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Subjective cognitive decline (SCD) is considered the earliest stage of the clinical
manifestations of the continuous progression of Alzheimer’s Disease (AD). Previous
studies have suggested that multimodal brain networks play an important role in the
early diagnosis and mechanisms underlying SCD. However, most of the previous studies
focused on a single modality, and lacked correlation analysis between different modal
biomarkers and brain regions. In order to further explore the specific characteristic of
the multimodal brain networks in the stage of SCD, 22 individuals with SCD and 20
matched healthy controls (HCs) were recruited in the present study. We constructed
the individual morphological, structural and functional brain networks based on 3D-
T1 structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI) and
resting-state functional magnetic resonance imaging (rs-fMRI), respectively. A t-test
was used to select the connections with significant difference, and a multi-kernel
support vector machine (MK-SVM) was applied to combine the selected multimodal
connections to distinguish SCD from HCs. Moreover, we further identified the consensus
connections of brain networks as the most discriminative features to explore the
pathological mechanisms and potential biomarkers associated with SCD. Our results
shown that the combination of three modal connections using MK-SVM achieved the
best classification performance, with an accuracy of 92.68%, sensitivity of 95.00%,
and specificity of 90.48%. Furthermore, the consensus connections and hub nodes
based on the morphological, structural, and functional networks identified in our study
exhibited abnormal cortical-subcortical connections in individuals with SCD. In addition,
the functional networks presented more discriminative connections and hubs in the
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cortical-subcortical regions, and were found to perform better in distinguishing SCD
from HCs. Therefore, our findings highlight the role of the cortical-subcortical circuit
in individuals with SCD from the perspective of a multimodal brain network, providing
potential biomarkers for the diagnosis and prediction of the preclinical stage of AD.

Keywords: subjective cognitive decline, morphological network, structural network, functional network, multiple
kernel learning

INTRODUCTION

Alzheimer’s Disease (AD) is the most common cause of dementia,
characterised by irreversible neurodegeneration and continuous
cognitive function decline (Bonte et al., 1986; Scheltens et al.,
2016). It is generally believed that the early diagnosis of AD
is crucial for early intervention and improving the therapeutic
effects of AD treatment. Subjective cognitive decline (SCD) is
considered the earliest stage of the clinical manifestations of
progressively developing AD (Jessen et al., 2014a, 2020). Thus,
SCD is valuable for the early diagnosis and prediction of AD.

Multimodal neuroimaging studies have indicated that
individuals with SCD show a greater similarity to AD in their
patterns of brain structure and function compared with healthy
controls (HCs) (Lin et al., 2019; Wang et al., 2020). In particular,
the disconnection hypothesis between different brain regions is
considered to mainly contribute to cognitive decline in patients
with SCD (Dillen et al., 2016). For instance, for the brain
network based on resting-state functional magnetic resonance
imaging (rs-fMRI), the identified connectivity disruption of SCD
focused on the middle frontal gyrus, precuneus, and cingulate
gyrus, which corresponded to the default mode network (DMN)
(Greicius et al., 2004; Hafkemeijer et al., 2013; Xu et al., 2020b).
Shu et al. analysed the graph theory metrics of structural brain
network based on diffusion tensor imaging (DTI) and found
that patients with SCD exhibited lower global efficiency and
local efficiency of global graph metrics and reduced regional
efficiency in the bilateral prefrontal regions and left thalamus
(Shu et al., 2018). Moreover, the graph theoretic analysis of the
topological properties of the morphological network based on
structural magnetic resonance imaging (sMRI) showed that
patients with SCD exhibiting lower network parameter values
were associated with an increased risk of disease progression
(Tijms et al., 2018). Therefore, these results demonstrated
that patients with SCD have altered connectivity involving
multimodal brain networks. In addition, recent studies have
suggested that individuals with SCD exhibited volume atrophy
and disconnection of the subcutaneous nuclei, such as basal
forebrain, basal ganglia, and thalamus. Some researchers even
proposed that the variation of the subcutaneous nuclei might be
earlier than the cortex (Hampel et al., 2018; Scheef et al., 2019).
However, most previous studies have focused on a single model
of the brain network. The relationship between grey matter (GM)
morphology, white matter structure and functional connectivity
in SCD remains unclear.

Furthermore, to deal with the high-dimensional information
yielded from multimodal brain networks, machine learning
with multivariate pattern analysis was used to identify potential

neuroimaging biomarkers and distinguish patients from HCs at
an individual level. At the same time, it can reveal specific spatial
distribution information useful exploring the brain network
mechanisms underlying the cognitive impairment associated
with AD. Previous studies, such as that by Yan et al. (2019)
adopted a multimodal support vector machine (SVM) combined
with structural and functional connectivity and achieved an
accuracy of 98.58% in the AD group, 97.76% in the amnestic
mild cognitive impairment (aMCI) group, and 80.24% in the SCD
group. Compared with the single modal classification based on
functional connectivity by Yu et al. (accuracy of 84.8% in AD),
these results suggested that the integration of multimodal features
can provide more comprehensive and insightful information
than single modal features and achieve a better classification
performance. However, to the best of our knowledge, there has
been no study directly combining morphological, structural and
functional brain networks to explore the relationship of different
modalities and identify patients with SCD.

Given that individuals with SCD are often associated with
abnormal multimodal brain network connectivity and the
involvement of multiple brain regions, alongside the advantages
of machine learning, we sought to apply multi-kernel SVM
(MK-SVM) for the integration of morphological, structural and
functional brain networks based on sMRI, DTI and fMRI. This
study aimed to assess (a) whether specific altered patterns of
network connectivity discovered by three modal brain networks
can discriminate patients with SCD from HCs; (b) whether there
is a correlation between different modal biomarkers and brain
regions; and (c) whether the combination of multimodal network
connectivity analyses may improve the accuracy of identifying
patients with SCD from HCs.

