). These are GM1 that contained LGG and
GBM samples, and GM2 that contained the vast majority of LGG samples. Therefore, we
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divided the unified TCGA dataset according to GMs (Figure S3D–I, Table S2). Specifically,
the final GM1-based dataset contained 151 GBM and 108 LGG samples, and the GM2-based
dataset collected 231 GII and 168 GIII samples (Table 1). We also evaluated which samples
were separated based on GMs. Here, we provided global PCA and local t-SNE approaches
(Figure S4). To show the potential source of the batch effect, we visualized tissue source
sites (TSSs) for all samples (Figure S4C,D).

We first evaluated the GM1-based dataset and observed that classifiers built with
randomly selected genes are closer to the accuracy of permutation tests (Figure S5). In
addition, as expected the fraction of DEGs decreased (Figure S5F). Next, we ran surrogate
batch effect analysis on GM1-based samples using two methods, namely “leek” and “be”
(Figure S5D,E). Furthermore, after applying batch effect correction, we selected protein-
coding genes (Figures S3G and S5E) using a reference file from HUGO Gene Nomenclature
Committee [31]. As a result, datasets contained 19,028 protein-coding genes. To evaluate
if the biological information was not affected by batch effect correction, we again per-
formed the t-test on the GM1-based dataset that resulted in 255 significant genes with
p value adjusted for false discovery rate (FDR) less than 0.001. Next, GM2-based data
were processed in a similar fashion. We examined the variability between GII and GIII
(Figure S6), where no batch effect was visible and the correction step was omitted. Finally,
we performed a t-test between GII and GIII and found 439 significant genes (FDR-adjusted
p-value < 0.001). For the list of significant genes, we run functional profiling with gProfiler,
using all available databases, that revealed sets of significant (FDR-adjusted p-value < 0.05)
pathways. In addition, we checked the influence of sex and age on GM1- and GM2-based
datasets (Figure S7).

Table 1. A summary of sample amounts used in the analysis to obtain and validate results. In total,
1671 publicly available samples were used in this analysis.

TCGA CGGA

GM1 GM2 Batch 1 Batch 2

GII GIII LGG GBM GII GIII GBM GII GIII GBM

231 168 108 151 188 255 249 103 79 139

2.2. DNA Methylation Data

The DNA methylation data were used to examine epigenetic changes in DEGs for
samples corresponding to GM1 and GM2. The DNA methylation profiling was based on
the Illumina Infinium HumanMethylation450 platform for 685 samples corresponding to
samples in transcriptomics analysis. The dataset (GBM-LGG) was downloaded from the
UCSC Xena browser. CpG sites with no recorded beta values were filtered out prior to
downstream processing. After filtering, 364,859 CpG sites remained. To check for possible
batch effects, we visualized the dataset using PCA. We annotated CpG sites with their
associated genes (Table S1). The average beta values across different groups were compared
using a non-parametric Wilcoxon test.

2.3. ssGSEA Analysis

To further analyze GM1- and GM2-based datasets, we employed ssGSEA, a single-
sample extension of GSEA. Using the ssGSEA approach, we transformed all the variables
from gene expression values to the degree of enrichment. The single-sample approach
decreases the variability of datasets suffering from confounding factors. To perform ss-
GSEA, we used a method proposed by [32] (Table S1). We first selected all 20 collections
from MSigDB v7.4 and then ran ssGSEA on glioma cohorts. These collections included
the following gene sets: hallmark, positional (PG), chemical and genetic perturbations
(CGP), BioCarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pathway Interaction
Database (PID), Reactome, WikiPathways (WP), microRNA targets (MIR), transcription



Cancers 2022, 14, 1014 5 of 19

factor targets (TFT), cancer gene neighborhoods (CGN), cancer modules (CM), gene on-
tology cellular component, biological process and molecular function (GOCC, GOBP and
GOMF, respectively), human phenotype ontology (HPO), oncogenic signatures (Onco),
ImmuneSigDB (Immuno), vaccine response gene sets (VAX) and cell type (CT).

Some ML methods, such as rule-based learning, require discrete variables to perform
learning. In ssGSEA, enrichment scores describe the activity degree of a given gene set.
Each score represents the enrichment degree to which the genes are simultaneously down-
or up-regulated for a single sample. The ssGSEA scores were discretized with equal
frequency, as it was done in rule-based modeling, into three levels of the degree: low,
medium and high. For instance, a high ssGSEA degree means that there are many down-
or up-regulated genes from the given gene set in a particular glioma sample. We believe
that such simplification of the ssGSEA degree could lead to improved interpretability.

