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Abstract

In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in
complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which
searches for QTL interactions in genetic variation. The central approach in GMM is the following. (1) Each tested
marker is given a virtual matrix, named a genotype matrix (GM), containing intersecting lines and rows equal to
the total allele number for that marker in the population analyzed. (2) QTL interactions are then estimated and com-
pared through virtual networks among the GMs. To evaluate the contribution of marker combinations to a quantita-
tive phenotype, the GMM method divides the samples into two non-overlapping subclasses, S0 and S1; the former
contains the samples that have a specific genotype pattern to be evaluated, and the latter contains samples that do
not. Based on this division, the F-measure is calculated as an index of significance. With the GMM method, we
extracted significant marker combinations consisting of one to three interacting markers. The results indicated there
were multiple QTL interactions affecting the phenotype (flowering date). GMM will be a valuable approach to identify
QTL interactions in genetic variation of a complex trait within a variety of organisms.
Key words: genotype matrix mapping; QTL interaction; genetic variation

1. Introduction

Many complex traits of medical and agricultural
importance, such as blood pressure, diabetes, crop yield,
and plant stress resistance, are controlled by quantitative
trait loci (QTLs).1,2 The phenotypic variation of a
complex trait usually results from multiple QTLs,
QTL–QTL interactions, and QTL–environmental inter-
actions.3 These complex interactions make identification
of individual QTL and QTL interactions difficult.
However, recent advances in molecular biology and geno-
mics will now enable us to identify and dissect QTLs

related to complex traits in connection with genomic
information by employing a statistical method. Once can-
didate QTLs have been identified, such genetic regions
can be broken down into responsible genes by a map-
based cloning approach with the aid of DNA markers
and genetic linkage maps.4 The first successful example
of gene identification and cloning from a naturally occur-
ring allelic variation was Hd1, a major QTL responsible
for photoperiod sensitivity in rice.5

Two major approaches have been used to investigate
QTLs contributing to complex traits: linkage analysis
and association analysis. Linkage analysis exploits the
shared inheritance of functional polymorphisms and adja-
cent markers within families or pedigrees of known ances-
try,1 whereas association analysis is an approach to detect
QTL localization based on linkage disequilibrium in unre-
lated individuals or natural populations.6 Both these
approaches have contributed to our understanding of
single QTLs in a great variety of species; however,
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neither approach can be used to detect interactions
among multiple QTLs. Although composite interval
mapping (CIM)7 and multiple QTL mapping (MQM)8

can identify multiple QTLs by including additional back-
ground markers in the model, these approaches can only
precisely locate QTLs with significant main effects and
do not detect epistatic QTLs.9

Recently, several approaches for the detection of epige-
netic gene interactions have been developed, primarily in
the field of human genetics, by application of regression
analysis, neural networks, and non-parametric
methods.10 One of the typical approaches is fitting a mul-
tiple regression model and, thus, relating the trait values
to marker genotypes.9,11–13 In this approach, the number
of QTLs in the population by first making estimates based
on the Bayesian information criterion and then QTL
location and interaction fitting in the model are
assumed. The weak point of this approach is that the
detection power decreases as the number of parameters
increases. So far, identification of presumptive epistatic
QTLs using the multiple regression model has been
demonstrated only with inter-crossed populations. The
other commonly used approach is the multifactor dimen-
sionality reduction (MDR) method, which uses non-
parametric methods and is most efficiently used with
case–control data.14–16 The MDR method pools multi-
locus genotypes into a single dimension with two groups
classified as either case or control data. Because this
approach was developed for genetic epidemiologists, sequen-
tial phenotypic data cannot be adapted to this analysis.

Similar to the multiple regression model and MDR
method, other current approaches available for detection
of epistatic QTLs have their own advantages and disad-
vantages. For example, some methods are incapable of
detecting epistatic QTLs in the absence of main effect
QTLs or interactions among more than three loci, and
others have not developed software programs for general
users.10 In addition, we recognized a common disadvan-
tage in these current approaches; that is, all of them were
developed to generate a best solution (QTL interaction)
among numerous candidate interactions, and do not con-
sider relations among subsets of interacting QTLs.
Because the final phenotypic value of a complex trait
should be determined through multifactor interactions,
there may not be just one best interaction in a complex
trait, but multiple interactions related to a complex trait.
Therefore, we considered that comparison of many QTL
interactions at once is vital for a comprehensive under-
standing of QTL expression affecting a complex trait.