MATERIALS AND METHODS

Participants
The samples included in this study were acquired from
the longitudinal follow-up data of China Longitudinal Aging
Study (CLAS), a community-based study initiated in 2012. All
individuals with Han Chinese nationality aged ≥60 years in
Shanghai. A total of 67 right-handed participants involved in
the present study, who underwent a screening process including
medical history, epidemiological investigation, baseline and 7-
year follow-up assessments of neuropsychological scale, and
neuroimaging examinations. At baseline, the neuropsychological
assessments included the Mini-Mental State Examination
(MMSE) (Tombaugh and McIntyre, 1992), Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005), Auditory Verbal
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Learning Test (AVLT) (Sheline et al., 1999), and Subjective
Cognitive Decline Self-administered Questionnaire (SCD-9)
(Shirooka et al., 2018). Meanwhile, T1-weighted MR imaging
scan was performed. At 7-year follow-up, in addition to
the neuropsychological scale mentioned above, multimodal
MRI scans including T1WI, DTI and rs-fMRI were carried
out. Therefore, research on the morphological, structural, and
functional networks in this study was based on follow-up samples
after 7 years. According to the follow-up results, 22 patients with
SCD and 20 HCs were enrolled in our study. Due to the limitation
of sample size, we considered the study classifies as pilot study.

The inclusion criteria for SCD were based on the conceptual
framework proposed by the Subjective Cognitive Decline
Initiative (SCD-I) (Jessen et al., 2014b), which included the
following: (a) an onset age >60 years; (b) a self-perceived
gradual decline in memory compared with a previous normal
status within the last 5 years or as confirmed by a close
caregiver; (c) MMSE and MoCA scores within the normal range;
and (d) a Clinical Dementia Rating (CDR) score of 0. Those
who did not experience any signs of cognitive decline and
had neuropsychological tests scores in the normal range were
included as HCs. The exclusion criteria of participants were as
follows: (a) neurology-related or cerebral vascular diseases (e.g.,
Parkinson’s disease, brain tumours, or intracranial aneurysms);
(b) systemic diseases that could cause cognitive impairments
(e.g., thyroid dysfunctions, syphilis, HIV or severe anaemia);
(c) severe schizophrenia according to their medical records; (d)
severe problems in vision, hearing, or speaking; and (e) inability
to participate actively in the neuropsychological evaluation.

This study was approved by the Institution’s Ethical
Committee of Shanghai Mental Health Centre of Shanghai
Jiao Tong University School of Medicine (NCT03672448). All
participants provided written informed consent prior to any
experimental procedures in the research. In terms of the statistical
analysis of demographics and clinical characteristics between the
SCD group and HC group, two-sample t-test or a chi-squared
(χ2) test were performed by the Statistical Package for Social
Science (SPSS, v20.0)1. The significance level was set at P < 0.05.

Data Acquisition
T1-weighted structural imaging, DTI, and rs-fMRI scans were
performed on each participant simultaneously. All MRI data were
acquired on a 3.0 T MR scanner (Magnetom R© Verio; Siemens,
Munich, Germany) using a 32-channel head coil. All participants
were instructed to keep their eyes closed (but no fall asleep), think
of nothing, and move as little as possible during the scan.

T1-weighted 3D high-resolution images were acquired using
a magnetisation-prepared rapid gradient echo (MPRAGE) with
the following parameters: repetition time (TR) = 2,300 ms,
echo time (TE) = 2.98 ms, flip angle = 9 degrees, inversion
time (TI) = 1,100 ms, matrix size = 240 × 256, field
of view (FOV) = 240 × 256 mm2, slice number = 192,
thickness = 1.2 mm and voxel size = 1.0 × 1.0 × 1.2 mm3. The
scan lasted for 5 min and 12 s. DTI data were obtained using
an echo planar imaging sequence with the following parameters:

1http://www.spss.com/

64 non-collinear directions with a b-value = 1,000 s/mm2 and
one additional image with no diffusion weighting (b = 0),
TR = 13,700 ms, TE = 85 ms, FOV = 224 × 224 mm2, slice
number= 75, thickness= 2 mm and voxel size= 2.0× 2.0× 2.0
mm3. In addition, the parameters of the rs-fMRI protocol were
collected as follows: axial slices, TR = 2,000 ms, TE = 30 ms,
flip angle = 90 degrees, FOV = 224 × 224 mm2, matrix
size= 64× 64, slice number= 31, thickness= 3.6 mm and voxel
size= 3.5× 3.5× 3.6 mm3. Each scan collected 240 volumes with
a scan time of 8 min and 6 s.

Image Preprocessing
Brain tissue segmentation was performed using SPM12
(Ashburner and Ridgway, 2012). Individual T1-weighted
3D high-resolution images were segmented into the GM,
white matter, and cerebrospinal fluid using a voxel-based
morphometric analysis (Ashburner and Friston, 2000).
The segmented GM images were realigned to the Montreal
Neurologic Institute (MNI) space and normalised by DARTEL
(Ashburner, 2007). Jacobian determinants were used to modulate
and compensate for spatial normalisation effects (Mueller et al.,
2019). A spatial smoothing process with a Gaussian kernel (full
width at half maximum, 6 mm) was carried out to render the
data more normally distributed and improve the signal-to-noise
ratio (Shen and Sterr, 2013).

The PANDA toolbox (Cui et al., 2013) based on FSL
(Jenkinson et al., 2012) was used for the pre-processing processes
of DTI images, such as the removal of redundant scalp and
brain tissues, and head motion and eddy current correction.
In addition, the tensor model was fitted using a linear least-
squares fitting method, and the fractional anisotropy (FA)
value was calculated.

The processing of the fMRI scans was carried out by the
Configurable Pipeline for the Analysis of Connectomes (C-PAC),
which is a python-based pipeline tool making use of AFNI (Cox,
1996), ANTs (Tustison et al., 2014), FSL, and custom python
code. Functional pre-processing included the following steps: (1)
The first 10 time points were removed; (2) Slice-time correction
was performed; (3) Images were de-obliqued; (4) Images were
re-oriented into a right-to-left posterior-to-anterior inferior-to-
superior orientation; (5) Motion correction was performed to
averaged images to obtain motion parameters; (6) Skull stripping
was performed; (7) The global mean intensity was normalised to
10,000; (8) Functional images were registered to anatomical space
using a linear transformation, white-matter boundary-based
transformation, and the prior white-matter tissue segmentation
from FSL; (9) Motion artefacts were removed using ICA-based
strategy for Automatic Removal of Motion Artefacts (ICA-
AROMA) with partial component regression (Pruim et al., 2015);
and (10) A nuisance signal regression was applied, including (a)
mean values from the signal in the white matter and cerebrospinal
fluid derived from the prior tissue segmentations transformed
from anatomical to functional space, (b) motion parameters (six
head-motion parameters, six head-motion parameters from one
time point before, and the 12 corresponding squared items), (c)
linear trends, and (d) global signal only for one set of strategies.
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This entire analysis was accelerated and simplified through a
cloud platform (2Beijing Intelligent Brain Cloud, Inc.).