2.4. ML Evaluation

To evaluate the MSigDB collections, we performed an ML analysis before and after
applying Monte Carlo feature selection (MCFS) [33] that is a decision tree-based non-linear
method. According to the ML evaluation (Table S1), we selected the top three most ac-
curate collections for discerning grades. In order to evaluate the classification abilities of
collections, we selected five different and well-established ML approaches [34], namely:
sequential minimal optimization (SMO) for training support vector classifiers [35], instance-
based learning algorithms (IBk) that is an extension of k-nearest neighbors algorithm [36],
bagging predictors [37], J48 that generates C4.5-based decision trees [38] and repeated in-
cremental pruning to produce error reduction (JRip) that creates classifiers by rule learning
algorithm [39]. We based our choice criterion on mixing several well-known black-box and
interpretable ML methods. As the datasets included an uneven distribution of decision
classes, we applied undersampling of the majority class to match the size of the minority
class. For instance, the number of balanced classes in the case of GII vs. GIII was equal
to the total number of GIII samples, i.e., 168 samples (Table 1). The undersampling was
performed 20-times in order to obtain balanced datasets. Next, the ML modeling was
performed with 10-fold cross-validation (CV). In addition, we performed a permutation
test for each model. The permutation test has been performed by randomly shuffling the
decision classes. The test was included within an undersampling loop and performed with
10-fold CV.

We employed two well-known classification quality measures in this work, namely
accuracy (ACC) and area under the ROC curve (AUC). The ACC was used for the ML
evaluation of datasets before applying ssGSEA analysis. After applying ssGSEA, we used
the AUC measure for evaluation. We used undersampling in all experiments, we believe
these metrics can be used interchangeably.

2.5. Interpretable ML

To find dependencies between annotations and provide interpretable classifiers, we
generated rule-based models (RBMs) with R.ROSETTA [40]. The method uses a rough
sets theory for producing a set of IF-THEN rules that constitute an RBM [41]. The set of
rules was initially created using a Boolean reasoning approach. However, since a Boolean
reasoning approach is a non-deterministic polynomial hard problem, several algorithms
called reducers have been developed to tackle this dilemma. Here, we used the Johnson
reducer method that produces a high fraction of significant rules and does not overestimate
their total amount [40]. Importantly, we have created RBMs only for the topmost MSigDB
collections selected based on the AUC value. The rules were further filtered according to
their p-value (FDR-adjusted p-value < 0.01). Notably, such rules are directly interpretable
and reflect co-predictive mechanisms among features. As in the case of well-known co-
expression analysis, such dependencies may reflect biological interactions. However, rules
characterize non-linear, local and supervised dependencies of features. As in the case of
previous ML evaluations, we applied undersampling and 10-fold CV for obtaining RBMs.
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Importantly, equal frequency discretization of ssGSEA scores was performed within the
CV loop.

2.6. Rule-Based Networks of Co-Enrichment

Here, we presented co-predictive mechanisms as a co-enrichment that is defined as
two or more annotations being simultaneously enriched for a specific group of samples
regarding the decision class, i.e., glioma grade. Usually, annotations are treated indepen-
dently, but we assumed that annotations might have complementary functions [42]. Such
annotation-annotation dependencies have been successfully investigated for evaluating
drug effects [43]. In general, co-enrichment has been shown as an interesting concept for
analyzing data in the form of a network [44]. Thus, we are aware of its high importance in
analyzing complex diseases such as glioma.

RBMs were further visualized using a rule-based network approach with VisuNet [45].
This approach transforms a set of rules into a network. Here, the network represents
annotations and their values as nodes and rule-derived connections as edges. We used the
decision coverage value to define the size of nodes. Furthermore, the feature enrichment
score degree corresponds to the color of nodes and the adjusted connection strength be-
tween two nodes from a rule defines the color and width of edges. We adjusted connection
values on the network to normalize the co-enrichment that may occur due to the overlap-
ping gene sets. To obtain normalized connection values on networks and total correlation
values [46](Table S1) on heatmaps, we used the following formula:

vnorm = v ∗ (1 − α), (1)

where v is the connection value between two nodes or total correlation value and α is
the degree of overlapping genes between two gene sets. For instance, if there are no
overlapping genes between gene sets, then α = 0 and vnorm = v. All networks presented in
the paper were created for the 20 most connected nodes of the top 10% rules ranked by the
connection value of rules. Finally, as another level of visualization, we used a concept of
arc diagrams for displaying particular nodes, i.e., nodes of interest (NOI), from networks.