In order to reveal QTL interactions and interaction–
interaction relationships in complex traits, we have develo-
ped a new QTL mapping approach named genotype
matrix mapping (GMM), which searches for QTL inter-
actions not only in family data, but also in various
genetic backgrounds. In GMM, each marker is given a
matrix in which each of the total number of alleles for

the marker in the tested population is represented by
intersecting lines and rows. QTL interactions are esti-
mated and compared through virtual networks generated
among the locus matrixes. In this report, we described the
concept of GMM and investigate the efficiency of the
concept using a real genotype–phenotype data set.

2. Materials and methods

2.1. Red clover data set
For development and investigation of the GMM algo-

rithm, a real genotype–phenotype data set derived from
red clover (Trifolium pratense L.) was used. Red clover
is diploid and the genome size is less than 440 Mb.17 It
is an allogamous species and each variety contains a
high level of heterozygosity.18

A total of 74 red clover individuals originating from ten
varieties bred in different countries were used: ‘Natsuyu’
(Japan), ‘Hokuseki’ (Japan), ‘Sapporo’ (Japan),
‘Rannij2’ (Russia), ‘Start’ (Czechoslovakia), ‘Kurano’
(Denmark), ‘Renova’ (Switzerland), ‘Merviot’
(Belgium), ‘Kenland’ (USA) and ‘Altaswede’ (Canada).
Genomic DNA was extracted from five to eight indivi-
duals of each variety and subjected to PCR examination
using 106 primer pairs for selected microsatellite
markers distributed throughout the genome.17 The pre-
sence or absence of amplification and differences in frag-
ment size were scored as different alleles. For phenotype
data, the flowering date was estimated for each individual
grown under conditions of 208C and an 18 h light/6 h
dark cycle in a greenhouse. The possibility of population
structure in the tested 74 individuals was estimated by
the ‘Structure’ (version 2.0) program with the following
parameters: length of burning period ¼ 10 000, Number
of MCMC population in the burning period ¼ 1000
(http://pritch.bsd.uchicago.edu/software.html).19

Phenotype values for red clover flowering date were dis-
tributed over 26 days (Fig. 1A). The average number of
alleles per marker was 6.5, and the range was between 2
and 10 (Fig. 1B). The number of genotypes (observed
two allele combinations per marker) ranged from 2 to 31
(Fig. 1C). The absence of population structure was con-
firmed by comparison of Ln P(D) ¼ 222476.9 (K ¼ 1)
and Ln P(D) ¼ 222507.9 (K ¼ 2). A schematic view of
the dataset is presented in Fig. 2.

2.2. Genotype matrix mapping
To carry out our analysis, we used a newly developed

program written in Cþþ language. This program uses
the obtained marker genotypes and the phenotypes of
the individuals as its input data set (Fig. 2), and extracts
all significant QTLs and QTL interactions in an exhaustive
manner without omission. The results are available in a
computer-parsable format and can be converted into
graphical presentations, as shown in this report. In
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contrast to interval mapping, the GMM algorithm does
not necessarily require relative genetic distances between
markers, since it does not estimate genotypes at putative
loci between two flanking marker loci. It uses map infor-
mation, if available, only for visualizing the results.

3. Results

3.1. Central concept of genotype matrix mapping
Any type of population, including unrelated individuals,

family data, and mapping populations for linkage analysis,
can be used for GMM, providing that there is no population
structure within the tested data set. The number of alleles
in the population should be determined for every marker
before analysis. Next, each marker is given a virtual
matrix, named a genotype matrix (GM), in which line
and row numbers are allotted based on the total number
of alleles for the marker in the population (Fig. 3A). For
example, when the number of alleles of ‘Marker A’ is five,
‘Marker A’ is given half a 5 � 5 matrix covering all possible
allele combinations. Individual genotypes are plotting onto
the matrix. For example, ‘Individual X’ with genotype ‘ab’
for ‘Marker A’, plots to the cell where line ‘a’ and row ‘b’
intersect. The estimated existence of a significant

relationship between genotype and phenotype values
based on analysis of variance (ANOVA), as in association
analysis, is determined when a number of individuals are
plotted to the same cell. Allelic interaction between ‘a’
and ‘b’ on ‘Marker A’ is estimated by comparison the pheno-
type distribution of ‘aa’, ‘ab’, and ‘bb’ cells on the GM
of ‘Marker A’. Additionally, the general effect of allele ‘a’
can be estimated by comparison the phenotypes among all
the cells in ‘line a’.