Brain Network Construction
In present study, the Human Brainnetome (BN) Atlas (Fan
et al., 2016) was used to divide the brain into 246 regions of
interest (ROIs) to define the network nodes. Nevertheless, based
on different modal brain networks, the definition of network
edge was different.

Morphological Networks
Individual morphological brain networks were constructed by
evaluating interregional similarity in the distribution of regional
GM volume with the Kullback–Leibler divergence measure
(Kong et al., 2014). First, the GM volume value of all voxels within
the brain node were extracted. Second, the probability density
function of these values was calculated with the kernel density
estimation (KDE) (Wang et al., 2016). Next, the probability
distribution function (PDF) was computed for the obtained
probability density function. The variant KL divergence between
any pair of ROI was calculated, resulting in a similarity matrix. KL
divergence is a measure of the difference between two probability
distributions from the perspective of probability theory, or of the
information lost when one probability distribution approximates
the other from the perspective of information theory. The
following formula was used:

DKL (P,Q) =
n∑

i=1

(
P (i) log

P (i)
Q(i)
+ Q(i)log

Q(i)
P(i)

)
where P and Q are two PDFs and n is the number of sample
points. We selected n = 27 in this study in reference to the
research of Wang et al. (2016). Finally, a KL divergence-
based similarity (KLS) measure were calculated to quantify
morphological connectivity between two brain regions. The KLS
was computed as below:

KLS (P,Q) = e−DKL(P,Q)

where e is a natural exponent. The KLS ranges from 0 to 1. The
higher the value of KLS, the closer GM density distribution of the
two brain regions is.

Structural Networks
After the pre-processing of DTI data, probabilistic tractography
was used to construct the structural brain network (Behrens
et al., 2007). For each seed region, probabilistic tractography was
performed by seeding from all voxels of this region. For each
voxel, 5,000 fibres were sampled. The connectivity probability
from the seed region i to another region j was defined by the
number of fibres passing through region j divided by the total
number of fibres sampled from region i (5,000 × n, where n
is the voxel number in region i). It is worth noting that the
connection probability from i to j was not necessarily equal to
that from j to i. These two probabilities were averaged to define
the non-directional connection probability Pij between regions
i and j.

2http://www.humanbrain.cn

Functional Networks
For the pre-processed fMRI data, the average time series of 246
ROIs was separately extracted to construct the functional brain
network. The Pearson correlation coefficient of ROI pair-wise
was defined as the edge of the functional connectivity, which
resulted in 30,135 (246× 245/2) edges.

The above structural and functional networks were accelerated
and simplified through a cloud platform (see text footnote 2,
Beijing Intelligent Brain Cloud, Inc.).

Hubs of Each Imaging Modality
For each modal imaging (i.e., sMRI, DTI, and fMRI), the average
value of the individual brain network was acquired to generate the
group-average network. We identified the hub nodes by ranking
the nodal degree. The rank 5% of brain regions were defined as
the hubs of the brain network (Zhao et al., 2020).

Feature Selection and Classification
In order to avoid the difficulty in identifying the contribution of
kernel combination skills or feature selection to the final accuracy
in the classification pipeline, we adopt the simplest method (t-test
with p < 0.01) for feature selection. Meanwhile, the network-
based statistic (NBS) (Zalesky et al., 2010) was used to conduct
multiple comparisons correction for multimodal connections.
The result of correction for multiple comparisons were listed
in the Supplementary Figure 1. The LIBSVM toolbox3 for
MATLAB was used to conduct the SVM classification (Xu et al.,
2020a). Due to the limited samples, we used a leave one out cross-
validation (LOOCV) strategy to evaluate the performance of
the classification method. Specifically, inner cross-validation was
carried out to determine the optimal parameter (hyper-parameter
C for MK-SVM) and outer cross-validation was carried out
to determine the classification performance. We compared the
classification performance of single modes (i.e., sMRI, DTI and
fMRI) and combinations of different modes (i.e., sMRI + DTI,
fMRI + sMRI, fMRI + DTI, and fMRI + DTI + sMRI). Multi-
kernel learning with a kernel combination trick was applied for
multimodal information combination. The details of MK-SVM
were listed as follows.

Assuming there are n training samples with connections
values and graph metrics. xC

i and xG
i yi ∈ {1,−1} represent

the connection value, the graph metrics, and its corresponding
class label of the i-th sample, respectively. MK-SVM solves the
following primal problem:

min
W

1
2

3∑
m=1

βm|| wm
||

2
+ C

n∑
i=1

ξi

s.t. yi

( 3∑
m=1

βm(wm)Tφm(xmi )+ b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , n

where φm represents mapping from the original space to the
Represent Hilbert Kernel Space (RHKS), wm represents the
normal vector of the hyperplane in RHKS, and βm denotes the

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Frontiers in Aging Neuroscience | www.frontiersin.org 4 July 2021 | Volume 13 | Article 688113

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-688113 July 5, 2021 Time: 19:23 # 5

Xu et al. Multimodal Brain Networks in SCD

corresponding combining weight on the m-th modality. Next, the
dual form of MK-SVM can be represented as:

max
α

n∑
i=1

αi −
1
2

∑
i,j

αiαjyiyj
3∑

m=1

βmkm(xmi , y
m
i )

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

where km
(
xmi , y

m
i
)
= φm(xmi )

Tφm(xmj ) is the kernel matrix on
the m-th modality. After training the model, we tested the
new samples x = {x1, x2, . . . , xM}. The kernel between the new
test sample and the i-th training sample on the m-th modality
is defined as km

(
xmi , x

m)
= φm

(
xmi
)T
φm(xm). In the end, the

predictive level based on MK-SVM can be formulated as follows:

f (x1, x2, . . . , xM) = sign

( n∑
i=1

yiαi
3∑

m=1

βmkm
(
xmi , x

m)
+ b

)

The proposed formulation of MK-SVM is similar, but
different, to existing multi-kernel learning methods since βm
is selected based on the cross-validation scheme on the grid-
searching space with constraints

∑
m βm = 1. The range of C was

2−5 to 25.