3. Results
3.1. Data Correction

As a result of comprehensive data preprocessing, we detected two subsets of samples
within TCGA glioma cohorts. We assumed that these subsets correspond to the hidden,
i.e., unknown, batch effect. However, we suspect that this batch effect is related to TSS
(Figure S4C,D) as it is clearly visible that the majority of GBM-related TSSs are visualized
as a separate cluster. In other words, source sites (hospitals, universities, etc.) are highly
confounded with the decision class LGG vs. GBM. Thus, we further used the surrogate
variable analysis on the GM-based subset that assisted in removing the batch effect from
LGG vs. GBM data (Table S1). Therefore, we enclosed a table (Table S2) that may help in
future studies of TCGA glioma datasets for more accurate analysis, which includes TCGA
sample IDs, GM groups and grade information. We believe that GM modeling, together
with PCA, can be applied in similar situations to correct highly confounded batch effects.

3.2. DEGs Evaluation

First, we identified lists of highly significant DEGs (FDR-adjusted p-value < 0.001) for
GII vs. GIII (Table S3) and LGG vs. GBM (Table S4) that we used to perform functional
profiling (Tables S5 and S6). Based on the results, we examined the most significant and
interesting functional annotations for discerning glioma grades. For GII vs. GIII (Table S5),
we observed that the cell cycle, p53, DNA replication and Fanconi anemia were among
the most significant pathways of KEGG. In addition, from GOBP, we noticed that the cell
cycle is highly enriched. Furthermore, GOCC suggested that the list of DEGs is highly
enriched for chromosome-related annotations. Interestingly, Reactome and WP also pointed
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towards cell cycle-related annotations. In addition, several cancer-related pathways from
WP were enriched.

For LGG vs. GBM (Table S6), we observed that nonsense-mediated decay (NMD) was
highly significant in the Reactome database. This finding corroborates a recent discovery
that showed modulation of NMD promoting the growth of GBM in humans [47]. Based on
the Reactome, the metabolism of RNA is significantly important for GBM grading processes.
In addition, rRNA and mRNA processing signaling pathways were significantly enriched.
All significant GOMF annotations pointed towards binding processes, e.g., RNA or nucleic
acids binding. In both grading-related cases, no brain-related tissues were detected among
human protein atlas annotations, highlighting no tissue-specific DEGs. In the next step,
using CGGA data, we validated sets of DEGs. For validation, we used preprocessed and
normalized RNA-seq CGGA datasets. While using CGGA, we assumed that LGGs are
samples marked as GII or GIII, as well as it was done by TCGA. Here, we examined how
many TCGA-based DEGs were in two CGGA cohorts (batch 1 and 2) (Table 2). We observed
a good overlap of DEGs between these independent two cohorts.

Table 2. The results of DEG list validation with CGGA cohorts. p values in validation cohorts were
FDR-adjusted.

CGGA Batch 1 CGGA Batch 2

GII vs. GIII LGG vs. GBM GII vs. GIII LGG vs. GBM

p < 0.001 p < 0.05 p < 0.001 p < 0.05 p < 0.001 p < 0.05 p < 0.001 p < 0.05

62% 88% 27% 44% 85% 96% 52% 71%

Finally, we intersected both gene lists, i.e., GII vs. GIII and LGG vs. GBM, and
found 6 DEGs in common: IGIP, NSMCE2, CNIH4, NONO, CKLF and RAN (Figure S8).
We then validated the expression of these genes using CGGA batch 1 and batch 2. Both
batches confirmed that these 6 DEGs were differentially expressed in the validation sets for
discerning GII vs. GIII and LGG vs. GBM (Figures S9 and S10). In addition, we examined
DNA methylation data corresponding to GM1- and GM2-based samples (Figure S11). We
further checked DNA methylation profiles of the 6 shared DEGs (Figures S12 and S13).
We found several differentially methylated regions (DMRs). Interestingly, there were
more DMRs in 6 common DEGs for LGG vs. GBM, which may suggest that more robust
epigenetic changes are visible while progressing to a higher grade.

3.3. ML for ssGSEA

We evaluated MSigDB collections using an ML approach (Figure 2). We applied
learning to each collection separately to choose the best collections discerning glioma
grades. To further assess the MSigDB collections, we performed feature selection on each
collection and selected a balanced number of important features (Figure S14, Table S1).
Afterward, we selected the three top collections for GII vs. GII CGP, BioCarta and PID, and
for LGG vs. GBM GOCC, GOBP and WP.

Interestingly, all three selected collections for GII vs. GIII were curated gene sets, while
two out of three collections for LGG vs. GBM were ontology gene sets. This may suggest
that more biological processes on the cellular structure level are disrupted for progression
to a higher glioma grade. Furthermore, we observed that cancer-related collections were
also highly predictive in both cases (Figures 2 and 3). As expected, differences between
LGG and GBM are more prominent than between GII and GIII. In addition, feature selection
improved the quality of all models. Thanks to feature selection, we received fewer features
that in turn enhanced the interpretability of the models. In addition, MCFS application
was necessary to balance the number of features across compared collections (Figure S14).
From MCFS, we presented the most important annotations discerning between grades.
For instance, “Fanconi”, “cell cycle” and “Spermatocyte” [48] were annotations with the
highest relative importance (RI) values discerning GII from GIII.
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Figure 2. Evaluation of MSigDB collections using ML models for discerning glioma grades using
ssGSEA scores for classifying (A) GII vs. GIII and (B) LGG vs. GBM. Five different ML approaches
were used: SMO, IBk, Bagging, J48 and JRip. Each ML method was undersampled 20-times with
10-fold CV. The median was marked with a black dot on each violin.