Finally, virtual networks created by through multiple
GMs, named genotype matrix networks (GMNs), con-
nected by each cell are generated. When a particular
network indicates a significant relationship to the pheno-
type, the marker–allele combinations assigned on the
GMs are considered a QTL interaction combination. In
the example in Fig. 3B, the combination of Marker
A(ab)–Marker B(bc)–Marker C(bd) strongly influences
the phenotype (red line), the combination of Marker
A(ab)–Marker B(ac)–Marker C(bd) has an intermediate
influence (orange line), and the combination of Marker
A(ab)–Marker B(ac)–Marker C(ae) has a weak influence
(green line). The letters in parentheses indicate allele
types. In summary, QTL interactions are identified by
finding significant interactions between multiple GMs
using GMNs. In theory, the potential number of conjunct

Figure 1. Phenotype and genotype data from the red clover germplasms. Distribution of flowering date (A), number of alleles per locus (B), and
number of genotypes per marker (C) are summarized.

Figure 2. A schematic view of the genotype data set. Each line and row indicates red clover individuals and marker genotypes, respectively. Colors
of cells indicate allele combination as listed at the bottom. Allele types are indicated by lower case, and ‘-’ indicates the absence of amplifications
or undetermined alleles of dominant markers. The matrix at the right indicates phenotypic values (flowering date) of each individual (red dots)
from early to late, corresponding to 29 October 2004 to 24 November 2004, respectively.
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markers per combination ranges from one to the
maximum number of tested markers.

3.2. Detection of QTL interactions
The first step of the GMM method is to construct a list

of locus combinations. Each locus combination in the list
is then depicted on the GM of the marker, as explained
above. To evaluate the significance of the locus combi-
nations, we used the F-measure.20 The total set S that con-
sists of N individuals is divided into two non-overlapping
subclasses S0 and S1 according to their marker genotypes.
Here, we have defined S1 as the samples that have the
specific genotype pattern to be evaluated, and S0 as the
samples that do not. When the aggregative effect of
markers is evaluated, the samples are subdivided using
the multiple markers instead of a single marker. Next,
the mean square among classes is calculated as follows:

MSA ¼
X1

j¼0

jSj jðmj � mÞ2

¼ jS0jðm0 � mÞ2 þ jS1jðm1 � mÞ2:

Here, m, m0, and m1 are the means of the phenotype values
in S, S0, and S1, respectively. jXj is the number of individ-
uals in X.

The mean square within each class is defined as follows:

MSW ¼

P1

j¼0

P
si[Sj
ðPi � mjÞ

2

N � 2

¼

P
si[S0

ðPi � m0Þ
2 þ

P
si[S1

ðPi � m1Þ
2

N � 2
:

Here, Pi is the phenotype value of the i-th individual si.
The F-measure is obtained by dividing the MSA by the
MSW (F ¼MSA/MSW) and indicates the bias of the

distribution of phenotype values in the two subclasses.
If the distribution of the phenotype in the two subclasses
differs, one can conclude that the condition (i.e., the
pattern of marker genotypes) used for sample division is
associated with the phenotype of interest. In such cases,
the F-measure value is large.

Significant locus combinations that have large F-measure
values are searched in an incremental manner. During the
searching procedure, the maximum F-measure obtained
is Fopt, and the value of Fopt is updated when a better
combination whose F-measure is higher than the current
Fopt is identified. Additionally, d is a given margin value
and the final result of this method includes all combi-
nations whose F-measure is less than the maximum by
this margin value d. To fulfill this condition, starting
with a single marker, another marker is concatenated to
the first marker with each round of the incremental
search until the given maximum length L is reached.
When each additional marker is concatenated to a combi-
nation, the F-measure is evaluated to judge whether the
combination is significant or not (i.e., higher than Fopt-d
or not). If the combination is significant, it is included
in the result, and the upper boundary of the F-measure
that the combination can reach by further concatenation
is calculated.21 If this upper boundary is less than Fopt - d,
significant combinations cannot be obtained by further
computation, and the current search is therefore termi-
nated and evaluation of another set of combinations is
started. When all searches are terminated, all the
optimum and sub-optimum combinations are included
in the result.