Consensus Connections
As mentioned above, we used the most commonly applied
nested cross-validation scheme to evaluate the performance of
the multi-kernel method proposed in this study. As the selected
features by t-tests in each validation might be different, we
record all the selected connection features during the training
process. The consensus connections refer to the features that are
consistently selected in all validations (Dosenbach et al., 2010;

Zeng et al., 2012). In this study, we concentrate on consensus
connections for each modal brain network. All data processing
procedures in our study are shown in Figure 1.

Robustness of Network Analysis
To demonstrate the robustness of the network analysis, we
repeated the same network construction method and analysis
process based on the automated anatomical labelling atlas (AAL)
with 90 ROIs (Tzourio-Mazoyer et al., 2002).

RESULTS

Demographic and Clinical
Characteristics
The demographic and clinical characteristics of all participants
are summarised in Table 1. The resultant scores of the SCD-
9 in the SCD group were significantly higher than those in the
HC group (p < 0.05). There were no significant differences with
respect to age, education, sex, or any other scales.

Multimodal Brain Network Matrix
Figure 2 depicts adjacent matrices of HCs at the group
level based on morphological, structural, and functional
network. The different colour reflects the weight value of the
connectivity edges at group level. As shown in Figure 2, both
functional and morphological networks, and particularly the
functional networks, showed strong homotopic connections.
As mentioned above, the network connectivity of different
modalities pointed to different physiological mechanisms.
The individual morphological brain networks in our study
demonstrated that the morphological network showed strong
contralateral homotopic connections, indicating that the GM
density distributions in the same brain area on the left and right

FIGURE 1 | Procedures of data processing in the present study.
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TABLE 1 | Demographics and clinical characteristics of patients
with SCD and HC.

Characteristic/test SCD HC T/χ2/Z P

Age (years) 74.0 ± 5.6 71.8 ± 2.9 1.67a 0.11

Education 10.1 ± 2.0 10.4 ± 3.0 0.00c 1.00

Gender (F/M) 14/8 6/14 5.31 b 0.05

MMSE 27.6 ± 1.8 28.2 ± 1.6 −1.13c 0.26

MoCA 23.6 ± 3.9 24.1 ± 3.8 −0.48c 0.63

AVLT-immediate recall 5.5 ± 1.9 4.8 ± 1.5 −0.98 c 0.33

AVLT-short delayed recall 8.1 ± 2.6 8.2 ± 2.1 −0.14 a 0.89

AVLT-long delayed recall 30.9 ± 7.7 33.2 ± 7.6 −1.00 c 0.32

AVLT-recognition 10.2 ± 3.1 11.2 ± 3.0 −0.95 c 0.34

SCD-9 3.8 ± 1.9 2.4 ± 2.0 0.58a 0.03∗

*p < 0.05 indicates significant differences between the groups.
aT value was obtained by using the two-sample t-test.
bχ2 value was obtained using the chi-square test.
cZ value obtained by using the rank-sum test.
MMSE, mini mental state examination; MoCA, Montreal Cognitive Assessment;
AVLT, Auditory Verbal Learning Test; SCD-9, Subjective Cognitive Decline Self-
administered Questionnaire. Data are presented as the mean ± standard deviation
(SD). SCD, subjective cognitive decline; HC, healthy control.

cerebral hemispheres were the most similar. Meanwhile, the weak
homotopic connections between cortex and subcortex indicated
that the GM densities of these two parts were quite different,
resulting in lower morphological network connectivity. Thus, the
mechanisms underlying the morphological network are basically
consistent with the anatomical basis of the brain. Meanwhile, the
structural network based on DTI exhibited sparse connections,
and its connections were mainly short-distance fibre connections
between the neighbouring areas. It corresponds to the pathway
of white matter fibres in the structural brain network.

Distribution of Hubs
According to the definition of hub nodes in this study, the hub
nodes of the SCD (Table 2) and HC groups (Table 3) based
on three different modal networks were obtained. As shown in
Figure 3, the distribution of hub nodes in the morphological
and structural brain networks was similar, and most of them
were located in the subcortical nuclei such as the hippocampus,
thalamus, caudate nucleus, and amygdala. In contrast with the
morphological and structural brain networks, the hub nodes of
functional brain network were widely distributed in the frontal,

TABLE 2 | Hubs of SCD based on different modal brain network.

sMRI DTI fMRI

Label ID ROI Label ID ROI Label ID ROI

156 PoG.R.4.1 107 FuG.L.3.3 64 PrG.R.6.6

226 BG.R.6.4 37 IFG.L.6.5 88 MTG.R.4.4

227 BG.L.6.5 38 IFG.R.6.5 144 IPL.R.6.5

225 BG.L.6.4 245 Tha.L.8.8 13 SFG.L.7.7

211 Amyg.L.2.1 227 BG.L.6.5 146 IPL.R.6.6

245 Tha.L.8.8 239 Tha.L.8.5 176 CG.R.7.1

114 PhG.R.6.3 246 Tha.R.8.8 87 MTG.L.4.4

212 Amyg.R.2.1 237 Tha.L.8.4 14 SFG.R.7.7

221 BG.L.6.2 228 BG.R.6.5 143 IPL.L.6.5

222 BG.R.6.2 215 Hipp.L.2.1 175 CG.L.7.1

234 Tha.R.8.2 103 FuG.L.3.1 154 PCun.R.4.4

233 Tha.L.8.2 104 FuG.R.3.1 153 PCun.L.4.4

sMRI, structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI,
functional magnetic resonance imaging; SCD, subjective cognitive decline; ROI:
region of interest.

temporal, and parietal lobes. Furthermore, by comparing the
hub nodes between the SCD and HC groups in the same modal
network, it was found that most of them overlapped. However,
several specific hub nodes corresponded to the different groups.
For instance, in the morphological network based on sMRI, the
precentral gyrus (PrG) and the inferior parietal lobule (IPL) only
appeared in the hub nodes of the HCs. In structural network
based on DTI, the superior temporal gyrus (STG) only appeared
in the hub node of the HC group, while the inferior frontal gyrus
(IFG) only appeared in the SCD group as the hub node. Besides,
in the functional brain network based on fMRI scans, the insula
(INS) as one of the Hubs only appears in the HC group, while the
middle temporal gyrus (MTG) as one of the Hubs only appears
in the SCD group.