To create rule-based models, we used the R.ROSETTA method that resulted in highly
accurate classifiers (Figure S15). The best collection for discerning GII from GIII was CGP,
which resulted in 0.71 AUC, and the best collection for discerning LGG from GBM was
GOCC, which resulted in 0.84 AUC. For each of the two comparisons, we created a joint
rule-based model by merging the features from the top three collections. However, AUCs
for joint models were not better than the best AUC of single models (Figure S15). Finally,
we validated rule-based models by classifying CGGA batch 1 and batch 2 gene expression
datasets. For the validation, we used TCGA-derived annotations that classified grades
with similar performance (Figures S16 and S17). In addition, we estimated total correlation
values among all annotation pairs for the topmost collections. We calculated this correlation
for ssGSEA scores discretized into three levels with equal frequency binning.

3.4. Glioma Co-Enrichment

We visualized RBMs as networks to evaluate co-enrichment mechanisms among
annotations for topmost MSigDB collections (Figure 4, Figures S18 and S19). As networks,
displayed for the entire set of rules, were unbalanced with respect to decision classes, we
generated balanced networks for each decision class separately (Figure 4, Figures S18 and S19).
We discovered co-enrichment mechanisms among the most significant rules (p-value < 0.01).
We included sets of significant rules in Tables S7 and S8, for the networks Figure 4A,B,
respectively. Notably, these mechanisms are local and correspond to a group of patients, i.e.,
the rule is supported by a set of samples that fulfill its conditions. Connections values on
all networks were normalized according to the number of genes shared between gene sets.
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Figure 3. (A,B) Evaluation of MSigDB collections using ML models with feature selection for
discerning glioma grades using ssGSEA scores. Five different ML approaches were used: SMO,
IBk, Bagging, J48 and JRip. Each ML method was undersampled 20-times with 10-fold CV. The
median was marked with a black dot on each violin. Panels (C,E,G) represent MCFS results for the
top three collections for GII vs. GIII. Size of annotations represents RI values from MCFS. Panels
(D,F,H) represent MCFS results for the top three collections for GII vs. GIII. Size of annotations
represents RI values from MCFS.
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Figure 4. Rule-based network displaying the most relevant co-enrichments of annotations obtained
from (A,B) the CGP collection for the GII vs. GIII model (Table S7) and from (C,D) the GOCC
collection for the LGG vs. GBM model (Table S8). The networks show the 20 most connected nodes
obtained from the top 10% of significant rules (FDR-adjusted p-value < 0.01) based on the rule
connection. Connection values of nodes and edges represent a strength of co-enrichment from the
classifier. Subnetworks were generated separately with respect to the decision class for each RBM.

By analyzing networks and investigating NOIs, several findings can be described.
Here, the main hub in the GII and GIII networks (Figure 4A,B) was “amplification hot
spot 15” [49]. In both subnetworks (Figure 4A,B), this node is connected to several anno-
tations, among others “Wilms tumor vs. fetal kidney 2 up” [50] and “Soft tissue tumors
PCA2 up” [51]. The latter indicated that these pathways may be linked to activating
the human set of specific oncogenes during progression from a lower to a higher grade.
We could also observe more generic annotations, for instance, “cell cycle” or “G2 phase”
(Figures 3 and S18A,B). Here, the “G2 phase”-related gene set is more relevant than “G1
phase” for GIII (Figure 3E). However, several authors have reported changes in cell cycle
regulation under various circumstances [9,52–54]. Interestingly, a high degree of enrich-
ment for the “Aurora A” pathway played a major role in grading (Figures 3G and S19A,B).
The “Mitotic Aurora A kinase” (AurA) pathway is an essential factor in the survival, radio-
resistance, self-renewal and proliferation of glioblastoma cells [55]. Its potential therapeutic
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abilities have also been investigated [56]. Here, we found that the enrichment of the AurA
pathway differed between GII and GIII. More specifically, we found that “Aurora A” was
a highly co-enriched pathway for GII vs. GIII (Figure S19A,B). Interestingly, “Aurora B”
appeared to be highly interactive in validation cohorts (Figure S22A,C). Importantly, both
Aurora pathways were investigated for treating cancer [57]. Furthermore, we found that the
Fanconi anemia pathway played a crucial role in glioma grading (Figures 3G, S19B and S22A,C).
Recently, its potential therapeutic role has been described [58]. From other topmost MSigDB
collections discerning between GII vs. GIII, we found evidence of a local co-enrichment
between “P53” and “PDGF” pathways, i.e., strong connection in a network (Figure S18B).
It is well-known that alterations in the P53 gene promote tumor development, malignancy
and resistance to radio and drug therapy [59,60]. Furthermore, the PDGF gene is one of
several growth factors participating in glioma angiogenesis [61]. Here, we provided a
hypothesis that these two pathways may be co-dependent.