3.3. GMM search on a red clover data set
We examined the feasibility of the GMM method using

the datasets from red clover, which consist of 106 microsa-
tellite markers distributed along the entire genome for the
genotype dataset and the flowering date for the phenotype
dataset. Using the GMM algorithm, we tentatively
extracted the significant locus combinations consisting of
at most L ¼ 3 markers. Table 1 shows all the combinations
of markers whose F-measure value was higher than 35.0
(searching was carried out setting the margin value d ¼
10.0 and only combinations higher than F ¼ 35.0 are
shown). All the combinations with high F-measure
values listed in Table 1 are concatenations of three loci.
This means that the F-measure values obtained using com-
binations of one or two loci were lower than those obtained
using combinations of three loci. The combination of
RCS2958(b-), RCS0914(b-), and RCS1300(ab) produced
the highest F-measure score (43.9), and extracts samples
with the three highest phenotype values (late-flowering
samples). Fig. 4 illustrates the distribution of phenotype
values extracted using each combination consisting of
one, two, or three of the three loci. The F-measure values
obtained using the single loci RCS2958(b-), RCS0914(b-)

Figure 3. Schematic representation of GM and GMN. (A) A virtual
matrix given for ‘Marker A’, which is composed of five alleles. The
pink cell indicates the ‘ab’ genotype. (B) Detection of marker locus
interactions by virtual networks among multiple matrices. Red,
orange, and green lines indicate interactions which influence the
phenotype to various extent (see text).
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and RCS1300(ab) were 7.9 � 1021, 3.9 � 100, and 3.7 �
1024, respectively. These low values indicate that there is
almost no, or only a weak, effect of each single locus
alone. Similar to the single locus results, combinations of
two loci did not strongly affect the phenotype. However,
the triple loci combinations are highly associated with
the phenotype.

Several loci are repeatedly listed in Table 1, which indi-
cates that they interact with multiple combinations of
loci. For example, RCS1022(ab) and RCS1167(b-) were
each found in five combinations in Table 1. The redun-
dancy of the list presentation does not facilitate an intui-
tive understanding of the results, and the obtained
information was therefore also visualized in two styles of
graphical presentation, as shown in Figs 5 and 6. Fig. 5
illustrates the combinations of interacting triple loci and
their positional information on the red clover linkage
map.17 Locations of interacting loci are interlinked by
lines on the linkage group maps. By illustrating the posi-
tions of interacting loci, the loci whichaffect the phenotype
through interactions with multiple combinations of

genotypes are readily identified; in this case, 50–52 cM
and 84–89 cM on LG2, 76 cM on LG5, and 27 cM on
LG6. In a different type of graphic, Fig. 6 illustrates the
relationships between interacting loci and allele type
using GMs and a GMN. Line colors (GMNs) and cell
colors (GMs) represent the magnitude of F-measure
values for interacting and single locus/allele effects,
respectively. By comparing several GMNs, the existence
of ‘hub loci/alleles’ in these interactions emerges, such as
RCS1022(ab) and RCS1167(b-), as well as multiple
GMNs. The hub loci/alleles, however, did not show the
highest effect on phenotypes when evaluated as a single
locus/allele.

4. Discussion

Although there is a growing awareness of the import-
ance of gene interactions in genetic studies of complex
traits, classical genetic analysis either ignores gene inter-
actions or defines the effect of gene interactions as a

Table 1. Significant locus combinations consisting of one to three interacting markers whose F-measures were .35.0

F-measure Relevant samplesa Others Number of loci Interacted locus (allele)

Number of samples Meanb Number of samples Meanb

43.9 3 20.0 71 3.8 3 RCS2958(b-) RCS0914(b-) RCS1300(ab)

43.9 3 20.0 71 3.8 3 RCS1113(bc) RCS0914(b-) RCS0235(-)

43.9 3 20.0 71 3.8 3 RCS1113(bc) RCS0914(b-) RCS1300(ab)

41.0 3 19.7 71 3.8 3 RCS1366(a-) RCS1167(b-) RCS1022(ab)

41.0 3 19.7 71 3.8 3 RCS1167(b-) RCS3665(a-) RCS1022(ab)