Classification
After feature selection of the morphological, structural, and
functional network connections by t-tests, MK-SVM was applied
to combine the selected multimodal connections to identify
individuals with SCD from HCs. As shown in Table 4 and
Figure 4, for the single modality, the classification accuracy of
the morphological, structural and functional networks was 73.17,

FIGURE 2 | Adjacent matrices of HCs at the group level based on morphological, structural, and functional network.
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TABLE 3 | The hubs of HC based on different modal brain network.

sMRI DTI fMRI

Label ID ROI Label ID ROI Label ID ROI

161 PoG.L.4.4 73 STG.L.6.3 174 INS.L.6.6

144 IPL.R.6.5 245 Tha.L.8.8 145 IPL.L.6.6

228 BG.R.6.5 240 Tha.R.8.5 39 IFG.L.6.6

245 Tha.L.8.8 38 IFG.R.6.5 144 IPL.R.6.5

114 PhG.R.6.3 246 Tha.R.8.8 61 PrG.L.6.5

60 PrG.R.6.4 227 BG.L.6.5 146 IPL.R.6.6

227 BG.L.6.5 237 Tha.L.8.4 174 INS.R.6.6

212 Amyg.R.2.1 239 Tha.L.8.5 175 CG.L.7.1

59 PrG.L.6.4 228 BG.R.6.5 143 IPL.L.6.5

222 BG.R.6.2 215 Hipp.L.2.1 62 PrG.R.6.5

234 Tha.R.8.2 103 FuG.L.3.1 154 PCun.R.4.4

233 Tha.L.8.2 104 FuG.R.3.1 153 PCun.L.4.4

sMRI, structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI,
functional magnetic resonance imaging; HC, healthy control; ROI, region of interest.

80.49, and 85.37%, respectively. That is, the functional network
constructed by fMRI exhibited the highest accuracy rate, followed
by the structural network constructed by DTI; finally, the

morphological network constructed by GM volume showed the
lowest accuracy rate. Furthermore, combining the morphological
and structural connections (sMRI + DTI), functional and
morphological connections (fMRI + sMRI), and functional
and structural connections (fMRI + DTI), the accuracy of
classification increased to 85.37, 87.80, and 90.24%, respectively.
In particular, the best classification performance was obtained
by combining the selected connections of three modalities, with
an accuracy of 92.68%, sensitivity of 95.00% and specificity
of 90.48%. These results suggested that the combination of
multimodal network features could significantly improve the
classification performance.

Consensus Connections
In this study, we further identified the consensus connections
for each modal brain network (Figure 5). The morphological
brain network based on sMRI yielded a total of 23 consensus
connections (Table 5), including 7 positive connections and 16
negative connections, which were mainly associated with the
frontal lobe (orbital gyrus [OrG], middle frontal gyrus [MFG],
superior frontal gyrus [SFG]), temporal lobe (MTG, entorhinal
cortex [EC]), parietal lobe (inferior parietal lobule [IPL]), and
subcortical nuclei (nucleus accumbens [NAC], occipital thalamus

FIGURE 3 | Hub nodes of the SCD and HC groups in different brain networks. (A) Hub nodes of SCD in morphological, structural and functional brain network
based on sMRI, DTI and fMRI; (B) Hub nodes of HC in morphological, structural and functional brain network based on sMRI, DTI and fMRI. The hub nodes were
mapped on the ICBM 152 template with the BrainNet Viewer package (http://nitrc.org/projects/bnv/). sMRI, structural magnetic resonance imaging; DTI, diffusion
tensor imaging; fMRI, functional magnetic resonance imaging; SCD, subjective cognitive decline; HC, healthy control.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 July 2021 | Volume 13 | Article 688113

http://nitrc.org/projects/bnv/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-688113 July 5, 2021 Time: 19:23 # 8

Xu et al. Multimodal Brain Networks in SCD

FIGURE 4 | ROC of classifications based on different modalities. sMRI, structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI, functional
magnetic resonance imaging; ROC, receiver operating characteristic.

TABLE 4 | Classification performance of different modalities.

Modalities Accuracy (%) Specificity (%) Sensitivity (%) AUC

sMRI 73.17 80.00 66.67 0.8785

DTI 80.49 85.00 76.19 0.8523

fMRI 85.37 90.00 80.95 0.9047

sMRI + DTI 85.37 95.00 76.19 0.9142

fMRI + sMRI 87.80 95.00 80.95 0.9714

fMRI + DTI 90.24 90.00 80.95 0.9619

fMRI + DTI + sMRI 92.68 95.00 90.48 0.9738

AUC, area under the curve; sMRI, structural magnetic resonance imaging; DTI,
diffusion tensor imaging; fMRI, functional magnetic resonance imaging.

[Otha]). Meanwhile, the structural brain network based on DTI
had a total of 12 consensus connections (Table 6), including
7 positive connections and 5 negative connections, which were
mainly distributed in the parietal lobe (precuneus [Pcun]), frontal
lobe (OrG), insula (INS), temporal lobe (EC), and subcortical
nuclei (NAC). In addition, the functional brain network based
on fMRI scans had a total of 24 consensus connections
(Table 7), which were mainly distributed in the parahippocampal
gyrus (PhG), INS, SFG, IPL, and subcortical nuclei (medial
pre-frontal thalamus [mPFtha], pre-motor thalamus[mPMtha],
rostral temporal thalamus [rTtha], dorsolateral putamen [dlPu],

lateral amygdala[lAmyg]). Eleven of these connections were
positive connections, suggesting that the strength of functional
connections of patients with SCD was stronger than that of
HCs, and mainly distributed in the cortical-cortical connections
between the frontal lobe (MFG, SFG) and the temporal lobe
(posterior Superior Temporal Sulcus [pSTS], inferior temporal
gyrus [ITG]) and parietal lobe (postcentral gyrus [PoG]). The
other 13 negative connections were mainly distributed in
the cortical-subcortical connections between the temporal lobe
(PhG) and the subcortical nuclei (Tha, amygdala [Amyg]).
Therefore, our results indicated that the consensus connections
of these three modal networks were involved in a wide range
of cortical-subcortical circuits, especially the connection between
the cortex and the subcutaneous nucleus including the thalamus,
basal ganglia, and amygdala. Furthermore, there existed both
positive and negative consensus connections across the three
modalities. Positive connections were mainly distributed in the
frontal lobe-related connections, and negative connections were
mainly distributed in the temporal lobe and subcortical nuclei-
related connections.