Next, we investigated results obtained for grading to GBM (Figures 4C,D, S18C,D and
S19C,D) that were further validated (Figures S20–S22). Intermediate density lipoprotein
(IDL) was NOI in LGG and GBM networks (Figure 4C,D). This annotation was also highly
co-correlated in both validations sets (Figure S20B,D). A high connection between IDL
and microtubule-related annotations was visible in all cases. The role of microtubules
in the degradation of lipoproteins has been previously identified [62] and this result
might provide additional evidence of its potential role as a therapeutic target for GBM
treatment. Chylomicron and IDL particle detected from GOCC collection (Figures 3D, 4C,D
and S20A) and sterol transport-related annotations from GOBP (Figures 3F, S18C,D and
S21D) may suggest a link to cholesterol-related mechanisms and glioma grading. Recent
studies have elaborated that cholesterol metabolism may be a potential therapeutic target in
glioma [63,64]. In this study, we found that the degree of enrichment of cholesterol-related
pathways strongly differs between LGG and GBM. Interestingly, we found that cholesterol-
related pathways were highly co-enriched and may affect microtubule organization in the
case of GBM (Figure S19C,D). Thus, annotations related to cholesterol could be further
investigated for their therapeutic potential in GBM patients. Moreover, we found a high
activation degree of “methionine de novo and salvage” pathway (Figures 3H and S19C,D).
The survival and proliferation of cancer cells were shown to be dependent on methionine
levels [65]. Finally, we found that microtubule organization differed between LGG and GBM
(Figures 3D and 4C,D). The inhibition of microtubule dynamics was explored previously
for its potential in GBM treatment [66].

3.5. Survival Analysis

We performed a survival analysis [67,68] for selected NOIs of the RBM networks
(Figures 4, S18 and S19, Table S1). Here, we obtained overall survival and its status from
cBioPortal [69,70]. The survival analysis was done to determine the degree of a given
annotation enrichment corresponding to discrete levels obtained with equal frequency
discretization. The high degree of enrichment for both NOIs from CGP-based networks,
i.e., “Amplification hot spot 15” and “Hypoxia not via KDM3A”, contributed to poor
survival for LGGs (Figure 5A,B). We observed that a low degree of enrichment, i.e., low
activity, for “IDL particle”, “negative regulation of sterol transport” and “Valproic acid”
corresponded to poor survival in samples with higher glioma grade. Interestingly, “Valproic
acid” (Figure 5C,G,K) has been recently proposed as a promising therapeutic target for
gliomas [71]. We also noticed that microtubule-related annotations did not influence the
overall survival (Figure 5D,H). For LGGs, we observed that a high degree of enrichment
with “G2 phase” (Figure 5F) played a role in overall survival, while the impact of the “G1
phase” was insignificant (Figure 5E). Furthermore, a high degree of AurA and P38/MK2
enrichment was significantly associated with poor survival in LGGs (Figure 5I,J).
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Figure 5. Survival curves of several NOIs characterized based on rule networks. We investigated
NOIs for the topmost predictive three MSigDB collections discerning glioma grades: (A–D) CGP
and GOCC, (E–H) BioCarta and GOBP, and (I–L) PID and WP. Each plot displays a p-value that was
estimated with the default set of parameters while constructing the curves (Table S1).

4. Discussion

This study provides hypotheses of co-enrichment between glioma grade-related an-
notations regarding their high predictivity. There are several advantages of discovering
co-enrichment between annotations. From the study by [72], we know that interaction
may occur between two perturbed pathways that can lead either to increased or decreased
disease risk. Several studies [73–75] have shown that discovering an interaction among
pathways may improve therapy for treating cancer. Thus, we believe that the findings of this
analysis may provide insights for future research and aid in novel ways of clinical treatment.

It is imperative to provide non-biased analyses in bioinformatics. Thus, we aimed at
comprehensive preprocessing to perform unbiased ML analysis and retrieve biologically
meaningful results in this work. As we aimed at performing ML analysis, we focused
on the global structure of data, i.e., PCA, in order to investigate a low number of clusters
enriched with a high number of samples. We showed that the local structure of the data,
i.e., t-SNE analysis, generated very similar clusters (Figure S4). Thus, we concluded that
in this study, PCA and t-SNE approaches were comparable. Moreover, we provided a
thorough benchmarking of several ML methods that revealed specific MSigDB collections
corresponding to glioma that may guide future research. However, the predictivity of spe-
cific collections can be disease-specific, so it shall be estimated separately while analyzing
other types of cancers or other diseases.