41.0 3 19.7 71 3.8 3 RCS1167(b-) RCS2741(a-) RCS1022(ab)

41.0 3 19.7 71 3.8 3 RCS1167(b-) RCS1022(ab) RCS0937(-)

38.2 5 15.8 69 3.6 3 RCS2958(b-) RCS0914(b-) RCS3315(ab)

38.2 5 15.8 69 3.6 3 RCS1366(a-) RCS0914(b-) RCS3719(a-)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS2958(b-) RCS1113(bc)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS1113(bc) RCS1541(a-)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS1113(bc) RCS1167(b-)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS1113(bc) RCS0235(-)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS1113(bc) RCS3315(ab)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS1113(bc) RCS2689(-)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS2645(ab) RCS0235(-)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS1167(b-) RCS1022(ab)

35.8 3 19.0 71 3.8 3 RCS1325(cd) RCS0235(-) RCS1022(ab)

35.8 3 19.0 71 3.8 3 RCS2958(b-) RCS1167(b-) RCS1022(ab)

35.8 3 19.0 71 3.8 3 RCS2958(b-) RCS0235(-) RCS1022(ab)

35.8 3 19.0 71 3.8 3 RCS1113(bc) RCS2645(ab) RCS1167(b-)

35.8 3 19.0 71 3.8 3 RCS1113(bc) RCS1167(b-) RCS1022(ab)

35.8 3 19.0 71 3.8 3 RCS2645(ab) RCS1167(b-) RCS0235(-)

35.8 3 19.0 71 3.8 3 RCS1167(b-) RCS0235(-) RCS1022(ab)

a Samples harbouring the locus (allele) combination in the right-most column.
b Mean value of phenotypes (flowering date).
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deviation from genetic additive effects.22 The demon-
stration in this study, using a real data set from red
clover, indicates that the GMM algorithm efficiently
detects multi-QTL interactions in genetic variation in a
complex phenotype. The novel aspect of GMM is that
the algorithm is capable of comparing multiple QTL
interactions at once, which has not previously been pos-
sible in QTL detection approaches.

One of the advantages of comparison of multiple QTL
interactions is the detection of hub locus/allele in the
interactions. In this study, GMM demonstrated the exist-
ence of loci which affected the phenotype through mul-
tiple combinations of interacting loci. Interestingly,
these hub loci/alleles did not necessarily display the
highest effect on the phenotype as a single locus. To
date, most findings have suggested that quantitative vari-
ation is determined by a few QTLs with a relatively large
effect and a large number of genes having progressively
smaller effects.2 However, Jannink23 recently identified
QTLs by analyzing genetic background interactions in
association studies, and was able to detect loci that
have no main effect but which influence a trait only
through their interactions with other loci. Our results,
together with those of Jannink, suggest that multiple
QTL interactions might be buried under the smaller
effect of single QTLs. The hub locus/allele may be a key
locus for identifying QTLs networks in which each com-
ponent contributes directly to the final phenotype.

The hub loci/alleles that appeared in the multiple
interactions that affected the flowering date of red clover

were identified on 50–52 cM and 84–89 cM on LG2,
76 cM on LG5 and 27 cM on LG6. Herrmann et al.24

have detected seven QTLs for the flowering date of red
clover on all of the linkage groups except for on LG1.
Although the tested DNA markers and the total lengths
of the reference maps were different between Herrmann
et al.’s (444 cM) and our study (869 cM), it could be pre-
sumed that the hub loci/alleles found on LG2 and LG5
will correspond to the QTLs identified by Herrmann
et al., once a comparison of the two maps used in these
studies has been performed. In this study, we used a set
of unrelated individuals to demonstrate the GMM algor-
ithm; however, any type of population, including family
data, which is used for interval mapping analysis, can
be analyzed by the GMM algorithm. Therefore, using
GMM for reassessment of QTLs that have been identified
by other methods (e.g., interval mapping) might provide
us with insights into QTL interactions in the analyzed
population. It is expected that the comparison of multiple
combinations of interacting QTLs will lead to the identi-
fication of genes related to complex traits. Recently,
expression quantitative trait locus (eQTL) mapping,
which is a combination of gene expression profiling and
classical genetic mapping, has been adopted to reveal
quantitative heritable variation in the transcriptome.25

In this method, however, thousands of expression profiles
are related with sequence polymorphisms across the
genome through their correlated variations, which
results in a large number of mappings that make it diffi-
cult to consider simultaneously the relationships

Figure 4. Distribution of phenotype values (flowering date) resulting from multiple locus/allele combinations. Combinations of two out of three
locus/allele types are shown by green, blue, and yellow lines, and that of three types by red lines. Orange and gray bars indicate samples
possessing the relevant locus/allele combinations and others, respectively (see Table 1).
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between multiple genomic regions and multiple expression
profiles.26 Prioritization and re-organization of a large
number of original results by the GMM method may
facilitate efficient dissection of expression QTLs and sub-
sequent identification of genes.