Robustness of Network Analysis
As mentioned above, we repeated the same network construction
method and analysis process based on the AAL, with 90 ROIs,
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FIGURE 5 | The distribution of consensus connections identified by different modalities. (A) Morphological brain network based on sMRI; (B) Structural brain
network based on DTI; (C) Functional brain network based on fMRI. The consensus connections were mapped on the ICBM 152 template with the BrainNet Viewer
package (http://nitrc.org/projects/bnv/). Red and blue lines represent the increased and decreased connectivity weight of the SCD group, respectively. sMRI,
structural magnetic resonance imaging; DTI, diffusion tensor imaging; fMRI, functional magnetic resonance imaging.
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TABLE 5 | Consensus connections identified by the morphological brain network
based on sMRI.

ROI ROI Mean value P-value

SCD HC

OrG.R.6.1 BG.L.6.3 0.296 0.241 7.34 × 10−5

OrG.R.6.1 BG.R.6.3 0.480 0.256 8.40 × 10−5

MFG.R.7.6 PCL.R.2.2 0.767 0.509 1.27 × 10−4

PhG.R.6.4 PCun.L.4.4 0.094 0.273 2.91 × 10−4

SPL.R.5.4 IPL.R.6.5 0.387 0.027 3.19 × 10−4

MFG.R.7.3 PrG.L.6.1 0.461 0.512 4.47 × 10−4

MFG.R.7.6 CG.R.7.5 0.115 0.002 5.64 × 10−4

SFG.L.7.2 CG.L.7.1 0.342 0.257 7.98 × 10−4

pSTS.L.2.2 Tha.L.8.6 0.075 0.297 8.36 × 10−4

IFG.R.6.2 PrG.L.6.1 0.046 0.452 1.15 × 10−3

MTG.L.4.2 ITG.L.7.3 0.540 0.634 1.15 × 10−3

SPL.R.5.4 PCun.R.4.3 0.428 0.446 1.36 × 10−3

PhG.R.6.4 PCun.R.4.1 0.169 0.225 1.39 × 10−3

OrG.L.6.3 pSTS.L.2.1 0.118 0.602 1.58 × 10−3

PhG.R.6.4 pSTS.L.2.1 0.146 0.367 1.67 × 10−3

SFG.R.7.3 MFG.L.7.3 0.466 0.609 1.72 × 10−3

SPL.R.5.2 PoG.L.4.4 0.208 0.673 1.76 × 10−3

OrG.R.6.3 MTG.L.4.1 0.019 0.004 1.92 × 10−3

IPL.L.6.1 PoG.L.4.4 0.002 0.343 1.95 × 10−3

MTG.R.4.4 PhG.R.6.4 0.011 0.253 1.99 × 10−3

MFG.L.7.3 IFG.R.6.2 0.278 0.483 2.25 × 10−3

IPL.R.6.2 PoG.L.4.4 0.438 0.777 2.29 × 10−3

ITG.R.7.6 PhG.R.6.4 0.197 0.232 2.57 × 10−3

sMRI, structural magnetic resonance imaging; SCD, subjective cognitive decline;
HC, healthy control; ROI, region of interest.

TABLE 6 | Consensus connections identified by structural brain network based on
DTI.

ROI ROI Mean value P-value

SCD HC

BG.L.6.3 OrG.R.6.1 0.296 0.241 7.34 × 10−5

BG.R.6.3 OrG.R.6.1 0.480 0.256 8.40 × 10−5

PCun.L.4.4 PhG.R.6.4 0.094 0.273 2.91 × 10−4

PCun.L.4.3 MVOcC .L.5.2 0.002 0.003 3.59 × 10−4

MVOcC .L.5.3 LOcC.L.4.4 0.021 0.019 8.17 × 10−4

INS.L.6.1 INS.L.6.4 0.104 0.072 8.47 × 10−4

INS.L.6.6 INS.L.6.3 0.116 0.180 9.02 × 10−4

SPL.L.5.4 PCun.L.4.2 0.055 0.052 9.25 × 10−4

PCL.L.2.1 PCun.L.4.2 0.216 0.242 1.70 × 10−3

PCun.L.4.4 STG.L.6.2 0.003 0.001 2.22 × 10−3

IFG.L.6.1 IFG.L.6.6 0.086 0.047 2.32 × 10−3

OrG.L.6.3 BG.L.6.3 0.002 0.005 2.42 × 10−3

DTI, diffusion tensor imaging; SCD, subjective cognitive decline; HC, healthy
control; ROI, region of interest.

to demonstrate the robustness of our results. Supplementary
Figure 2 describes the multimodal networks at the group level.
In terms of the distribution of hub nodes and consensus
connections, the AAL90 template and BN template partially

TABLE 7 | Consensus connections identified by functional brain network based
on fMRI.