In this work, we transformed gene expression into annotations, as we believe that
pathways are more universal than genes. As biology is robust and diverse, it is more
reasonable to perform analysis based on pathways. For instance, assuming that expression
alterations of Gene A and Gene B lead to a change in Pathway X. In such case, Patient 1 that
has a change in expression of Gene A and Patient 2 that has a change in expression of Gene
B would be merged into a common group of patients that have a change in Pathway X.
Thus, the variability is decreased and a common unit, i.e., a pathway, is established. There
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are several advantages [76] of applying pathway enrichment methods, such as aggregating
information, reducing data dimensionality, enhancing the interpretation of results, identi-
fying drug targets, providing better comparability within the same omics technology or
between various omics technologies. Despite the wide range of advantages, there are also
limitations [76,77]. Among others, effectiveness is determined by the strength of signals
from multiple genes, databases are biased toward well-studied genes and pathways, and
interactions among genes are neglected, i.e., gene independence is assumed. Moreover,
here we used ssGSEA and thus, we are limiting the data space to a single-sample approach.
The reason for that was to follow the idea proposed by [78] to provide an additional layer
that prevented the strong batch effect that occurred for this particular dataset. Furthermore,
we used data on a discrete scale as it is necessary for our rule-based approach [79]. Thanks
to this, we improved the interpretability of results and reduced the influence of noise in
the data. However, the discretization process reduced the information and neglected the
continuous nature of the data. Lastly, we performed the basic survival analysis for relevant
annotations. To explore various survival tasks in a more comprehensive way, we encourage
using a more advanced and recent approach such as DeepPAM [80,81].

We observed that most of the co-enrichment mechanisms detected via networks
(Figures 4, S18 and S19) for LGG vs. GBM were also observed in validation analyses
of the CGGA batches (Figures S20–S22). In contrast, fewer co-enrichment mechanisms
describing GII vs. GIII networks could be validated with the CGGA batches. Thus, it
is highly possible that in the case of GII vs. GIII, ML models with low accuracy could
have affected the analysis and disrupted the validation. In general, we could observe that
the quality for discerning GII and GIII is not very high. On the other hand, the quality
of interpretable rule-based models is above median compared to other ML techniques
(cf. Figures 3A,B and S15). Thus, we provided evidence that interpretable learning is not
only legible but also produces high-quality models [82]. Importantly, this work demon-
strates the results of non-linear dependencies of features. Thus, it may be also interesting
to investigate linear dependencies of features in the future. For instance, by using other
approaches such as importance-based sequential procedure [83].

We provided a simple normalization method to avoid false positives due to overlap-
ping gene sets for co-enrichment. While normalizing networks or validating heatmaps,
using Equation (1), we observed that overlaps of genes between gene sets are minor. This
may be due to comparing gene sets within separate MSigDB collections. Thus, the normal-
ization adjusted the final results slightly. Here, validation represented global co-enrichment
with respect to decision classes, while networks showed local co-enrichment. Thus, the
validation of co-enrichment mechanisms provided a general overview of our findings.

Taken together, this study provided a methodology that not only demonstrates how to
perform batch effect removal towards ML analysis but also reveals potential interactions
among pathways using an interpretable ML approach. We supported the analysis with
statistical measures and tests. We believe that our findings can serve as potential therapeutic
targets that could improve glioma treatment on various grade levels. The major future
perspective is that these hypotheses can be validated experimentally to ensure our findings
and incorporate them into glioma treatment.