Though the concept of GMM and its potential feasi-
bility were demonstrated with a real genotype–phenotype
data set in this article, there are several issues yet to be
evaluated, examined, and solved before GMM can be
applied more precisely for the detection of QTL inter-
actions. The most prioritized issue to be discussed is the
population structure. We used a data set of unrelated
individuals without population structure in the present
demonstration. However, QTL detection by GMM is per-
formed on the basis of analysis of variance; thus, it is pos-
sible that hidden population structure leads to false
positive associations between genotypes and phenotypes,
as was observed in LD mapping.27 Therefore, estimation
of the degree of population structure of a data set prior
to GMM calculation should be an essential requirement.

In order to address the problem of population structure
in population-based samples, Yu et al.28 have developed
a new statistical method for LD mapping that simul-
taneously accounts for both population structure and
familial relatedness. A combination of such method with
GMM might provide a solution to the problem of the
current version of GMM.

Effectual data size and degree of significance are also
indispensable issues to be evaluated. One of the most
probable reasons for insufficient output from the GMM
analysis is the limited size of the data set. Increasing the
number of individuals for data acquisition would
improve the accuracy of the whole analysis, but this is
not always feasible, especially in the early stages of data
preparation. On the other hand, there is a strong
demand to sort locus combinations according to their sig-
nificance so that the loci that are expected to interact
together can be prioritized. Therefore, searching for
probable locus combinations will be useful from a practi-
cal point of view. In LD mapping, for example, many

Figure 5. Graphical presentation of interacting triple loci and their positions on the genetic linkage map. Seven linkage groups and unmapped
markers are arranged tandemly as a circle. Triangles in the circle indicate GMNs, i.e. interacted triple loci combination. Magnitude of the
F-measure is show by a color-code.
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simulation studies have been carried out to obtain the
optimal experiment design to detect QTLs, by consider-
ing a wide range of parameters, such as population size,
number of markers, heritability and effects of QTLs,
length of LDs, and the number of generations.29–32 As
with LD mapping, it is probable that the appropriate
size of a data set for GMM will vary depending on the
experimental design. Moreover, if the number of alleles
of each locus increases, the risk rate of detecting false-
positive interactions could also increase. To solve such
problems, we need to evaluate the detection power of
GMM in relation to the number of possible combinations
of individuals and their genotypes. Both simulation
studies and the application of the GMM method to real
data sets will be useful to estimate the effectual data
size. Additionally, the robustness of the significance test
should also be investigated in the near future.

For easy handling and presentation of the results for
users, it will be fundamental to design an appropriate
interface for the GMM software program. Because of
the large number of, and sometimes redundant, candidate
QTL combinations detected by the GMM analysis,
extraction of meaningful information from a tabulated
set of data will often be difficult. In this study, we pre-
sented two types of graphic presentations for the results

from the GMM analysis: a circular linkage map (Fig. 5)
and a combination GM and GMN chart (Fig. 6).
Development of a user interface that allows intuitive
understanding of the relationships among multiple QTL
interactions is under way.

Though GMM currently has several unclear issues
which have to be resolved, it should give us an additional
dimension of QTL impacts by indication of multiple QTL
interactions. We hope the new ideas for dissection of
QTL expression will be sparked on genetics and genomics
by handling GMM. The GMM service and software
package will be provided at http://www.kazusa.or.jp/
GMM in December, 2007.
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Figure 6. Graphical presentation of interacting loci and allele type by GMs and a GMN. Significant locus/allele combinations of one to three
interacting loci whose F-measures were .35.0 are shown by GMs and GMN. Matrices and connecting lines indicate GMs and GMNs,
respectively. Magnitude of the F-measure of combination and single locus/alleles effects, respectively, is shown by a color-code.
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