ROI ROI Mean value P-value

SCD HC

MFG.R.7.6 PoG.R.4.3 0.221 0.204 4.19 × 10−5

PhG.R.6.5 Hipp.L.2.1 0.095 0.557 8.91 × 10−5

Tha.L.8.1 Tha.R.8.4 0.700 0.812 3.22 × 10−4

MFG.R.7.7 pSTS.R.2.1 0.154 0.027 3.60 × 10−4

pSTS.L.2.1 pSTS.R.2.2 0.321 0.316 7.94 × 10−4

INS.R.6.5 BG.L.6.6 0.292 0.075 8.47 × 10−4

IPL.L.6.1 PCun.R.4.1 0.639 0.660 8.66 × 10−4

PhG.L.6.1 Amyg.R.2.2 0.143 0.377 1.39 × 10−3

OrG.L.6.3 ITG.L.7.4 0.443 0.156 1.40 × 10−3

MFG.R.7.6 IPL.R.6.2 0.540 0.853 1.41 × 10−3

PCL.L.2.2 BG.R.6.6 0.416 0.097 1.44 × 10−3

PhG.L.6.6 LOcC .R.4.3 0.109 0.425 1.79 × 10−3

SFG.R.7.4 PoG.R.4.3 0.282 0.197 1.90 × 10−3

PCun.L.4.2 CG.R.7.5 0.244 0.059 2.00 × 10−3

SFG.L.7.5 INS.R.6.5 0.154 0.282 2.10 × 10−3

PhG.R.6.1 Amyg.R.2.2 0.200 0.577 2.12 × 10−3

PoG.R.4.4 BG.R.6.6 0.384 0.075 2.14 × 10−3

PhG.L.6.5 Tha.R.8.2 0.138 0.232 2.27 × 10−3

ITG.L.7.2 IPL.L.6.3 0.105 0.690 2.35 × 10−3

INS.L.6.4 INS.R.6.4 0.516 0.587 2.38 × 10−3

OrG.L.6.3 IPL.L.6.3 0.173 0.192 2.40 × 10−3

MFG.L.7.4 ITG.R.7.7 0.167 0.140 2.49 × 10−3

SFG.L.7.7 CG.R.7.1 0.749 0.360 2.51 × 10−3

OrG.R.6.3 CG.R.7.5 0.170 0.217 2.57 × 10−3

fMRI, functional magnetic resonance imaging; SCD, subjective cognitive decline;
HC, healthy control; ROI, region of interest.

overlapped, involving the cortical-subcortical brain regions and
their connections (Supplementary Figures 3, 4). However, it
is worth noting that the number of these features based on
the AAL template was significantly reduced compared with
the BN template, especially in subcortical nuclei, such as the
thalamus. This may be because the AAL template has not yet
subdivided the subcortical nuclei into more detailed subregions,
resulting in a significant reduction in the number of subcortical
nuclei distribution. In addition, the classification results based
on the AAL template also demonstrated that compared
with the classification accuracy of single modality of the
morphological, structural, and functional network (73.17, 58.54,
and 78.05%, respectively), the combination of three modalities
could significantly improve the classification accuracy of SCD
(87.80%) (Supplementary Table 1 and Supplementary Figure 5).

DISCUSSION

In this study, we constructed the morphological, structural,
and functional brain networks based on sMRI, DTI and
fMRI, respectively, and aimed to explore the biomarkers of
brain network in individuals with SCD. Our results indicated
that the combination of three modalities using MK-SVM
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could significantly improve the classification performance
of individuals with SCD. More importantly, the consensus
connections based on the morphological, structural, and
functional networks identified in our study highlight the role of
the cortical-subcortical circuit in the pathological mechanisms
associated with individuals with SCD.

Alterations in Morphological Brain
Network
In our study, individual morphological brain network was
constructed based on the KLS method (Kong et al., 2014).
Compared with the previous group-level morphological brain
network obtained by estimating the interregional correlations of
morphological features (e.g., cortical thickness, cortical surface
area or GM volume) (He et al., 2008; Evans, 2013; Matsuda, 2016),
the KLS-based morphological brain network could generate
an individualised brain network for each participant according
to customised brain network nodes defined by specific brain
atlases (Kong et al., 2014). Therefore, it is more suitable to
construct efficient and stable morphological brain networks
and depict complex topological properties of brain network.
For the distribution of hubs and consensus connections of
morphological brain networks, our results indicated that most of
them were involved in cortical-subcortical circuits. Furthermore,
the consensus connections among the temporal lobe, parietal
lobe, and subcortical nuclei of individuals with SCD were weaker
than those of HCs. According to the definition of KLS, the lower
value of the KLS, the greater the difference between two brain
regions in GM volume distributions (Wang et al., 2016). Our
results hinted the heterogeneity of GM volume variation of cortex
and subcortical nuclei in SCD patients. Although previous studies
have also demonstrated that individuals with SCD exhibited
decreased GM volume in hippocampus, entorhinal cortex and
amygdala compared to the HCs (Jessen et al., 2006; Stewart
et al., 2011; Niemantsverdriet et al., 2018), our results further
highlighted the differences in volume changes of brain regions
distributed in the cortex and subcortical nuclei.

Alterations in Structural Brain Network
In terms of structural networks based on DTI, most previous
structural networks were constructed using deterministic fibre
tracking algorithms (Shu et al., 2018; Yan et al., 2018). In
comparison, the probabilistic fibre tracking algorithm of this
study considered the uncertainty of fibre direction estimation,
thereby improving the accuracy of white matter fibre tracking
(Ratnarajah et al., 2012). Regarding the distribution of hubs
and consensus connections of structural network, our results
indicated that the discriminative features of structural network
based on DTI and the morphological network based on sMRI
involved in overlapped and multiple cortical-subcortical brain
regions, such as the frontal lobe, PhG, Tha, and BG. It is
consistent with the anatomical basis of brain’s GM and white
matter distributed. Structural connections reflected the degree of
projection connections of white matter fibres between different
brain regions (Morris et al., 2008), our findings revealed that
SCD patients presented abnormalities of multiple white matter

fibre bundles in cortical-subcortical circuit. Previous studies
have indicated that most cholinergic fibres originate from the
projection of cholinergic neurons in the subcortical nuclei,
which connected with hippocampus complex and the cortex
through thalamus to constitute the basal forebrain-thalamus-
cortex circuit (Hanakawa et al., 2017; Meng et al., 2018; Villagrasa
et al., 2018). The input and output of pathway, such as Papez
circuit, have been demonstrated to play an important role in
memory, learning and attention (Semba, 2000; Aggleton et al.,
2016; Agostinelli et al., 2019).

Alterations in Functional Brain Network
Regarding the functional brain networks based on rs-fMRI,
functional connections were quantified by calculating the
pairwise Pearson’s correlation coefficients of blood oxygen level
dependent (BOLD) time series obtained for each ROI (Raichle
et al., 2001). Based on the distribution of hubs in SCD, we
found that most of them, such as the SFG, MTG, cingulate
gyrus, and precuneus, were located in the DMN. Similar to
previous studies (Greicius et al., 2004; Wang et al., 2013; Chiesa
et al., 2019), our study also demonstrated the important role
of DMN in the functional brain networks of individuals with
SCD. In addition, it is worth noting that compared with the
morphological and structural networks, the functional networks
exhibited a larger number and wider range of consensus
connections between the cortex and subcortical brain regions.
Furthermore, we found that the decreased functional connections
were mainly distributed in the temporal lobe, thalamus and
insula, which might lead to memory impairments (Aggleton et al.,
2016). Meanwhile, the increased functional connections related
to the frontal lobe might be attributed to the compensatory
changes in the functional brain network in the transition
stage of SCD.