5. Conclusions

A key challenge in bioinformatics is to perform the analysis in an unbiased, repetitive
and accurate way. This study demonstrated how to remove a strong batch effect from
TCGA glioma datasets and perform comprehensive ML analysis. Herein, LGG and GBM
cohorts included a strong batch effect confounded with outcome classes. In such cases,
it is essential to correct the batch effect, but it has to be done carefully in order to keep
the biological information included in the data. Furthermore, this work describes co-
enrichment mechanisms that reflect robust processes for glioma progression. Notably,
the proposed methodology is generic and can be used on any problematic data. To the
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best of our knowledge, this is the first co-enrichment analysis of glioma grades using
rule-based learning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14041014/s1, Figure S1: Principal component analysis
(PCA) to investigate the variance for The Cancer Genome Atlas (TCGA) cohorts for Lower Grade
Glioma (LGG) and Glioblastoma Multiforme (GBM). (A) Original data from the GDC repository. (B)
Unified cohorts from the UCSC Xena repository. (C) Batch effect correction of unified cohorts for the
leek parameter with 532 surrogate variables. (D) Batch effect correction of unified cohorts for the
be parameter with 48 surrogate variables; Figure S2: Machine learning analysis was performed on
100 randomly selected genes with 10 various seed values to investigate the bias for TCGA cohorts
of LGGs and GBMs. All five machine learning methods were applied, viz. SMO, IBk, Bagging, J48
and JRip (see section ML evaluation). (A) Original data from the GDC repository. (B) Unified cohorts
from the UCSC Xena repository. (C) Batch effect correction of unified cohorts for the leek parameter
with 532 surrogate variables. (D) Batch effect correction of unified cohorts for the be parameter with
48 surrogate variables. (E) Student’s t-test results for particular cases a–d corresponding to subplots
(A–D); Figure S3: Data evaluation to localize and remove bias from the glioma cohorts (A) PCA for
unified cohorts from the UCSC Xena repository. (B) Clustering of 1–10 PCs of unified cohorts from
the UCSC Xena repository. (C) Gaussian mixtures (GM) were detected from PC1. In GM2-based
sample sets, two GBMs were included in the mixture and excluded in further analyses. (D) PCA was
performed on LGG and GBM samples selected based on GM1. (E) Batch effect correction performed
on LGG and GBM samples selected based on GM1 for the leek parameter with 232 surrogate variables.
(F) Batch effect correction for the be parameter with 30 surrogate variables performed on samples
selected based on GM1. (G) The final data set was based on GM1 after batch effect correction and
filtration for protein-coding genes (H–I) Evaluation of LGG samples included in GM1 based data
set; Figure S4: The global and local analysis of the data structure for TCGA glioma cohorts. (A) PCA
and (B) t-SNE for decision class selected based on GMs. (C) PCA and (D) t-SNE for tissue source
sites (TSSs). t-SNE plots were created for seed 1. Remaining TSSs included groups of samples equal
to or less than 10; Figure S5: Machine learning analysis was performed on 100 randomly selected
genes with 10 various seed values to investigate the bias for TCGA cohorts of LGGs and GBMs. All
five machine learning methods were applied, viz. SMO, IBk, Bagging, J48 and JRip (see section ML
evaluation). (A) unified cohorts from the UCSC Xena repository. (B) GM2 samples from unified
cohorts from the UCSC Xena repository. (C) Batch effect correction of 259 GM2-based samples for the
leek parameter with 232 surrogate variables. (D) Batch effect correction of 259 GM2-based samples
for the be parameter with 30 surrogate variables. (E) The final data set is based on GM1 after batch
effect correction and filtration for protein-coding genes. (F) Student’s t-test results for particular cases
a-e corresponding to subplots (A–E); Figure S6: The evaluation of samples in GM2 consisting of
the vast majority of LGGs. (A) PCA for LGGs based on GM2 samples. (B) PCA for LGGs based on
GM2 samples for protein-coding genes only. (C) Machine learning evaluation of GM2 samples for
discerning between GII and GIII. (D) Machine learning evaluation of GM2 samples for discerning
GII and GIII for protein-coding genes only. (E) Evaluation of fraction of statistically significant genes
discerning between GII and GIII with all genes (case a) and protein-coding genes only (case b). (F)
The proportion of grades within a GM2-based data set for LGGs. For machine learning evaluation
(C,D) all five methods were applied, viz. SMO, IBk, Bagging, J48 and JRip (see section ML evaluation);
Figure S7: The evaluation of other clinical factors within GM1- and GM2-based data sets. (A) PCA
for GM1 for LGGs and their sex information. (B) PCA for GM2 for LGGs and GBMs and their sex
information. (C) The variation of the age of LGG samples is based on GM1. (D) The variation of
the age of LGG and GBM samples is based on GM2. Pearson correlation (r) value is marked in the
plot caption; Figure S8: Expression profiles for six common differentially expressed genes (DEGs)
were selected based on the intersection of the DEGs list between GII vs. GIII and LGG vs. GBM.
Gene expression profiles were generated based on TCGA cohorts. P values were marked on boxplots
as ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), and *** (p ≤ 0.001); Figure S9: Expression profiles for six
common DEGs were selected based on the intersection of DEGs list between GII vs. GIII and LGG vs.
GBM. Gene expression profiles were generated based on the Chinese Glioma Genome Atlas (CGGA)
batch 1 cohort. P values were marked on boxplots as ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), and
*** (p ≤ 0.001); Figure S10: Expression profiles for six common DEGs were selected based on the
intersection of DEGs list between GII vs. GIII and LGG vs. GBM. Gene expression profiles were
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generated based on the CGGA batch 2 cohort. P values were marked on boxplots as ns (p > 0.05),
* (p ≤ 0.05), ** (p ≤ 0.01), and *** (p ≤ 0.001); Figure S11: Variability in DNA methylation data from
TCGA based on samples selected upon GM modeling for (A) GM2 and (B) GM1. Explained variation
is given in parenthesis; Figure S12: DNA methylation status of six common DEGs for GII vs. GIII.
P values were marked on boxplots as ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), and *** (p ≤ 0.001);
Figure S13: DNA methylation status of six common DEGs for LGG vs. GBM. p values were marked
on boxplots as ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), and *** (p ≤ 0.001); Figure S14: The Monte
Carlo feature selection (MCFS) evaluation of thresholds was performed for choosing a threshold for
selecting top features. (A) All 20 MSigDB collections for GII vs. GIII. (B) All 20 MSigDB collections for
LGG vs. GBM; Figure S15: Evaluation of MSigDB collections with R.ROSETTA rule-based learning
for classifying glioma grades using ssGSEA scores based on TCGA cohorts. (A) Top three MSigDB
collections for classifying GII vs. GIII. (B) Top three MSigDB collections for classifying LGG vs. GBM.
(C) Merged top three MSigDB collections for two RBMs classifying GII vs. GIII (right bar), and
LGG vs. GBM (left bar); Figure S16: Evaluation of MSigDB collections with R.ROSETTA rule-based
learning for classifying glioma grades using ssGSEA scores based on CGGA batch 1. (A) Top three
MSigDB collections for classifying GII vs. GIII. (B) Top three MSigDB collections for classifying LGG
vs. GBM. (C) Merged top three MSigDB collections for two RBMs classifying GII vs. GIII (right
bar), and LGG vs. GBM (left bar); Figure S17: Evaluation of MSigDB collections with R.ROSETTA
rule-based learning for classifying glioma grades using ssGSEA scores based on CGGA batch 2.
(A) Top three MSigDB collections for classifying GII vs. GIII. (B) Top three MSigDB collections for
classifying LGG vs. GBM. (C) Merged top three MSigDB collections for two RBMs classifying GII vs.
GIII (right bar), and LGG vs. GBM (left bar); Figure S18: Rule-based network displaying the most
relevant co-enrichments of annotations obtained from (A,B) the BioCarta collection for the GII vs.
GIII model and (C,D) the GOBP collection for the LGG vs. GBM model. The networks show 20 most
connected nodes obtained from the top 10% based on the rule connection from a set of significant
rules (FDR-adjusted p value < 0.01). Connection values of nodes and edges represent a strength of
co-enrichment from the classifier. Subnetworks were generated separately with respect to the decision
class for each RBM; Figure S19: Rule-based network displaying the most relevant co-enrichments of
annotations obtained from (A,B) PID for the GII vs. GIII model and (C,D) WP collections for the LGG
vs. GBM model. The networks show 20 most connected nodes obtained from the top 10% based on
the rule connection from a set of significant rules (FDR-adjusted p value < 0.01). Connection values
of nodes and edges represent a strength of co-enrichment from the classifier. Subnetworks were
generated separately with respect to the decision class for each RBM; Figure S20: Validation of top
MSigDB collections: CGP for GII vs. GIII and GOCC for LGG vs. GBM. Heatmaps were generated
based on cohort (A,B) CGGA batch 1 and (C,D) CGGA batch 2. Values of total correlation among
two variables and a decision class given in nats; Figure S21: Validation of top MSigDB collections:
BioCarta pathways for GII vs. GIII and GOBP for LGG vs. GBM. Heatmaps were generated based on
cohort (A,B) CGGA batch 1 and (C,D) CGGA batch 2. Values of total correlation among two variables
and a decision class given in nats; Figure S22: Validation of top MSigDB collections: PID for GII vs.
GIII and WP for LGG vs. GBM. Heatmaps were generated based on cohort (A,B) CGGA batch 1 and
(C,D) CGGA batch 2. Values of total correlation among two variables and a decision class given in
nats; Table S1: Computational methods and R packages that were used in this study; Table S2: GM1
and GM2 subsets retrieved from GM modelling of PC1; Table S3: A list of significant DEGs for G2
vs. G3 (FDR < 0.001); Table S4: A list of significant DEGs for LGG vs. GBM (FDR < 0.001); Table S5:
Significant enrichment results (FDR < 0.05) for G2 vs. G3 DEGs from gProfiler; Table S6: Significant
enrichment results (FDR < 0.05) for LGG vs. GBM DEGs from gProfiler; Table S7: A list of significant
rules (FDR < 0.01) for G2 vs. G3 RBM built for the CGP collection; Table S8: A list of significant rules
(FDR < 0.01) for LGG vs. GBM RBM built for the GOCC collection; and Supplementary References
for Table S1.
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