The Relationship Between the Modalities
Based on the alterations of three different modalities mentioned
above, we found that there exists correlation between the
morphological, structural, and functional brain networks.
Regarding morphological and the structural networks, our
results indicated that the hubs and discriminative consensus
connections of structural network based on DTI and the
morphological network based on sMRI involved in overlapped
brain regions, such as the frontal lobe, PhG, Tha, and BG.
It is consistent with the anatomical basis of grey matter and
white matter distribution in the cortical-subcortical circuit.
The related brain regions (e.g., hippocampus, parahippocampal
gyrus, cingulate gyrus, amygdala, entorhinal cortex, basal
ganglia, and thalamus) were anatomically connected by the
white matter fibre bundles such as the fornix, corpus callosum,
and external capsule (Schmahmann et al., 2008). Therefore,
the alterations between these two modalities were similar.
Moreover, compared with the morphological and structural
networks, the functional networks exhibited a larger number and
wider range of consensus connections between the cortex and
subcortical nuclei. As Honey et al. (2009) have demonstrated
in previous research, functional connectivity was frequently
found between regions without direct structural linkage;
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nevertheless, its strength and spatial statistical values remained
constrained by the large-scale anatomical structure of the
brain and reflected the underlying pathologic alterations.
Therefore, different modal brain networks can provide
complementary information for detecting abnormalities in
SCD individuals.

Abnormalities in the Cortical-Subcortical
Circuit
Hub nodes play a critical role in global information transfer
and seem to be vulnerable and preferentially affected in
patients with AD (Dai and He, 2014). Our results found
the disappearance of some hubs in the SCD group, which
suggested the brain network integration function of SCD
patients may have changed. The reason may be related to
the early pathological changes of AD. In additon, for the
distribution of the hubs and consensus connections of the
morphological, structural, and functional brain networks, our
results point to significant abnormalities in the cortical-
subcortical brain regions and the connections between them in
SCD. In particular, the connections between the subcutaneous
nucleus (e.g., BG, amygdala, and thalamus) and the limbic
system (e.g., hippocampus, parahippocampal gyrus, cingulate
gyrus and entorhinal cortex) and cortex, corresponding to the
cortical-subcortical circuit, was significantly aberrant in SCD.
Among them, all the subcortical nucleus we identified are highly
complex of subnuclei. For instance, thalamus includes more
than 10 subnuclei with distinct connections. And the basal
nuclei and thalamus participate in many different neuronal
pathways, such as cholinergic pathways, with functions related
to memory, learning, emotion, attention (Ballinger et al., 2016).
Previous studies have found the fewer cholinergic neurons and
abnormal amyloid-beta accumulation in cholinergic pathways,
are considered important factors leading to the decline of
cognitive function in AD (Saxena and Caroni, 2011; Baker-
Nigh et al., 2015; Fernandez-Cabello et al., 2020). Therefore, our
study provided important clues for the early identification and
mechanisms exploration of SCD.

Classification of MK-SVM
In addition, after feature selection of the morphological,
structural, and functional network connections by a t-test, MK-
SVM was applied to combine these features for the classification.
For the single modality, we found that the functional network
based on fMRI has the highest accuracy rate compared to
the morphological and structural networks. This is consistent
with the previous study by Yan et al. (2019) that focused on
SCD classification based on structural and functional networks.
Thus, we speculated that in this stage of SCD, functional
changes in the brain were more significant than structural
changes in the GM and white matter. In addition, combining
two multimodal modalities improved the classification accuracy.
Furthermore, the combination of three modalities achieved
the best classification performance. The MK-SVM in our
study, as an innovative and optimised multimodal information
fusion method, can adaptively learn the optimal combined core

from a set of base cores and solve the problem of kernel
functions selection. Meanwhile, it may address the imbalanced
dimension issue across different modalities to some extent
and partially alleviate the high-dimensional curve representing
multiple features to discriminate individuals with SCD from
HCs. Compared with certain previously published research
(Yan et al., 2019; Chen et al., 2020), we obtained a better
classification performance in response to a multimodal brain
network combination. Combined with the model validation
based on the AAL template, our findings emphasised that the
combination of multimodal brain networks may be considered
a potential approach for the early discrimination of individuals
with SCD from HCs.

Limitations and Future Directions
Although our study sought to establish a new perspective
to explore the brain network mechanisms associated with
SCD and early-stage AD identification, several limitations exist
with scope for further study. Firstly, a large sample size
and multi-centre data are essential to training and validating
models. The participant numbers are small for a multi-variate
approach. Therefore, the study classifies as pilot study. Although
our research has confirmed the stability and repeatability
of the methodology based on the AAL template. In future
work, we need to use large samples and multi-centre data
to further verify the robustness of our proposed method
and the repeatability of the results. Secondly, a follow-up
study should be carried out for different stages of AD using
longitudinal data. In this study, we only detected brain network
abnormalities and performed the individual identification in
individuals with SCD; longitudinal follow-up studies of the
different stages of AD are needed to identify the early and
specific imaging markers for diagnosis and prediction. Thirdly,
a combination of multimodal diagnostic information should
be carried out. We only used different modal brain network
connections for the classification of SCD. In the future, we may
attempt to identify and explore the pathological mechanisms
associated with SCD by combining multimodal diagnostic
information such as that stemming from Positron Emission
Tomography (PET), Electroencephalography (EEG), and blood
biomarker information.

CONCLUSION

We applied the morphological, structural, and functional brain
networks based on sMRI, DTI, and fMRI to investigate the
pathological mechanisms and potential biomarkers of individuals
with SCD. The discriminative connections of three modal brain
networks shed light on the abnormality of cortical-subcortical
circuit in SCD. Furthermore, the disconnection between different
brain regions might lead to the cognitive decline in patients
with SCD. In addition, the combination of three modalities
with MK-SVM achieved the best classification performance for
SCD. Our findings provided novel insights into the pathological
mechanisms associated with patients with SCD presenting with
early AD pathologies, which will thereby contribute to the
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development of more effective diagnostic tools and therapies for
preclinical stages of AD.
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